专题提升(二) 代数式的化简与求值 2018届中考数学专题提升检测卷(Word版,含答案)
- 格式:doc
- 大小:60.50 KB
- 文档页数:4
专题02 整式与分解因式学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【2015宜宾】把代数式3231212x x x -+分解因式,结果正确的是( )A.23(44)x x x -+ B.23(4)x x - C.3(2)(2)x x x +- D.23(2)x x -【答案】D .【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D.【考点定位】提公因式法与公式法的综合运用.2.【2015开县五校联考九上半期】下列计算正确的是( )A .32622a a a =÷B .412122-=⎪⎭⎫ ⎝⎛-x xC .()66332x x x =+ D .()11+-=--a a [ 【答案】D .【解析】【考点定位】1.同底数幂的除法;2.合并同类项;3.去括号与添括号;4.完全平方公式.3.【2015枣庄】如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A.140 B.70 C.35 D.24【答案】B .【解析】试题分析:根据题意得:a +b =14÷2=7,ab =10,∴22a b ab +=ab (a +b )=10×7=70;故选B.【考点定位】因式分解的应用.4.【2015日照】观察下列各式及其展开式: 222()2a b a ab b +=++;33223()33a b a a b ab b +=+++;4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A.36 B.45 C.55 D.66【答案】B .【解析】第6个式子系数分别为:1,6,15,20,15,6,1;第7个式子系数分别为:1,7,21,35,35,21,7,1;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则10()a b +的展开式第三项的系数为45.故选B.【考点定位】1.完全平方公式;2.规律型;3.综合题.二、填空题:(共4个小题)5.【2015巴中】分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.【考点定位】提公因式法与公式法的综合运用.6.【2015大庆】若若52=n a,162=n b ,则()n ab = . 【答案】45±【解析】试题分析:∵52=n a ,162=n b ,∴2280n n a b ⋅=,∴2()80n ab =,∴()n ab =45±,故答案为:±【考点定位】幂的乘方与积的乘方.7.【2015内江】已知实数a ,b 满足:211a a +=,211b b+=,则2015a b -|= . 【答案】1.【解析】【考点定位】1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题.8.【2015雅安】若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .【答案】510.【解析】【考点定位】1.规律型:数字的变化类;2.规律型;3.综合题;4.压轴题.三、解答题:(共2个小题)9.【2015内江】填空:()()a b a b -+= ; 22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1) 22a b -,33a b -,44a b -;(2) n na b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -; 3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为:22a b -,33a b -,44a b -;【考点定位】1.平方差公式;2.规律型;3.阅读型;4.综合题.10.【2015重庆市】如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y =2x (1≤x ≤4,x 为自然数).【解析】试题分析:(1)根据“和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个“和谐数”,设任意四位“和谐数”形式为:abcd ,根据和谐数的定义得到a =d ,b =c ,则100010010100010010100111011111111abcd a b c d a b b a a b +++++++====9110a b +为正整数,易证得任意四位“和谐数”都可以被11整除; (2)设能被11整除的三位“和谐数”为:zyx ,则10110zyx xyx x y ==+,故10110991122911111111zyx x y x y x y x y x y +++--===++为正整数.故y =2x (1≤x ≤4,x 为自然数). 试题解析:(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一), 任意一个四位“和谐数”都能被11整除,理由如下:设任意四位“和谐数”形式为:abcd ,则满足:最高位到个位排列:d ,c ,b ,a ,个位到最高位排列:a ,b ,c ,d .由题意,可得两组数据相同,则:a =d ,b =c ,则100010010100010010100111011111111abcd a b c d a b b a a b +++++++====9110a b +为正整数.∴四位“和谐数”能被11整数,又∵a,b,c,d为任意自然数,∴任意四位“和谐数”都可以被11整除;【考点定位】1.因式分解的应用;2.规律型:数字的变化类;3.新定义;4.综合题;5.压轴题.。
押题2018年中考数学之提升解题能力训练专题02 代数式的化简与求值类型之一 整式的化简与求值【母题重现】已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y )2呢? 解:x 2+y 2=(x +y )2-2xy =32-2×1=7; (x -y )2=(x +y )2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b )2+(a -b )2=2(a 2+b 2),(a +b )2-(a -b )2=4ab ,a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考回顾】1. (2017山东省淄博市)若a +b =3,227a b +=,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣1 【答案】B . 【解析】试题分析:∵a +b =3,∴2()9a b +=,∴2229a ab b ++=,∵227a b +=,∴7+2ab =9,∴ab =1.故选B . 考点:1.完全平方公式;2.整体代入.2.(2017江苏省徐州市)已知a +b =10,a ﹣b =8,则22a b -= . 【答案】80. 【解析】试题分析:∵(a +b )(a ﹣b )=22a b -,∴22a b -=10×8=80,故答案为:80. 考点:平方差公式.3.(2017江苏省泰州市)已知2m ﹣3n =﹣4,则代数式m (n ﹣4)﹣n (m ﹣6)的值为 . 【答案】8.考点:整式的混合运算—化简求值.4. (2017吉林省长春市)先化简,再求值:()223(21)21a a a a ++-+,其中a =2.【答案】32342a a a +--,36. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.试题解析:原式=32363242a a a a ++---=32342a a a +--,当a =2时,原式=24+16﹣2﹣2=36. 考点:1.整式的混合运算—化简求值;2.整式.5.(2017湖北省荆门市)先化简,再求值: ()()()2212132x x x +--+-,其中x =.【答案】225x + ,9.考点:整式的混合运算—化简求值.6.(2017贵州省贵阳市)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题. 解:()()2212x x y x x +-++222212x xy x x x =+-+++ 第一步241xy x =++ 第二步(1)小颖的化简过程从第 步开始出现错误; (2)对此整式进行化简. 【答案】(1)一;(2)2xy ﹣1.【解析】考点:1.单项式乘多项式;2.完全平方公式.7. (2017河北省)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍. (2)()()()()()2222222211251052n n n n n n n -+-+++++=+=+.∵n 为整数,∴这个和是5的倍数. 延伸 余数是2.理由:设中间的整数为n ,()()22221132n n n n -+++=+被3除余2.点睛:本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.考点:1.因式分解的应用;2.完全平方公式;3.整式的加减.【中考押题】1.先化简,再求值:,其中.【答案】3.5点睛:本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,单项式乘以多项式法则,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解答本题的关键.2.先化简,再求值: ,其中.【答案】,.【解析】分析:原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值. 详解:原式=x 2+2xy +y 2﹣2xy ﹣2y 2=x 2﹣y 2 当x =﹣1,y =时,原式=3﹣2﹣3=﹣2.点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键. 3.先化简,再求值:x (2x -y )-(x +y ) (x -y ) + (x -y ) 2,其中x 2+y 2=5,xy=-2 . 【答案】16【解析】分析:原式利用单项式乘以多项式,平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值. 详解:原式=2x 2﹣xy ﹣x 2+y 2+x 2﹣2xy +y 2 =2x 2+2y 2﹣3xy ,当x 2+y 2=5,xy =﹣2时,原式=2×5﹣3×(﹣2)=10+6=16.点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.4.先化简,再求值()()()()21212121a a a a a ---++-,其中a =. 【答案】15【解析】试题分析:根据完全平方公式、单项式乘以多项式,平方差公式计算化简后,再代入求值即可.试题解析:解:原式=222212241a a a a a -+-++-=23a .当a =时,原式2315=⨯=.5.先化简,再求值:,其中 x=, y=.【答案】8【解析】试题分析:利用完全平方公式、单项式乘以多项式的运算法则计算后,合并同类项化为最简后,再代入求值即可. 试题解析: 原式= =;将,代入得:原式=类型之二 分式的化简与求值【母题重现】计算:(1)a b -b a -a 2+b2ab;(2)⎝⎛⎭⎫3x x -2-x x +2·x 2-4x .解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a;(2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x =2x +8.【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简; (4)要注意分式的通分与解分式方程去分母的区别.【中考回顾】1.(2017山西省)化简2442x x x x ---的结果是( ) A .22x x -+ B .26x x -+ C .2x x -+ D .2x x -【答案】C . 【解析】考点:分式的加减法.2. (2017北京市)如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( )A .﹣3B .﹣1C .1D .3 【答案】C . 【解析】考点:1.分式的化简求值;2.条件求值. 3.(2017四川省乐山市)已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有( )A .0个B .1个C .2个D .3个 【答案】C .点睛:本题主要考查的是完全平方公式的应用,熟练掌握完全平方公式是解题的关键. 考点:1.完全平方公式;2.分式的混合运算.4. (2017临沂)计算:22()x y xy y x x x--÷-= . 【答案】1x y-.【解析】试题分析:原式=222x y x xy y x x --+÷=2()x y x x x y -⋅- =1x y -.故答案为:1x y-. 考点:分式的混合运算. 5. (2017黄冈)化简:23332xx x x x -⎛⎫+ ⎪---⎝⎭= . 【答案】1. 【解析】考点:分式的混合运算.6. (2017内蒙古通辽市)先化简,再求值:165)121(2-+-÷--x x x x ,其中x 从0,1,2,3四个数中适当选取. 【答案】12x -,﹣12.考点:分式的化简求值. 7.(2017吉林省)某学生化简分式21211x x ++-出现了错误,解答过程如下: 原式=12(1)(1)(1)(1)x x x x ++-+-(第一步) =12(1)(1)x x ++-(第二步)=231x -.(第三步)(1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.【答案】(1)一,分式的基本性质用错;(2)答案见解析. 【解析】考点:分式的加减法.8.(2017四川省广元市)先化简,再求值:211(1)a aa a a a--÷-++,其中,a1. 【答案】21(1)a +,12. 【解析】试题分析:首先化简分式,然后把a 代入化简后的算式,求出算式的值即可. 试题解析:原式=1(1)(1)(1)a a a a a a --+÷+ =1(1)(1)(1)a a a a a a -⋅+-+=21(1)a + 当a1-时,原式=12. 考点:分式的化简求值.【中考押题】1.先化简,再求值:231111x x x x -⎛⎫+÷ ⎪+-⎝⎭,其中x 是不等式组11210x x x --⎧->⎪⎨⎪->⎩的整数解. 【答案】4(x ﹣1),4. 【解析】解②,得x >1,∴不等式组的解集为1<x <3,∴不等式组的整数解为x =2. ∵231111x x x x -⎛⎫+÷ ⎪+-⎝⎭=4(1)(1)1x x x x x +-⨯+ =4(x ﹣1). 当x =2时,原式=4×(2﹣1)=4.考点:1.分式的化简求值;2.一元一次不等式组的整数解.2.先化简,再求值:1)1331(2+-÷--+-x xx x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-14232x x 的整数解中选取. 【答案】2x x-,当x =2时,原式=0. 【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x 的值,代入求解可得.试题解析:原式=2133(1)()111x x x x x x x ---+÷+++ =23211(1)x x x x x x -++⋅+-=(1)(2)11(1)x x x x x x --+⋅+-=2x x - 解不等式组⎩⎨⎧<-≤-14232x x 得:﹣1≤x <52,∴不等式组的整数解有﹣1、0、1、2,∵不等式有意义时x ≠±1、0,∴x =2,则原式=222-=0. 点睛:本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键. 考点:1.分式的化简求值;2.一元一次不等式组的整数解. 3.先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 【答案】﹣x ﹣1,1. 【解析】考点:1.分式的化简求值;2.解一元二次方程﹣因式分解法;3.分类讨论.4.有这样一道题“求222111211a a a aa a a a++--÷-+++的值,其中2017a=”,“小马虎”不小心把2017a=错抄成2007a=,但他的计算结果却是正确的,请说明原因.【答案】1.【解析】点睛:此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.考点:分式的化简求值.类型之三二次根式的化简与求值【母题重现】已知a=3+2,b=3-2,求a2-ab+b2的值.解:∵a=3+2,b=3-2,∴a+b=23,ab=1,∴a2-ab+b2=(a+b)2-3 ab=(23)2-3=9.【思想方法】在进行二次根式化简求值时,常常用整体思想,把a+b,a-b,ab当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一.【中考回顾】1.(20171+在实数范围内有意义,则x满足的条件是()A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C .【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C . 点睛:本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.考点:二次根式有意义的条件.2.(2017滨州)下列计算:(1)22=,(22,(3)2(12-=,(4)1=-,其中结果正确的个数为( )A .1B .2C .3D .4【答案】D .【解析】考点:二次根式的混合运算.3.(2017江苏省淮安市)下列式子为最简二次根式的是( )A B C D 【答案】A .【解析】试题分析:A .被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意;B .被开方数含能开得尽方的因数或因式,故B 不符合题意;C .被开方数含能开得尽方的因数或因式,故C 不符合题意;D .被开方数含分母,故D 不符合题意;故选A .考点:最简二次根式.4.(2017湖北省十堰市)下列运算正确的是( )A =B .=C 2=D .3=【答案】C .【解析】试题分析:A 与A 选项错误;B .原式=6×2=12,所以B 选项错误;C .原式=2,所以C 选项准确;D .原式=D 选项错误.故选C .考点:二次根式的混合运算.5.(2017013)cos60-+-- = .【答案】 .【解析】试题分析:根据零指数幂、负整数指数幂和特殊角的三角函数值进行计算.试题解析:原式11122+---=.故答案为:. 考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.6.(2017湖北省鄂州市)若62121--+-=x x y ,则xy = . 【答案】﹣3.【解析】点睛:本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.考点:二次根式有意义的条件.7. (2017四川省内江市)计算:201720111()(2017)2π----+-. 【答案】8.【解析】 试题分析:直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简求出答案.试题解析:原式=1141---⨯+=﹣1﹣0+8+1=8. 点睛:此题主要考查了二次根式的混合运算以及绝对值的性质、负指数幂的性质、零指数幂的性质等知识,正确化简各数是解题关键.考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.8.[2017·绵阳]先化简,再求值:⎝⎛⎭⎪⎫x -y x 2-2xy +y 2-x x 2-2xy ÷y x -2y ,其中x =22,y = 2. 解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y =⎝⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y =⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y =-y (x -y )(x -2y )·x -2y y =-1x -y. 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考押题】1.已知x+y=,xy=,则x 2y+xy 2=_____________________.【答案】3 【解析】分析:因式分解,把已知整体代入求解.详解:x 2y +xy 2=xy (x+y )=3.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m (a+b+c ).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.2.已知|a ﹣2007|+=a ,则a ﹣20072的值是_____.【答案】2008点睛:解决此题的关键是能够得到a 的取值范围,从而化简绝对值并变形.3.若x ,y 为实数,y=,则4y ﹣3x 的平方根是____. 【答案】± 【解析】∵与同时成立,∴ 故只有x 2﹣4=0,即x =±2,又∵x ﹣2≠0,∴x =﹣2,y ==﹣,4y ﹣3x =﹣1﹣(﹣6)=5,∴4y ﹣3x 的平方根是±.故答案:±.4.先化简,再求值: 21113933a a a a a a a +-⎛⎫+÷+⎪+-+-⎝⎭,其中3a =【答案】3a a - 1+【解析】分析:根据分式的混合运算法则化简为最简分式后,把a 的值代入计算.详解:原式()()()()31313313a a a a a a a a -⋅---+++=++ ()()221313313a a a a a a a -⋅---++=++ 11333a a a a a ----=+=.将3a =13a a -=. 点睛:对于分式化简求值问题,要先确定运算顺序,再根据分式的混合运算法则进行计算,最后把相关字母的值代入化简后的式子求值.当分子分母若是多项式时,应先分解因式,如果分子分母有公因式,要约分.5.先化简再求的值,其中a=.【答案】3 【解析】试题分析:先化简,然后将a 的值代入原式即可求出答案.试题解析:解:当a ==2﹣时,∴a ﹣1=1﹣<0原式=﹣=a ﹣1+=1﹣+2+=3.点睛:本题考查了二次根式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.。
一、单选题1.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C【解析】【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. a2与a1不是同类项,不能合并,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.2.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A点睛:本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C点睛:本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.4.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.5.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.6.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B【点睛】本题考查了同底数幂乘法、合并同类项、同底数幂除法、二次根式加减,熟练掌握各运算的运算法则是解题的关键.7.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.8.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D点睛:本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.9.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.10.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.11.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.12.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 13.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D【点评】考查同底数幂的除法,合并同类项,同底数幂的乘法,熟记它们的运算法则是解题的关键. 14.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.15.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C点睛:本题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则.16.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B点睛:本题考查了数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.17.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.18.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.19.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.20.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【解析】【分析】由题可知,代入、值前需先判断的正负,再进行运算方式选择,据此逐项进行计算即可得.【详解】选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,符合题意;选项,故将、代入,输出结果为,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行的正负判断,选择对应运算方式,然后再进行计算.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C【点评】考查完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方,熟记它们的运算法则是解题的关键.二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】11点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.25.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣1点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.30.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】4035【解析】【分析】整理得,从而可得a n+1-a n=2或a n=-a n+1,再根据题意进行取舍后即可求得a n的表达式,继而可得a2018.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n=2.32.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1【点评】考查代数式的求值,找出其中的规律是解题的关键.三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+12点睛: 本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算. 35.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)【点睛】本题考查了整式的混合运算、解一元一次不等式,熟练掌握整式的运算法则、一元一次不等式的解法是关键.37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)【点评】本题考查了整式的混合运算、分式的混合运算,熟练掌握各运算的运算法则是解题的关键. 40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.【解析】【分析】(1)根据“极数”的概念写出即可,设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),整理可得由=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1),根据1≤x≤9,0≤y≤9,以及D(m)为完全平方数且为3的倍数,可确定出D(m)可取36、81、144、225,然后逐一进行讨论求解即可得.(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)==3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.【点睛】本题考查数值问题,包括:题目翻译,数位设法,数位整除,完全平方数特征,分类讨论等,易错点是容易忽略数值上取值范围及所得关系式自身特征.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】见解析.点睛:本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.。
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
代数式的化简与求值专题练习卷1.化简2442x x x x ---的结果是( ) A .22x x -+ B .26x x -+ C .2x x -+ D .2x x - 2.如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( ) A .﹣3 B .﹣1 C .1 D .33.(已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有( ) A .0个 B .1个 C .2个 D .3个4.1在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠125.下列计算:(1)22=,(22,(3)2(12-=,(4)1=-,其中结果正确的个数为( )A .1B .2C .3D .46.下列式子为最简二次根式的是( )A B C D 7.下列运算正确的是( )A =.=C 2=D .3=8. 若a +b =3,227a b +=,则ab 等于( )A .2B .1C .﹣2D .﹣19.013)2cos60-+--= .10.若62121--+-=x x y ,则xy = . 11.计算:22()x y xy y x x x--÷-= . 12.化简:23332x x x x x -⎛⎫+ ⎪---⎝⎭= . 13.已知a +b =10,a ﹣b =8,则22a b -= .14.已知2m ﹣3n =﹣4,则代数式m (n ﹣4)﹣n (m ﹣6)的值为 .15.先化简,再求值:()223(21)21a a a a ++-+,其中a =2.16.先化简,再求值: ()()()2212132x x x +--+-,其中x =.17.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:()()2212x x y x x +-++ 222212x xy x x x =+-+++ 第一步241xy x =++ 第二步(1)小颖的化简过程从第 步开始出现错误;(2)对此整式进行化简.18.发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由.3.先化简,再求值:x (2x -y )-(x +y ) (x -y ) + (x -y ) 2,其中x 2+y 2=5,xy=-2 .19.先化简,再求值()()()()21212121a a a a a ---++-,其中a =.20.先化简,再求值:,其中 x=, y=.21.先化简,再求值:165)121(2-+-÷--x x x x ,其中x 从0,1,2,3四个数中适当选取.22.某学生化简分式21211x x ++-出现了错误,解答过程如下:原式=12(1)(1)(1)(1)x x x x ++-+-(第一步) =12(1)(1)x x ++-(第二步) =231x -.(第三步) (1)该学生解答过程是从第 步开始出错的,其错误原因是 ;(2)请写出此题正确的解答过程.23.先化简,再求值:211(1)a a a a a a--÷-++,其中,a1-.24.先化简,再求值:231111x x x x -⎛⎫+÷ ⎪+-⎝⎭,其中x 是不等式组11210x x x --⎧->⎪⎨⎪->⎩的整数解. 25.先化简,再求值:1)1331(2+-÷--+-x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-14232x x 的整数解中选取. 26.先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 27.有这样一道题“求222111211a a a a a a a a ++--÷-+++的值,其中2017a =”,“小马虎”不小心把2017a =错抄成2007a =,但他的计算结果却是正确的,请说明原因.28.计算:2017020111tan 60()(2017)2π----++-.29.先化简,再求值:⎝⎛⎭⎪⎫x -y x 2-2xy +y 2-x x 2-2xy ÷y x -2y,其中x =22,y = 2.30.先化简,再求值: 21113933a a a a a a a +-⎛⎫+÷+ ⎪+-+-⎝⎭,其中3a =。
北师大版七年级数学上册学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列运算正确的是( )A.B.2.下列运算正确的是( )A. x﹣2x=﹣x B. 2x﹣y=xy3.下列运算正确的是( )C. C. x2+x2=x4D. D. (x﹣1)2=x2﹣1A.B.C.D.4.下列计算正确的是( )A.B.C.D.5.若单项式 am﹣1b2 与的和仍是单项式,则 nm 的值是( )A. 3 B. 6 C. 8 D. 9 6.下列运算正确的是( )A.B.C.D.7.下列运算结果正确的是A. 3a3·2a2=6a6 B. (-2a)2= -4a2 8.下列计算正确的是( )C. tan45°=A.B.C.D.9.下列计算正确的是( )D. cos30°=A.B.C.D.10.计算(﹣a)3÷a 结果正确的是( )A. a2 B. ﹣a2 C. ﹣a3 D. ﹣a41北师大版七年级数学上册11.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为( ) A. 1 B. 2 C. 3 D. 412.计算的结果是( )A.B.C.D.13.下列计算结果等于 的是( )A.B.C.D.14.下列运算正确的是( )A.B.C.D.15.下列运算正确的是( )A.B.C.D.16.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为( )A. 84 B. 56 C. 35 17.下列运算正确的是(D. 28 )A.B.C.D.18.据省统计局发布,2017 年我省有效发明专利数比 2016 年增长 22.1%假定 2018 年的平均增长率保持不变,2016 年和 2018 年我省有效发明专利分别为 a 万件和 b 万件,则( )2A.B.C.D.19.下列运算正确的是( )A.B.C.D.20.按如图所示的运算程序,能使输出的结果为 的是( )北师大版七年级数学上册A.B.C.D.21.把三角形按如图所示的规律拼图案,其中第①个图案中有 4 个三角形,第②个图案中有 6 个三角形,第③个图案中有 8 个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A. 12 B. 14 C. 16 D. 1822.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是( )A. ① B. ② C. ③ D. ④ 二、填空题 23.将从 1 开始的自然数按以下规律排列,例如位于第 3 行、第 4 列的数是 12,则位于第 45 行、第 8 列的 数是__________.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,310,…,记,,,,…,那么北师大版七年级数学上册的值是__________.25.若 a- = ,则 a2+ 值为_______________________.26.已知 , ,,,,,…(即当 为大于 1 的奇数时,;当 为大于 1 的偶数时,),按此规律,__________.27.计算的结果等于__________.28.若是关于 的完全平方式,则29.化简(x﹣1)(x+1)的结果是_____. 30.观察下列各式:__________.,,, …… 请利用你所发现的规律,计算 31.设+++…+,其结果为_______.是一列正整数,其中 表示第一个数, 表示第二个数,依此类推, 表示第 个数( 是正整数),已知,,则___________.4北师大版七年级数学上册32.如图是一个运算程序的示意图,若开始输入 的值为 625,则第 2018 次输出的结果为__________.三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)35.我们常用的数是十进制数,如,数要用 10 个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0 和 1,如二进制中等于十进制的数 6,等于十进制的数 53.那么二进制中的数 101011 等于十进制中的哪个数?36.(1)计算:;(2)解不等式: 37.计算或化简.(1);(2).38.观察以下等式:第 1 个等式:,第 2 个等式:,第 3 个等式:,第 4 个等式:,第 5 个等式:,……按照以上规律,解决下列问题:(1)写出第 6 个等式:(2)写出你猜想的第 n 个等式:; (用含 n 的等式表示),并证明.5。
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
专题提升一实数的运算与代数式的化简求值一、选择题1.(2017·河北)下列运算结果为正数的是( A )A.(-3)2B.-3÷2C.0×(-2 017) D.2-32.(2017·黄石)下列运算正确的是( C )A.a0=0 B.a2+a3=a5C.a2·a-1=a D.1a+1b=1a+b3.(2016·潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+(a-b)2的结果是( A )A.-2a+b B.2a-bC.-b D.b4.(2016·广州)下列计算正确的是( D )A.x2y2=xy(y≠0)B.xy2÷12y=2xy(y≠0)C.2x+3y=5xy(x≥0,y≥0)D.(xy3)2=x2y65.(2017·武汉)计算(x+1)(x +2)的结果为( B )A.x2+2 B.x2+3x+2C.x2+3x+3 D.x2+2x +26.如图,在平面直角坐标系中,点P坐标为(-2,3),以点O 为圆心,以OP 为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( A )A .-4和-3之间B .3和4之间C .-5和-4之间D .4和5之间7.(2017·乐山)已知x +1x =3,则下列三个等式:①x 2+1x 2=7;②x -1x =5;③2x 2-6x =-2中,正确的个数有( C )A.0个B.1个C.2个D.3个二、填空题8.使12n是整数的最小正整数n=__3__.9.(2017·广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b__>__0.(填“>”“<”或“=”)10.我们规定“⊗”的意义是:当a>b时,a⊗b=a+b;当a≤b时,a⊗b=a-b,其他运算符号意义不变,按上述规定(3⊗1)-(3⊗2)=__3__.11.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__ab__(用含a,b的代数式表示).12.将1,2,3,6按如图所示方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是.三、解答题13.(1)(2017·十堰)计算:|-2|+3-8-(-1)2 017.解:原式=2-2+1=1.(2)(2017·达州)计算:2 0170-|1-2|+(13)-1+2cos45°.解:原式=1-2+1+3+2×22=5-2+2=5. 14.(1)(2016·重庆)计算:(x-y)2-(x-2y)(x+y).解:原式=-xy+3y2.(2)(2016·陕西)化简:(x-5+16 x+3)÷x-1 x2-9.解:原式=x2-4x+3. 15.(1)(2017·威海)先化简x2-2x+1 x2-1÷(x-1x+1-x+1),然后从-5<x<5的范围内选取一个合适的整数作为x的值代入求值.解:x2-2x+1x2-1÷(x-1x+1-x+1)=(x-1)2(x+1)(x-1)÷x-1-(x-1)(x+1)x+1=x-1x+1·x+1x-1-x2+1=x-1-x(x-1)=-1x.∵-5<x<5且x+1≠0,x-1≠0,x ≠0,x是整数,∴当x=-2时,原式=-1-2=12.(2)(2016·枣庄)先化简,再求值:a2+aa2-2a+1÷(2a-1-1a),其中a是方程2x2+x-3=0的解.解:原式=a2a-1,由2x2+x-3=0得x1=1,x2=-32,又a-1≠0,即a≠1,∴a=-32.∴原式=-9 10.16.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.解:∵x=1-2,y=1+2,∴x-y=(1-2)-(1+2)=-22,xy=(1-2)(1+2)=-1.∴x2+y2-xy-2x+2y=(x-y)2-2(x-y)+xy=(-22)2-2×(-22)+(-1)=7+4 2.17.观察下列关于自然数的等式:第一个等式:32-4×12=5;①第二个等式:52-4×22=9;②第三个等式:72-4×32=13;③…根据上述规律解决下列问题:(1)完成第四个等式:92-4×(4)2=__17__;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.解:(2)第n个等式为(2n+1)2-4n2=4n+1.∵左边=4n2+4n +1-4n2=4n+1=右边,∴第n 个等式成立.18.先观察下列等式,然后用你发现的规律解答下列问题.1 1×2=1-12;1 2×3=12-13;1 3×4=13-14;…(1)计算:11×2+12×3+13×4+1 4×5+15×6=__56__;(2)探究11×2+12×3+13×4+…+1n(n+1)=__nn+1__;(用含有n的式子表示)(3)若11×3+13×5+15×7+…+1(2n-1)(2n+1)的值为1735,求n的值.解:(3)11×3+13×5+15×7+…+1(2n-1)(2n+1)=12(1-13+13-15+…+12n-1-12n+1)=12(1-12n+1)=1 2·2n2n+1=n2n+1.则题意知n2n+1=1735,解得n=17.。
专题提升(二) 代数式的化简与求值
类型之一 整式的化简与求值
【经典母题】
已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y )2呢?
解:x 2+y 2=(x +y )2-2xy =32-2×1=7;
(x -y )2=(x +y )2-4xy =32-4×1=5.
【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.
完全平方公式的一些主要变形有:(a +b )2+(a -b )2=2(a 2+b 2),(a +b )2-(a -b )2=4ab ,a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.
【中考变形】
1.已知(m -n )2=8,(m +n )2=2,则m 2+n 2的值为
( C ) A .10 B .6 C .5 D .3
2.已知实数a 满足a -1a =3,则a 2+1a 2的值为__11__.
【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a 2=11.
3.[2017·重庆B 卷]计算:(x +y )2-x (2y -x ).
解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.
4.[2016·漳州]先化简(a +1)(a -1)+a (1-a )-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由)?
解:原式=a 2-1+a -a 2-a =-1.
故该代数式的值与a 的取值没有关系.
【中考预测】
先化简,再求值:(a -b )2+a (2b -a ),其中a =-12,
b =3.
解:原式=a 2-2ab +b 2+2ab -a 2=b 2.
当a =-12,b =3时,原式=32=9.
类型之二 分式的化简与求值
【经典母题】
计算:(1)a b -b a -a 2+b 2ab ;
(2)⎝ ⎛⎭
⎪⎫3x x -2-x x +2·x 2-4x . 解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a ;
(2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4
·x 2-4x =2x +8. 【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;
(2)注意适当地利用运算律,寻求更合理的运算途径;
(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;
(4)要注意分式的通分与解分式方程去分母的区别.
【中考变形】
1.[2017·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2. 解:原式=⎝ ⎛⎭
⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2 =(a +1)(a -1)a +2·a +2(a -1)2=a +1a -1
2.[2017·攀枝花]先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x
,其中x =2. 解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)
=x -1x +1·x (x +1)(x +1)(x -1)=x x +1
. 当x =2时,原式=22+1=23
.
【中考预测】
先化简,再求值:⎝ ⎛⎭⎪⎫x 2-4x +3x -3
-13-x ⎝ ⎛⎭⎪⎫x 2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝ ⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦
⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝ ⎛⎭
⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2 =x -2.当x =4时,原式=x -2=2.
类型之三 二次根式的化简与求值
【经典母题】
已知a =3+2,b =3-2,求a 2-ab +b 2的值.
解:∵a =3+2,b =3-2,∴a +b =23,ab =1,
∴a 2-ab +b 2=(a +b )2-3ab =(23)2-3=9.
【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一.
【中考变形】
1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为
( C )
A .9
B .±3
C .3
D .5 2.[2016·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2
÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1.
解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-ab a +b
, 当a =2+1,b =2-1时,原式=-1
22=-24.
3.[2017·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -y x 2-2xy +y 2-x x 2-2xy ÷y x -2y
,其中x =22,y = 2.
解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y
=⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y
=⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y
=-y (x -y )(x -2y )·x -2y y =-1x -y
. 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】 先化简,再求值:1a +b +1b +b a (a +b )
,其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +b ab , ∵a +b =5+12+5-12=5,ab =5-12×5+12=1, ∴原式= 5.。