Coronal loop widths and pressure scale heights
- 格式:pdf
- 大小:199.68 KB
- 文档页数:15
化工设备常用词汇和缩写中英文对照缩写/ 英文/中文AB Anchor Bolt 地脚螺栓Abs Absolute 绝对的Abs Abstract 文摘、摘要A/C Account 帐、帐目AC Alternating Current 交流电Add Addendum 补充、补遗、附录ADL Acceptable Defect Level 允许的缺陷标准Adpt Adapter 连接器、接头AE Absolute Error 绝对误差AET Acoustic Emission Examination 声发射检验AISC American Institute of Steel Construction 美国钢结构学会AISI American Iron and Steel Institute 美国钢铁学会AL Aluminium 铝Alk Alkaline 碱的、强碱的ALM Alarm 报警Alt Alternate 交流、改变Amb Ambient 周围的Amt Amount 数量、金额Anh Anhydrous 无水的ANSI American National Standard Institute 美国国家标准学会API American Petroleum Institute 美国石油学会App Apparatus 设备App Appendix 附录、补遗Appl Applied 应用的Appl Applicable 适当的、合适的Approx Approximate 大约、近似Appx Appendix 附录、附件Arrgt Arrangement 布置AS Alloy steel 合金钢Asb Asbestos 石棉ASL Above Sea Level 海拔高度ASM American Society for Metals 美国金属学会ASME American Society of Mechanical Engineers 美国机械工程师学会Assem Assembly 装配ASTM American Society for Testing and Materials 美国材料试验学会Atm Atmosphere 大气atm Atmosphere pressure 大气压Auto Automatic 自动Aux Auxiliary 辅助设备、辅助的Avail Available 有效的、可用的Avg Average 平均AW Arc welding 电弧焊AW Automatic Welding 自动焊A.W.G. American Wire Gauge 美国线规AWS(AWI) American Welding Society(Institute) 美国焊接学会BAB Babbitt Metal 巴氏合金Baf Baffle 折流板、缓冲板BB Ball Bearing 滚珠轴承BC Between Centers 中心距、轴间距BC Bolt circle 螺栓中心圆BD Blow down 放空、放料BEDD Basic engineering design data 基础工程设计数据Bet Between 在…之间Bev Bevel 斜角、坡口BF Back face 背面、反面BF Blind flange 法兰盖(盲法兰)BHN Brinell hardness number 布氏硬度值BL Battery Limit 界区BL Battery Line 界区线B/L Bill of Loading 载荷数据表Bld Blind 盲板Blk Black 黑色Blk Blank 空白BM Bench Mark 基准标志BM Bending Moment 弯矩B/M (BOM) Bill of Material 材料表Bot Bottom 底BP Back Pressure 背压BP Base plate 底板BR Basic Requirements 基本要求BRG Bearing 轴承BRKT Bracket 支架Brs Brass 黄铜BS Both Side 两边BS British Standard 英国标准BS Balance Sheet 平衡表Bskt Basket 筐BTU British Thermal Unit 英国热量单位BV Back View 后视图BV Butterfly Valve 碟阀BW Brine Vater 冷冻盐水BW Butt Welding 对焊BWG Birmingham Wire Gauge 伯明翰线规BWRA. British Welding Research Association 英国焊接研究协会C Centigrade(degree) 摄氏度数CA Chemical Analysis 化学分析CA Corrosion Allowance 腐蚀裕量Calc Calculate 计算Cap Capacity 能力、容量CAS Cast Alloy Steel 铸造合金钢Cat Catalyst 触媒、催化剂Catg Catalog 目录、样本C-C(C/C) Center to center 中心距cc carbon copy 复写(纸复制)本cc cubic centimeter 立方厘米CCW Counter clockwise 反时针方向CD Cold Drawn 冷拉的、冷拔的CE Covered Electrode 焊条Cent Centrifugal 离心的CF Centrifugal Force 离心力CFW Continuous Fillet Weld 连续角焊缝CG Center of Gravity 重心CH Case-Hardening 表面硬化Ch Chapter 章节Cham Chamfer 倒角、斜角、斜面Chan Channel 通道、沟槽、管箱、槽钢Chk Check 检查CI Cast Iron 铸铁CIF Cost,Insurance and Freight 到岸价格Circ Circumference 圆周、环向CL Class 等级、类别CL Center Line 中心线CL Clearance 间隙CLAS Cast Low Alloy Steel 低合金铸钢CM Center of Mass 质量中心Cnds Condensate 冷凝液CO Clean Out 清除Co Company 公司Coef Coefficient 系数Col Column 柱、塔Comb Combination 组合Comp Compare 比较Comp Compound 化合物、复合的Compn Composition 组分Conc Concrete 混凝土Conc Concentration 浓度Cond Conductor 导体Cond Condition 条件Conn Connection 联接、接口Const Constant 常数、恒定的Const Construction 结构Cont Control 控制Cont Contain 包含Cont Content 内容、含量Corp Corporation 公司Corr Corrosion 腐蚀CP Centipoise 厘泊CP Center of Pressure 压力中心Cpl Coupling 管箍Cplg Coupling 联轴节CR Chloroprene Rubber 氯丁橡胶CS Carbon Steel 碳钢CS Center Section 中心截面CSTG Casting 铸造、铸件Ctr Center 中心CW Cooling Water 冷却水CW Continuous Welding 连续焊Cy Cycle 循环Cyl Cylinder 气缸、圆筒D Density 密度Dbl Double 二倍、双DEDD Detail Engineering Design Data 详细工程设计数据Def Definition 定义Deg Degree 度、等级Dept Department 部门Des Design 设计Det Detail 详细Detn Determination 确定、决定Dev Deviation 偏差Dev Device 装置DF Design Formula 设计公式Df Deflection 偏斜Dia Diameter 直径Diag Diagram 图Dim Dimension 尺寸Dir Direction 方向Disch Discharge 排出、出口Distr Distribution 分布Div Division 部分、区分DL Dead load 静载荷、自重Doc Document 文件、资料DP Design Pressure 设计压力DP Differential Pressure 压差、分压Dr Drill 钻孔Dr Drive 驱动DW Dead weight 静重、自重DW Demineralized Water 脱盐水Dwg Drawing 图E East 东EC Elasticity Coefficient 弹性系数Ecc Eccentric 偏心EF Electric Furnace 电炉Eff Efficiency 效率eg exempli gratia 例如EHP Effective Horsepower 有效功率EJ Expansion joint 膨胀节EL Elevation 标高Elb Elbow 弯头Elec Electric 电的Elem Element 元素、元件Ellip Ellipsoidal 椭球的、椭圆的Emer、Emerg Emergency 事故、紧急Encl Enclosure 密封、封闭Engrg、Eng Engineering 工程、设计EP Explosion Proof 防爆Eq Equipment 设备Eq Equation 公式、方程式Eq Equivalent 当量ES Electrostatic 静电EST Estimate 估计ESW Electro-Slag Welding 电渣焊ET Eddy Current Examination 涡流检验etc et cetera (and so on) 等等Evap Evaporate 蒸发Ex Example 例如Ex Excess 过剩、超过Exam Examination 检验Exh Exhaust 废气、排气Exp Expansion 膨胀Exptl Experimental 实验的Ext External 外部Ext Extreme 极端的FAO Finish All Over 全部加工FAX Facsimile 传真FB Flat Bar 扁钢FCAW Flux Cored Arc Welding 熔剂芯弧焊(手工焊)Fdn Foundation 基础FDW Feed Water 给水FF Flat Face 平面F/F Field Fabricated 现场制造Fig Figure 图Fin Finish 加工、完成FL Full Load 满载Flex Flexible 挠性Flg Flange 法兰FOB Free On Board 离岸价格FOC Free Of Charge 免费Forg Forging 锻件FOS Factor Of Safety 安全系数FREQ Frequency 频率FST Forged Steel 锻钢Ft Feet 英尺Ftg Fitting 管件、装配F.V. Full Vacuum 全真空FW Fresh Water 新鲜水FW Field Weld 现场焊接FW Fillet Weld 角焊缝GA General Average 平均值Gal Gallon 加仑Gen General 一般、总的Genr Generator 发电机、发生器GF Groove Face 槽面Gl Glass 玻璃GL Ground Level 地面标高GMAW Gas Metal Arc Welding 气体保护金属极电弧焊Gnd Ground 接地、地面Govt Government 政府GP General Purpose 一般用途、通用Gr Grade 等级Gr Gravity 重力Grd Ground 地面Grp Group 分组、类Gr- wt Gross weight 总重、毛重HB Brinell Hardness 布氏硬度HC Hydrocarbon 烃类HC High Capacity 大容量HD Head 压头Hex Hexagon 六角HH Hand Hole 手孔Hor Horizontal 水平、卧式hp Horsepower 马力HP High Pressure 高压HR Rockwell Hardness 洛氏硬度HR(hr) Hour 小时HRC Rockwell C Hardness C级洛氏硬度HS High Pressure Steam 高压蒸汽HS Shore Scleroscope Hardness 肖氏硬度HSC High Pressure Condensate 高压蒸汽凝液HT High Temperature 高温HT Heat Treatment 热处理HT Hydrostatic Test 水压试验HV Vickers Hardness 维氏硬度Hvy Heavy 重的、重型的HW Hot Water 热水ICW Inter Cooling Water 中间冷却水ID Inside Diameter 内径IF Interface 交接面Illus Illustration 说明、图解IN Inlet 进口in Inch 英寸incl Including 包括Ind Indicate 指示Ins Insulation 保温INSP Inspection 检验Instl Installation 安装Int Internal 内部的Int Intermediate 中间的Intmt Intermittent 间歇的、间断的I/O Input/Output 输入/输出Jt Joint 连接、接头KG Kilogram 公斤KW(kw) Kilowatt 千瓦LAS Low Alloy Steel 低合金钢lb pound 磅LC Level Control 液位控制器Leng Length 长度LF Female Face 凹面Lg Long 长的LG Level Glass 液位计LH Left Hand 左手Lin Linear 线性的Liq Liquid 液体Lj Lap joint 搭接LJ Lapped Joint 松套LM Male Face 凸面LMTD Logarithmic Mean Temperature Difference 对数平均温差LN Liquid Nitrogen 液氮LN Level Normal 正常液位Lng Lining 衬里LNG Liquefied Natural Gas 液化天然气Lo Lubrication oil 润滑油Lo Low 低LOA Length Over-All 全长\总长LOC Location 位置Log Logarithm(to the base 10) 对数(以10为底)Long Longitudinal 纵向LP Low Pressure 低压LPG Liquefied Petroleum Gas 液化石油气LT Low Temperature 低温LT Leak Testing 气密试验Ltd Limited 有限Ltr Letter 字母、信Lub Lubricate 润滑LW Lap Welding 搭接焊LWN Long Welding Neck 对焊长颈LWS Longitudinal Welded Seam 纵向焊缝M(m) Meter 米、公尺Mach Machine 机器Maint Maintenance 维修Mat(Mat’l) Material 材料MAWP Maximum Allowable Working Pressure 最大允许工作压力Max Maximum 最大MDMT Min. Design Metallic Temperature 最低设计金属温度Mech Mechanical 机械的Mfd Manufactured 制造的Mfr Manufacturer 制造商MG(mg) Milligram 毫克MH Manhole 人孔MI Melt Index 熔融指数MIG Metal Inert Gas Arc Welding 熔化极惰性气体保护焊Min Minimum 最小MIN(min) Minute 分钟MJG Metallic Jacketed Gasket 金属包复垫片Mk Mark 标志ml Milliliter 毫升mm Millimeter 毫米MP Medium Pressure 中压MPC Maximum Permissible Concentration 最大许用浓度MS Medium Pressure Steam 中压蒸汽MS Medium Steel 中碳钢MSL Mean Sea Level 平均海平面MT Magnetic Particle Examination 磁粉检测MTD Mean Temperature Difference 平均温差Mtd Mounted 安装、装配MTR Material Testing Report 材料试验报告MU Measurement Unit 测量单位MV Mean Value 平均值MW Mineral Wool 矿渣棉N North 北NA Not Applicable 不适用的NAT Natural 天然的Natl National 国家的NC America National Coarse Thread 美制粗牙螺纹NDT Nondestructive Testing 无损检验Neg Negative 负NF American National Fine Thread 美国细牙螺纹Nip Nipple 螺纹管接头、短节Nom Nominal 名义Nor Normal 正常NOZ Nozzle 接管NPS American Standard Straight Pipe Thread 美国标准直管螺纹NPSHA Net Positive Suction Head Available 有效汽蚀裕量NPSHR Net Positive Suction Head Required 要求汽蚀裕量NPT American Standard Taper Pipe Thread 美国标准锥管螺纹NT Net Tonnage 净吨数NTP Normal Temperature and Pressure 标准温度和压力NTS Not To Scale 不按比例Num Number 数、编号、号码Obj Object 目标、对象OC Operating Characteristic 操作特性OD Outside Diameter 外径OH Open Hearth 平炉Oper Operating 操作Opp Opposite 对面、相反OR Outside Radius 外半径OR Outside Ring 外环Orien Orientation 方位Ovhd Overhead 高架的、顶部的Oxyg Oxygen 氧P Page 页P Pressure 压力Par Parallel 平行Para Paragraph 节、段Pc Piece 件PE Polyethylene 聚乙烯PFD Process Flow Diagram 工艺流程图Perform Performance 性能PF Power Factor 功率因素PID Piping & Instruments Diagram 管道和仪表流程图Pl Plate 板Pneum Pneumatic 气、气动PO Purchase Order 订货单Port Portable 便携式、轻便Posit Positive 正Posit Position 位置ppb Parts per billion 十亿分之几ppm Parts per million 百万分之几Prod Product 产品Proj Project 项目、工程PS Polystyrene 聚苯乙烯psf Pounds per square feet 磅/平方英尺psi Pounds per square inch 磅/平方英寸PT Liquid Penetrants Examination 液体渗透检测PTFE Polytetrafluoroethylene 聚四氟乙烯PV A Polyvinyl Acetate 聚醋酸乙烯PV AL Polyvinyl Alcohol 聚乙烯醇PVC Polyvinyl Chloride 聚氯乙烯PWHT Post Weld Heat Treatment 焊后热处理QA Quality Assurance 质量保证QC Quality Control 质量控制Qty Quantity 数量Qual Quality 质量R Radius 半径Rad Radial 径向RC Rockwell Hardness 洛氏硬度Recip Reciprocate 往复式Recirc Recirculate 再循环Recom Recommended 建议、推荐Ref Reference 参照、基准Refract Refractory 耐火材料Reg Regulator 调节器Regen Regenerator 再生器、再生塔Reinf Reinforce 加强Rel Relative 相对Rep Report 报告Rep Repeat 重复Reqd Required 要求、需要的REV Revision 修改、版次Rev Review 评论、检查Rev Revolution 旋转、转数RF Raise face 突台面RH Relative Humidity 相对湿度RH Right Hand 右手RMS Root Mean Square 均方根ROT Rotating 旋转rpm revolutions per minute 转/分rps revolutions per second 转/秒RT Radiographic Examination 射线照相检验S South 北SAW Submerged Arc Welding 埋弧焊Sc Scale 刻度、比例SC Standard Condition 标准状态(温度压力)SCH Schedule 表号、管厚号、进度Sec Second 秒Sec Section 剖面、节、段Seg Segment 节、段Sep Separator 分离器Seq Sequence 次序、顺序SG Specific Gravity 比重SHP Shaft Horsepower 轴马力SI Standard International 国际单位制Sig Signal 信号Sld Solid 固体SMAW Shield Metal Arc Welding 手工焊Smls Seamless 无缝的SO Slip on 平焊(法兰)Sol Solution 溶液SP Spare parts 备件Sp Special 特殊的、专门的SP Static pressure 静压力Spec Specification 说明、规定SpGr Specific Gravity 比重Sq Square 方形、平方SR Stress Relief 消除应力SS Stainless Steel 不锈钢Sta Station 站STD Standard 标准STDWT Standard Weight 标准重量STL Steel 钢STP Standard Temperature and Pressure 标准温度和压力Suc Suction 吸入Suppl Supplement 补充SW Shop Welding 车间焊接SW Spot Weld 点焊SW Socket Welding 承插焊(法兰)SWP Safety Working Pressure 安全工作压力SYM Symbol 符号、标志SYM Symmetry 对称SYS System 系统T Ton 吨TC Tungsten Carbide 碳化钨Tech Technique 技术TEMA Tubular Exchanger Manufacturers Association 管壳式换热器制造商协会(美国)Temp Temperature 温度Term Terminal 终端、接头Thk Thickness 厚度TIG Tungsten Inert Gas Arc Welding 钨极惰性气体保护焊TL Tangent line 切线Tol Tolerance 公差Tot Total 总Trans Transfer 输送器TW Total Weight 总重TW Tack Welding 定位焊Typ Typical 典型、标准UNC Unified National Coarse Thread 统一标准粗牙螺纹UNF Unified National Fine Thread 统一标准细牙螺纹US Undersize 尺寸过小UT Ultrasonic Examination 超声波探伤UTS Ultimate Tensile Strength 抗拉强度极限Vac Vacuum 真空Vap Vapor 蒸汽Var Variable 变化、变量Vel Velocity 速度Vert Vertical 垂直V ol Volume 体积VT Visual Testing 宏观(目测)检查W Watt 瓦WL Welding Line 焊缝线WL Water Line 水线WPS Welding Procedure Specification 焊接工艺规程WP Working Pressure 工作压力WRC Welding Research Committee 焊接研究委员会(美国)WS Water Supply 供水WT Weight 重量W/V Wind Velocity 风速XR X-Ray X射线Yd Yard 码YP Yield Point 屈服点Yr Year 年。
连铸专业英语词汇“A” Side up:A侧向上Accumulator:蓄能器Actual mould taper:结晶器实际锥度Air-mist cooling:气-雾冷却Alarm acknowledged :报警确认Alarm not acknowledged :未确认的报警Alarm:报警Argon for ladle shroud:大包长水口用氩气Auto :自动Auto tare weight :自动去皮重Automatic backwash filter :自动反洗过滤器Automatic casting start :自动开浇Automatic starting:自动启动Bending:弯曲Blade centered :刀片对中Blade side select:刀片选择Calibration:校准Cast arm:浇注位回转台臂Cast floor overview:浇注平台综述Cast length :浇铸长度Cast tundish :浇注的中间包Caster Control Pulpit:连铸主控台Caster Control Room:铸机控制室Caster Platform:连铸机平台Casting Floor:浇注平台Casting speed :拉速Casting(mould)powder:连铸保护渣Casting:浇铸CCM-Configuration:连铸机组态Circulation pump:循环泵Clamping device :夹紧装置Clogging alarm:堵塞报警Closed machine water:铸机闭路水Cold width:冷态宽度Compound casting :混合浇注Compressed air :压缩空气Consumption:消耗Cooling chamber steam exhaust:二冷室排蒸汽Cooling water pump:冷却水泵Cooling water trends :冷却水趋势图Copper plate:铜板Cover:大包盖Crop removal system :切尾移出系统Cross Transfer Roller:横移辊道Current OP mode:当前操作模式Current value:当前值Cut flame:切割火焰Cut length :切割长度Cutter status :切割机状况DB Disconnecting Device:脱引锭装置DB Storage :引锭杆存放装置Deburrer:去毛刺机De-selected by operator :操作工没选择DIST. Measuring wheel <->machine home:测量轮至初始位置的距离Driver current trends:驱动辊电流趋势图Drives start:驱动启动Dummy Bar roller:引锭杆辊道Emergency close:事故紧急关闭Emergency control panel :事故控制面板Emergency off:事故急停End cut :坯尾切割End cut distance :终止切割距离End cut speed:终止切割速度E-stop pushbutton:紧急停止按钮Filter State:过滤器状态Fixed side :固定侧Flow actual value :实际流量值Flow auto set value :自动设定值Flow CACS Set Value :流量计算设定值Foot roller:足辊Force :压力Frequency :频率Granulation water :粒化水Grease test stand :油脂测试台Grease:油脂Gross weight :毛重Hand tare weight:手动去皮重Head crop cut:坯头切割Heat No:炉次号HMO :结晶器液压振动HMO Curve Selection:振动曲线选择HSA Overview:扇形段液压调节综述Hydr. Station and Electric :液压站和电机In home position:在原位置Inactive:无效Indication:指示Industrial water:工业用水Influence factor:修正系数Initial throttle position :起始节流位置Inlet temp:入口温度Instrumentation:仪表Intergral time:积分时间Invalid status :无效状态Ladle &Tundish Weight:大包&中包重量Ladle :钢包Ladle No :大包号Ladle slide gate hydraulic :大包滑动水口液压Ladle turret rotary joint:回转台旋转接头Ladle turret rotate drive :回转台旋转驱动Ladle WT:大包重量Ladle/Tundish Temperature:大包/中包温度Lamp test:试灯Length measuring in use :长度测量中Level Ⅱmodify :二级设定Limit switch approached :到达限位Limit switch not approached :未到限位Local control :本地控制Local cut data:现场切割数据Local panel status :现场面板状态Loose side :活动侧Lower limit semi :下限位置Lubrication:润滑Machine trends :设备趋势图Main clamping :主夹紧Main hydraulic :主液压Main hydraulic unit ready:主液压系统准备好Main pump:主泵Maintenance area 维修区Malfunction acknowledged:故障确认Malfunction as initial signal :起始信号的故障Malfunction as initial signal:起始信号故障Manual :手动Manual HMI:人机界面上的手动操作Manual local Jogging :本地手动点动Manual local Storing :本地手动存储Manual local unlocked Jogging:无锁定的本地手动点动操作Manual operation:手动操作Marking :打号Marking machine:打号机Max. Limit Force:最大极限压力Max.Vc not reached:没有达到最大拉速Measurement inactive:无效测量Measurement trend:测量值趋势图Measuring point error acknowledged:确认的测量错误Measuring point error not acknowledged:未确认的测量错误Measuring roll (MR):测量辊Measuring roll water:测量辊用水Mixed gas :混合煤气MLC Pump outlet:MLC泵出口MLC Pump state :MLC泵状态MLC Trends :结晶器液位趋势图Mode selection:模式选择Mould cooling water :结晶器冷却水Mould fume exhaust:结晶器排烟Mould hydraulic clamping:结晶器液压夹紧Mould hydraulic state:结晶器液压状态Mould level control(MLC):结晶器液面控制Mould level:结晶器液面Mould level:结晶器液面Mould operator station with pendants:带悬挂箱的结晶器操作台Mould overview:结晶器综述Mould parameters:结晶器参数Movement in direction of arrow:按箭头方向运动Narrow side :窄面Neg. strip time:负滑脱时间Net weight :净重Nitrogen :氮气No release for direction :旋转方向未释放Non-linear gain :非线性放大倍数Normal cut :正常切割Normal output :标准输出Off & not released :关闭&没有释放Off &released:关闭&释放Offset cylinder:液压缸偏移值OP mode:操作模式Open machine cooling water:设备开路冷却水Open percentage:(阀门)开口度Operator station:操作台Osc In Start Pos:振动器在初始位置Oscillation warning:振动警告Oscillation:振动Oscillator faulted :振动故障Oscillator status:振动器状态Oscillator test active:振动测试激活Overcut distance after torches met:割枪相遇后切割长度Overlapping time:重叠时间Oxygen :氧气Oxygen lance :烧氧管Pattern selection:模型选择PID Pattern Gain:PID增益系数Planned heat:计划炉次(到站时间)Position:位置Positioning measurement head ready:测量头定位准备好Potable water :饮用水Pre clamping:预夹紧Pre-casting machine :连铸机前提条件Pre-dummy bar insert:上引锭的前提条件Preparation casting :准备浇注Pre-selected:预选Pre-signal before cut start :切割初始信号Pressure reducing loop:压力释放回路Pressure Top:顶部压力Prethrottle position:预节流位置Proportional gain :比例放大倍数Pulsing:脉冲Pyrometer bend:弯曲型高温计Pyrometers and scanner:高温计和扫描器R/T Start before cut end :切割结束前启动出坯辊道RAM :远程可调结晶器Ready for DB insert :准备上引锭Ready to cast :准备浇注Refractory :耐火材料Release for the broad sides:宽面释放Remaining cast duration:剩余浇铸时间Remote:远程Reset cut length:切割长度复位Rod position:塞棒位置Roll check :辊缝检测Roll gaps:辊缝Roll table:辊道Roller table :辊道Roller table start:辊道启动Rotation:旋转Running :运行RunOut area 出坯区Runtime error:运行时间错误Runtime monitoring :实时监测Sample cut :试样切割Sample flame :取样火焰Sample width:试样宽度Scale flume:氧化铁皮流槽Segment clamping ready:扇形段夹紧准备好Segment:扇形段Select switches:选择开关Semi Automatic :半自动SEN quick change device:SEN快换装置SEN:浸入式水口Sensor calibrated :传感器校准Sensor ready /alarm 传感器准备/报警Servo hydraulic ready :伺服液压准备好Set point by higher-level system:L-Ⅱ级系统设定值Shifting table:窜动辊道Shroud manipulator:长水口机械手Simulation:模拟Slab tilter :翻坯机Slab:板坯Slag :渣Slide gate :滑动水口SOFT RED ready:轻压下准备好Soft reduction:轻压下speed act :实际拉速speed set :设定拉速Speed torch backward during cutting:切割期间切割枪返回速度Spray chamber fan :二冷室风机Spray nozzle :喷嘴Spray ring :喷淋环Spray water loop:喷淋水回路Spray water overview:喷淋水综述Spray water:喷淋水Standby:备用Start by operator :由操作工启动Start cut speed :起切速度Start cutting distance :起切距离Static cooling curve:静态冷却曲线Steam exhaust ready:蒸汽排放系统准备好Steel GR:钢种Stopper 1 ready /alarm:塞棒1准备/报警Stopper closed :塞棒关闭Stopper position:塞棒位置Stopper rod:塞棒Straightening:矫直Strand :铸流Strand guide and drives:铸流导向和驱动Strand tracking system :铸流跟踪系统Stroke :振幅Success value :命中值Switched on :已开Switches OFF:开关关闭Switches ON:开T/D net WT:中包净重T/D temp:中包温度Tail out:尾坯输出Taper :锥度Tare mode :去皮模式TC Approach Roller :火焰切割机前辊道TC Shifting roller :火焰切割机窜动辊TCM cooling water:火焰切割机冷却水TCM Cut abort:切割中断TCM Cutting in progress:切割机正在切割TCM Torch meet:割枪相遇TCM:火焰切割机TEC overshot :探测过调量TEC period :探测时间Thermocouple fast detect:热电偶快速检测Torch cooling water :割枪冷却水Torch Cutter Control Pulpit:切割控制台Torch cutting machine (TCM):火焰切割机Torch cutting machine granulation:切割机粒化水Transport ready :输送准备Trend in the foreground:前台画面趋势图Tundish car power track :中包车电缆拖链Tundish covering mass :中包覆盖剂Tundish position:中包位置Tundish preheating:中包预热Turret angle value:回转台旋转角度值Upper limit semi :上限位置Upper part :上部W/S drives ready to run :拉矫驱动准备运行Warning acknowledged:警告确认Warning active:警告激活Warning not acknowledged:未确认的警告Warning:警告Weight :重量Width actual:实际宽度Width measuring on :宽度测量装置打开Width set point:宽度设定值Withdraw pressure:拉坯压力。
化工管道设计技术词汇(完整版)化工管道设计技术词汇An Glossary of Chemical Industry Piping Design汉英、英汉对照Chinese-English & English-Chinese全国化工工艺配管设计技术中心站1 管道组成件1.1 管子.................................................................................................1.2 管件.................................................................................................1.3 弯管.................................................................................................1.4 法兰.................................................................................................1.5 垫片.................................................................................................1.6 阀门.................................................................................................1.6.1 阀门结构、零件.............................................................................1.6.2 常用阀.............................................................................................1.6.3 其它用途的阀.................................................................................1.6.4 未指明结构(或阀型)的阀.........................................................1.7 管道特殊件...........................................................................................1.7.1 管道特殊件(组件).....................................................................1.7.2 管道特殊元件.................................................................................1.8 端部连接.............................................................................................2 管道用紧固件及螺纹.2.1 紧固件...............................................................................................2.2 螺纹.................................................................................................3 材料、型钢及填料3.1 金属材料.............................................................................................3.1.1 黑色金属.........................................................................................3.1.2 镀层及制造方法.............................................................................3.1.3 有色金属.........................................................................................3.1.4 材料性能.........................................................................................3.2 非金属材料...........................................................................................3.3 型材.................................................................................................3.4 填料及填料函.........................................................................................4 管道等级及材料统计4.1 管道材料规定.........................................................................................4.2 材料统计.............................................................................................5 设备布置及管道布置5.1 设备名称.............................................................................................5.1.1 容器...............................................................................................5.1.2 工业炉及锅炉.................................................................................5.1.3 转动机器.........................................................................................5.1.4 贮运、装卸及起重机械.................................................................5.2 辅助用房名称.........................................................................................5.2.1 生产用房.........................................................................................5.2.2 生活用房.........................................................................................5.3 图名.................................................................................................5.4 厂房、站、单元......................................................................................5.5 设备布置.............................................................................................5.6 管道布置.............................................................................................5.7 图面标注.............................................................................................5.8 相关专业的专业词汇..............................................................................5.8.1 工艺...............................................................................................5.8.2 建筑、结构.....................................................................................5.8.3 仪表...............................................................................................5.8.4 电气...............................................................................................5.8.5 设备...............................................................................................5.8.6 水道...............................................................................................6 管道支吊架6.1 管道零部件...........................................................................................6.2 管支架型式...........................................................................................6.3 标准及通用型支架..................................................................................6.4 管架安装.............................................................................................7 应力计算8 隔热、隔声9 防腐、涂漆及腐蚀种类.10 焊接10.1 焊接种类............................................................................................10.2 焊接形式............................................................................................10.3 焊接位置............................................................................................10.4 焊接缺陷............................................................................................10.5 其它................................................................................................11 热处理11.1 普通热处理............................................................................................11.2 表面热处理............................................................................................12 检验及试验12.1 检验................................................................................................12.2 试验................................................................................................13 设计阶段及管理14 询价、报价及采购14.1 询价、报价..........................................................................................14.2 采购................................................................................................15 单位...................... ............................... ............................... ............................... ............................... ............................... .............. ...................... ......................................................... ........................................................ .......................................................... .................... .............. .................... .................... ......................... ............................. .............................................. ...................................................... ........................ ................ .................................. .................... .................... ............................... ..................... ........................... ........................... ........................... ................. ........................ .................. ........................ ........................ ........................ ................................................. ......................... ................... ..................................................... .......................... .......................... .......................... .................................................... .................................................... ...................................................... ..............................。
Frac Manifold SystemsThe solution for improving the efficiency and economics of the fracing processcapacity, nominal size of the frac lines, nominal bore size of or at any angle, and will typically have one or two gate valves – two is common. One of the gate valves in each run may be actuated to allow for remote and fast control of the manifold with a central control panel, while a second, typically manual valve, may be used as a backup if required.One-leg frac manifold with safety platform for safe access to valvesTwo-leg manual valve and hydraulic valve isolation frac manifold with safety platform for safe access to valvesCameron’s frac manifold design is modular, flexible, and can result in a vast array of possible configurations.3Three-leg manual valve and hydraulic valve isolation frac manifoldTwo-leg manual valve and hydraulic valve isolation frac manifold2-leg vertical frac manifoldAllows for continuous operation of multiple wells, improving utilization of pumping servicesWith the introduction of zip fracing, gate valves assembledinto frac manifolds are exposed to nearly continuous service.frac manifolds are exposed to nearly continuous service, Given the erosive, corrosive, and sometimes sour natureFLS-R-Frac and FLS-DA2-Frac gate valves are designed with these special features:• T rimmed for maximum corrosion and erosion protection • C RA inlay in seat pockets and ring grooves for added protectionflS-r-frac gate valveAt the forefront of our frac valve offering is Cameron’s premium FLS-R-Frac gate valve, based on the widely recognized, field-proven FLS-R ™ gate valve. Designed as a manual valve for high-pressure applications, in all the nominal sizes and pressure classes required in the frac industry and with reliable metal-to-metal seals throughout, the FLS-R-Frac valve has established a global reputation as the ultimate heavy-duty, reliable gate valve for hydro-frac applications. The FLS-R-Frac valve’s design features a ball screw for the upper stem and a lower balancing stem, which combine to substantially reduce break-open and running torques. Another benefit of this premium design is that the gate quickly cycles from the fully-closed to the fully-open position, dramatically reducing exposure to potential erosion and contamination associated with the mid-range position.FLS-R-Frac Gate Valveutilized in order to mitigate turbulence that is known to exaggerate erosion• T wo grease fitting ports are utilized for flushing and greasing the valve body cavityCameron’s FLS-Frac, FLS-R-Frac and FLS-DA2-Frac gate valves are designed with special features.flS-frac gate valveDepending on the size and pressure requirements, Cameron’s FLS-style gate valves may be a better fit in some frac service environments. In these cases, Cameron offers the FLS-Frac valve, based on thefield-proven model FLS but modified for frac service in the same manner as the FLS-R-Frac valve.flS-da2 gate valveFor actuated frac gate valve requirements, Cameron offers the FLS-DA2-Frac gate valve, a gate valve that offers all the same metal sealing features of the FLS-R-Frac with the addition of a double-acting modelDA2 hydraulic actuator. The FLS-DA2-Fracgate valve features fast, positive remote actuation – opening and closing – with a simple design that provides for quick and easy field maintenance.7FLS-DA2-Frac Gate ValveFLS-Frac Gate ValveEquipment is offloaded and checkedfor NORM. Customer and well name are documented. Part number and serial number are verified.Valve is reassembled with qualified parts.Dedicated cells are set up to follow definedQA for frac valves. Technician beginsdisassembly.Valve is tested.Trained inspectors qualify or disqualifycomponents per FracServ procedures.Painted valves are tagged with test tagverifying repair is complete.9lifespan of elastomers and other soft goods in a frac valve.can cause pitting and other frac valve seal surface damage over time.frequently fluctuating pressure coupled with corrosive anderosive service, left unchecked, can damage the structural integrity of a valve’s body.if ignored, the dynamic nature of the frac environment can dramatically shorten the life of flange bolting due to fatigue damage.Sand and other particulate debris left unmonitored can affect the performance of grease fittings over time.Sand, acid, and many other erosive and corrosive elements of a frac job reduce the life of a valve’s gate and seat, if left untreated.real products to the rigors of real high-velocity frac fluid,as well as software simulations using 3D FEA, ABAQUS, Computational Flow Dynamics, and other analytical programs. These simulation exercises are directed at torque and fatigue life prediction, erosion analysis, and testing of other critical service features of flow containment and control equipment utilized in hydraulic fracturing and flowback operations.This testing is a necessary component in the development of Cameron’s in-depth knowledge and understandingof the harsh frac and flowback environment – hands-on knowledge that could not be attained by any other means. The results of these analyses are fed back into the design, manufacturing and service functions of the CameronHydraulic actuated gate valves being gas-testedGate valves being pressure-testedHardness inspection being conducted on seat ring Valve bodies in fixture for machiningValve body in process in gate valve cell Valve cavities going through finish machining processFrac Manifold Case StudyBackgroundWith the combination of horizontal drilling and hydraulic fracturing technologies, shale play drillingand production has taken our industry by storm. The high cost of the frac crew and equipment, however, has a substantial impact on profitability. Failure to fully utilize the time this equipment is onsite is extremely costly.The challengeA major operator working in northeastBritish Columbia challenged Cameron tofind a way to better utilize expensivestimulation resources and to increasethe number of frac intervals conductedeach day. Using the known conventionalpractices at the time they had beenable to average 2 x 200 ton fracsper day.T h e d a ily f r a c co m pl e ti ontr a n s it io n ti m e be tw ee n f r a cresulTsThe daily frac completion rate has risen up to ~ 4 x 200 ton fracs per day, and transition time between frac stages has been minimized.The manifold design is highly modular, and can be easily adapted to virtually any well pad layout. Quick changeout of valves and components allows for off-line repairs. Manifolds are skid mounted complete with platforms and handrails for easy transport and improved safety.Overall, Cameron’s frac manifold has been an operational and an economic success. Equipment performance related to wear or erosion has been outstanding, with as many as 1500 frac cycles conducted with only minimal wear.our soluTionCameron’s frac manifold design allows for essentially continuous utilization of the frac crew. This is accomplished by pre-connecting manifold outlets to multiple frac tree goat heads and directing the output of the manifold to alternating wells as isolation plugs are set and new frac zones are perforated.r a te h a s r is en a n ds ta g es h a s be en m in im iz ed.Surface SyStemSPO Box 1212Houston, TX 77251-1212USATel 1 713 939 2211No. 2 Gul Circle Jurong Industrial Estate Singapore, 629560Singapore Tel 65 6861 3355Queen Street, Stourton West Yorkshire LS10 ISB Leeds, LS10 1SB England, UK Tel 44 113 270 1144Learn more about Cameron’s frac manifolds at:©2013 Cameron | FracServ, FLS, FLS-R and Monoline are trademarks of Cameron. | SWP 2.5M 5/13 AD00281SURHSe Policy StatementAt Cameron, we are committed ethically, financially and personally to a working environment where no one gets hurt and nothing gets harmed.HE A L T H S AF E T Y A N DE N V I R O N ME N T AL E X C E L L E N C E C AM E R O N。
Curves and Loopsin Mechanical VentilationFrank RittnerMartin DöringCurves and Loopsin Mechanical VentilationFrank RittnerMartin Döring5 ContentsVentilation curve patterns Pressure-time diagram6s Flow-time diagram10s Volume-time diagram12s Interpretation of curve patterns14Loops – a good thing all rounds PV loops21s The static PV loop21s The dynamic PV loop in ventilation23s Interpretation of PV loops in ventilation26s PV loops before and after the tube34s Loops – other possibilities38s Flow-volume loop38Trends revieweds Documentation of a weaning process41s Lung parameters based on peak andplateau pressure43Capnography – locating problem areass The physiological capnogram46s Interpretations of capnograms476Ventilation curve pattern All the ventilators of the Evita family offer graphic representation of the gradual changes in ventilation pressure and breathing gas flow. Evita 4, EvitaScreen and the PC software EvitaView additionally show the gradual changes in the breathing volume. Two or in some monitors three curves can be shown on thescreen at the same time, and particularly the fact that pressure, flow and volume can be displayed simultaneously makes it easier to detect changes caused by the system or the lungs. The gradual change in pressure, flow and volume depend to an equal extent on the properties and settings of the ventilator, as well as on the respiratory properties of the lung.One respiratory cycle comprises an inspiratory and an expiratory phase. Under normal conditions these two periods contain a flow phase and a no flow pause phase. No volume passes into the lung during the no flow phase during inspiration.Pressure-time diagram Volume-controlled, constant flowThe pressure-time diagram shows the gradualchanges in the airway pressure. Pressure is given in mbar (or in cmH 2O,) and time in seconds.At a preset volume (volume-controlled ventilation)and constant flow the airway pressure depends on the alveolar pressure and the total of all airwayresistances, and can be affected by resistance and compliance values specific to the ventilator and the lung. As the ventilator values are constant, thepressure-time diagram allows conclusions to be drawn about the status of the lung and changes to it.The gradual changes in pressure, flow and volume depend to an equal extent on the properties and settings of the ventilator, as well as on the respiratory properties of the lung.Ventilation curve pattern 7Resistance = airway resistanceCompliance = compliance of the entire system(lungs, hoses etc.)At the beginning of inspiration the pressure between points A and B increases dramatically on account of the resistances in the system. The level of the pressure at break point B is equivalent to the product of resistance R and flow (*).∆p = R ∗*This relationship, as well as the following examples, is only valid if there is no intrinsic PEEP. The higher the selected Flow *or overall resistance R, the greater the pressure rise up to point B. Reduced inspiratory flow and low resistance values lead to a low pressure at point B.Pressure-time diagram for volume controlled constant flow ventilation.Ventilation curve pattern 8After point B the pressure increases in a straight line,until the peak pressure at point C is reached. The gradient of the pressure curve is dependent on theinspiratory flow *and the overall compliance C.∆p/∆t = */CAt point C the ventilator applies the set tidal volume and no further flow is delivered (*= 0).As a result, pressure p quickly falls to plateau pressure. This drop in pressure is equivalent to the rise in pressure caused by the resistance at thebeginning of inspiration. The base line between pointsA and D runs parallel to the lineB -C.Further on there may be a slight decrease inpressure (points D to E). Lung recruitment and leaks in the system are possible reasons for this. The level of the plateau pressure is determined by the compliance and the tidal volume. The difference between plateau pressure (E) and end-expiratory pressure F (PEEP) is obtained by dividing the delivered volume VT (tidal volume) by compliance C.∆P = P plat - PEEPBy reversing this equation the effective compliance can easily be calculated.C = V T /∆pThe level of the plateau pressure is determined by the compliance and the tidal volume.Ventilation curve patterns9 During the plateau time no volume is supplied to thelung, and inspiratory flow is zero. As alreadymentioned, there is a displacement of volume onaccount of different time constants, and this results inpressure compensation between differentcompartments of the lung.Expiration begins at point E. Expiration is a passiveprocess, whereby the elastic recoil forces of the thoraxforce the air against atmospheric pressure out of thelung. The change in pressure is obtained bymultiplying exhalation resistance R of the ventilator byexpiratory flow *exp.∆p = R∗*exp.Once expiration is completely finished, pressure onceagain reaches the end-expiratory level F (PEEP).Pressure-orientedIn pressure-oriented ventilation (e.g. PCV/BIPAP) thepressure curve is quite different.Pressure-time diagramm for pressure controlled ventilation.Ventilation curve pattern 10Pressure increases rapidly from the lower pressure level (ambient pressure or PEEP) until it reaches the upper pressure value P Insp.and then remains constant for the inspiration time T insp.set on the ventilator.The drop in pressure during the expiratory phase follows the same curve as in volume-oriented ventilation, as expiration is under normal conditions a passive process, as mentioned above. Until the next breath pressure remains at the lower pressure level PEEP.As pressure is preset and regulated in the case of pressure-oriented ventilation modes such as BIPAP,pressure-time diagrams show either no changes, or changes which are hard to detect, as a consequence of changes in resistance and compliance of the entire system. As a general rule it can be said that the pressure curves displayed reflect the development of pressure measured in the ventilator. Real pressures in the lung can only be calculated and assessed if all influential factors are taken into account.Flow-time diagram The flow-time diagram shows the gradual changes in the inspiratory and expiratory flows *insp and *exsp respectively. Flow is given in L/min and time in seconds. The transferred volume is calculated as the integration of the flow *over time, and is thusequivalent to the area underneath the flow curve.During inspiration the course of the flow curve is dependent on or at least strongly influenced by the ventilation mode set on the ventilator. Only the course of the flow in the expiratory phase permits conclusions to be drawn as to overall resistance and compliance of the lung and the system.The course of the flow in the expiratory phase permits conclusions to be drawn as to overall resistance and compliance of the lung and the system.Ventilation curve pattern 11In normal clinical practice constant flow and decelerating flow have become established as the standard forms for ventilator control.As yet there has been no evidence to suggest that particular therapeutic success could be achieved using other flow forms.In the case of constant flow the volume flow rate during inspiration remains constant throughout the entire flow phase. When inspiration starts the flow value very quickly rises to the value set on theventilator and then remains constant until the tidal volume V T , likewise set on the ventilator, has been delivered (this is the square area under the curve.) At the beginning of the pause time (plateau time) the flow rapidly returns to zero. At the end of the pause time expiratory flow begins, the course of whichdepends only on resistances in the ventilation system and on parameters of the lung and airways. Constant flow is a typical feature of a classic volume-oriented mode of ventilation.Flow-time diagramVentilation curve pattern 12In decelerating flow the flow falls constantly after having reached an initially high value. Under normal conditions the flow returns to zero during the course of inspiration. Decelerating flow is a typical feature of a pressure-oriented ventilation mode.The difference in pressure between the pressure in the lung (alveoli) and the pressure in the breathing system, maintained by the ventilator at a constant level, provides the driving force for the flow.As the filling volume in the lung increases the pressure in the lung also rises. In other words, the pressure difference and thus the flow drop continuously during inspiration. At the end of inspiration the pressure in the lung is equal to the pressure in the breathing system, so there is no further flow.If at the end of inspiration and at the end of expiration flow =0, compliance can also be calculated in a pressure-oriented ventilation mode using the V Tmeasured by the ventilator.C = V T /∆Pwhere ∆P = P insp.- PEEPVolume-time diagramThe volume-time diagram shows the gradual changes in the volume transferred during inspiration and expiration. Volume is usually given in ml and time in seconds.During the inspiratory flow phase the volume increases continuously. During the flow pause (plateau time) it remains constant as there is no further volume entering the lung. This maximum volume value is an index of the transferred tidal At the end of inspiration the pressure in the lung is equal to the pressure in the breathing system, so there is no further flow.Ventilation curve patterns13 volume and does not represent the entire volume inthe lung. The functional residual capacity (FRC) isnot taken into account. During expiration thetransferred volume decreases as a result of passiveexhalation.The relationships between pressure, flow andvolume are particularly obvious when theseparameters are all displayed at the same time.Pressure, flow and volumediagram of volume-orientedand pressure-orientedventilationVentilation curve pattern14patternsincreasing compliance→plateau and peak pressuresfalldecreasing compliance→plateau and peak pressuresriseVentilation curve pattern15remains the same.increasing resistance→peak pressure risesdecreasing resistance→peak pressure fallsThe expiratory lung resistance cannot be seen on the pressure curve as the alveolar pressure would need to be known. Conclusions can be drawn however from the expiratory flow curve (see «Flow curve at increased expiratory resistances»).The expiratory lung resistance cannot be seen on the pressure curve as the alveolar pressure would need to be known.Ventilation curve pattern16or, even better, changing to a mode of ventilationwhere the patient is allowed to breathe spontaneouslyeven during a mandatory breath, is an option worththinking about. BIPAP or AutoFlow®are examples ofsuitable modes.Ventilation curve pattern17applying the set tidal volume at the lowest possibleairway pressure. The constant flow typical of volume-oriented ventilation modes (square) becomes at thesame time a decelerating flow form, while tidalvolume remains constant even if the compliance inthe patient’s lung changes.Pressure limitation at a constant tidal volume canalso be achieved in Dräger ventilators by using theP max setting. If the compliance of the patient changesthis set value may need to be checked and reset.Ventilation curve pattern18apply the volume which could be achieved for the setpressure.Ventilation curve pattern19This results in an increase in lung pressure in thecase of volume-controlled ventilation.In Evita ventilators it is possible to measure intrinsic PEEP and trapped volume directly. An intrinsic PEEP can have considerable effects on the exchange of gases and pulmonary blood circulation.In some applications, however, there may be attempts to establish an intrinsic PEEP on purpose (Inverse Ratio Ventilation IRV), due to the fact that this will probably then only occur in certain desired sections of the lung, while a PEEP set on the ventilator will affect the entire lung.In Evita ventilators it is possible to measure intrinsic PEEP and trapped volume directly.Ventilation curve pattern20increased expiratory resistances which may be causedby expiratory filters which have become damp orblocked as a result of nebulization. This may lead to aconsiderable increase in expiration time and adeviation from the set PEEP value.21 Loops – a good thing all roundPV Loops The static PV loop (classic)The static PV loop (pressure-volume curve) is obtainedas a result of the «super-syringe» method, and is usedpredominantly in scientific papers [1]. Most of what isknown about the PV loop is thus based on this method.The most important feature of this PV loop is that theindividual points of measurement (pressure andvolume) are recorded when breathing gas flow=0.Using a super-syringe, the volume in the lung isincreased step by step. A few seconds after eachincrease in volume the resulting pressure is measured[2]. By connecting the individual points the PV loop iscreated.Loops – a good thing all round 22The relationship of volume to pressure reflects compliance (C = ∆V/∆P). Thus the PV loop shows how compliance develops as volume increases. The lower and upper inflection points can be taken from the PV loop. When the super-syringe method is used the volume measured value does not return to zero during expiration, but the reasons for this are as yet not entirely clear. However, errors in measurement and oxygen consumption during measurement play a significant role [2].In the lower section (A) the pressure per volume increase rises particularly rapidly and only continues in a straight line (B) once a lung-opening pressure (lower inflection point) has been exceeded. If the lung reaches the limits of its compliance, the rise in pressure per volume increase becomes bigger again (upper inflection point) (C).It is generally accepted that ventilation should take place as far as possible within the linear compliance area (B), as dangerous shear forces occur as a result of the collaborating and reopening of individual areas of the lung. The lower inflection point can be overcome by setting a PEEP. The ventilation volume (in IPPV/CMV, SIMV) or inspiratory pressures (in BIPAP, PCV) must then be selected such that the upper inflection point will not be exceeded.Dynamic PV loops in ventilationPV loops which are generated during ventilationdo not fulfil the condition that at the time whenthe individual measured values are recorded the breathing gas flow should equal zero. The breathing gas flow generates an additional pressure gradient due to the inherent resistances like tube, airways etc. (see also page7).PV-Loop with upper and lower inflection point.Since ventilators open the exhalation valve either to ambient pressure or set PEEP at the beginning of expiration, the pressure displayed by the PV loop also falls almost immediately to this value.In the static PV loop, on the other hand, the reduction is again a gradual process.As regards the PV loop obtained for controlled ventilation it can generally be said that the slower the lung is filled the better the rising branch reflects the course of compliance.A number of studies and publications have shown that PV loops recorded during the course of ventilation correlate well with loops from standard procedures, so long as the inspiratory flow is constant [3]. The studies are based on the assumption that the drop in pressure resulting from inspiratory resistances will also remain constant at constant flow, and that the steepness of the inspiratory loop will thus reflect only the elastance of thorax and lung. Although as a result the PV loop recorded by the ventilator is offset (the rising branch shifts position), it otherwise retains its original shape, on the basis of which conclusions can be drawn about compliance.This also shows that in ventilation modes with decelerating flow (BIPAP, PCV etc.) it is not possible to draw conclusions from the PV loop concerning the development of compliance of the lung.In ventilation modes with decelerating flow (BIPAP, PCV etc.) it is not possible to draw conclusions from the PV loop concerning the development of compliance of the lung.Volume-controlled ventilation with constant flowDuring inspiration the lung is filled with a preselected constant flow of gas, during which process thepressure in the breathing system gradually increases.The pressure in the lung increases to the same extent and, at the end of inspiration, reaches the same value as the pressure in the breathing system (plateau pressure).During expiration the ventilator opens theexhalation valve wide enough to maintain the level of PEEP set. Due to the pressure difference, which is now inverted (pressure in the lung greater than PEEP pressure), the breathing gas now flows out of the lung and the lung volume slowly falls. This is why PV loops during controlled ventilation run anti-clockwise.Interpretation of PV loops in ventilation.Even during pressure-controlled ventilation thePV loops run anti-clockwise. However, in this case the lung is not filled with an even gas flow. At the beginning of inspiration the ventilator generates a greater pressure in the ventilation system than in the lung, which is then kept constant by the ventilator throughout the entire inspiration. As a result of this difference in pressure air flows into the lung and the volume of the lung slowly increases. As the volume increases the pressure in the lung also rises and the difference between the lung pressure and the pressure in the breathing system becomes smaller.Since due to the laws of physics the difference in pressure determines the resulting breathing flow,the breathing flow becomes ever smaller during inspiration, thus creating a decelerating flow.The pressure in the breathing system is kept at a constant level by the ventilator throughout inspiration, giving the PV loop during pressure-controlled ventilation a more or less box-like shape.about the course of lung compliance. When the breathing gas flow is equal to zero at the end of inspiration, however, the steepness of a line drawn between the start of inspiration (A) and the point at the end of inspiration (B) does represent a measure of dynamic compliance. This presupposes, however, that flow equals zero both at the end of inspiration and at the end of expiration.CPAP spontaneous breathingIn spontaneous breathing the PV loops run clockwise. The patient’s inspiratory effort creates a negative pressure in the lung, which then has an effect in the breathing system where the pressure is measured byenough breathing gas to ensure that the set CPAP pressure is maintained at a constant level, although a slight negative deviation is inevitable. The area to the left of an imaginary vertical axis (A) at the set CPAP pressure is thus a measure of the patient’s efforts to combat the inspiratory resistances of the ventilator.PV loop in CPAP with ASB/P.supp.A characteristic feature of respiratory support synchronized with the inspiratory effort of the patient (ASB/P.supp., SIMV etc.) is a small twist just above the zero point. The patient first generates a negative pressure in the lung. Once the trigger threshold has been passed, however, the ventilator generates a positive pressure in the breathing system. The area to the left of the vertical axis which is enclosed by the small twist (A) is a measure of how much work the patient needs to do to trigger the ventilator. The area to the right of the axis (B) represents the work done by the ventilator to support the patient, in so far as thePV loops in the case of compliance changesAs compliance decreases, in other words as the lung becomes less elastic, and the ventilator settings remain the same, the PV loop in volume-controlled ventilation takes an increasingly flat course.The change in steepness of the inspiratory branch of the PV loop is proportional to the change in lung compliance.PV loops in the case of resistance changesIf resistance changes during constant flow ventilationIf during constant flow ventilation the loop startsto become flatter in the upper part of the inspiratory branch, then this could be an indication of over-extension of certain areas of the lung. See alsoLoops – a good thing all round33PV loop in ASB/P.supp.If during ASB/P.supp. the patient is only able tomanage the trigger impulse and then does notcontinue to breathe, then only a volume equal to thesupport pressure in accordance to current lungcompliance will be reached. However, if the patientcontinues an inspiratory effort throughout the entiresupport phase then he or she will be able to inhalegreater volumes, whilst the support pressureremaining unchanged.A change in the height of the PV loop is thus aset pressure support (without the patient’s ownbreathing) is smaller than the patient’s individualneeds. On the other hand, the support pressure shouldat least compensate for the artificial airwayresistances (tube) (see also «PV loops before and afterthe tube»).Loops – a good thing all round 34PV loops before and after the tube The PV loop measured by the ventilator gives only half the picture. As described in the section «dynamic PV loop», further pressure drops occur after the point where the ventilator takes the pressure measurement (Y-piece) e.g. across the tube length and the physio-logical airways. PV loop in CPAP before and after the tube The PV loop displayed by the ventilator shows a narrow loop for purely spontaneous patient breathing at an increased pressure level (CPAP). The narrower the area to the left of the vertical axis, the less additional work of breathing needs to be done to combat the ventilator’s inspiratory resistances. The area to the right of the axis, on the other hand, is only deter-mined by the expiratory resistances of the ventilator.The entire area which the loop encompasses is thus at the same time a measure of the quality of the ventilator, although it should be remembered that for the purposes of a direct comparison of ventilators the same system of measurement needs to be used for all ventilators, since the specifications of the various systems may differ considerably from one another. A further consideration is the fact that some ventilators apply a small additional support pressure (some 3mbar) even when no support pressure has been set,thus making a direct comparison no longer possible.The narrower the area to the left of the vertical axis, the less additional work of breathing needs to be done to combat the ventilator’s inspiratory resistances.Loops – a good thing all round35less work of breathing for the patient is not correct inevery case.A comparison with a loop recorded directly afterthe tube shows that this loop covers a considerablygreater area. Due to the comparatively small diameterof the tube the patient must do considerably morework of breathing.Loops – a good thing all round36has to work to combat the tube’s resistance [4], a factwhich is shown by the different area covered by theloops recorded after the tube.A PV loop taken downstream from pathologicallyincreased airway resistances would cover an evenLoops – a good thing all round37Assistance from pressure support (ASB)Increased airway resistances, whether caused bydisease or intubation, thus result in increased work ofbreathing for the patient.The reason for setting assisted spontaneous breath-ing (ASB/P.supp.) is generally to try to compensate forthese airway resistances. A comparison with loopsrecorded during CPAP shows that the area of the looptaken after the tube can also be reduced withvertical line of the CPAP set value, the tube resistancewill only just be compensated for. If the inspiratorybranch lies to the right of the CPAP line then supportis provided above and beyond merely compensating forthe tube resistance, thus compensating for possiblepathological resistances in the lower airways. If theLoops – a good thing all round38support pressure is inadequate and the patient isbeing forced to inhale, however, negative pressuremay still occur at the distal end of the tube.Unfortunately, the PV loop at the distal end of thetube is not usually available. Taking a pressuremeasurement at the tip of the tube is also extremelyprone to errors due to the collection of secretion andmucous etc. An incorrect measurement could theneasily result in misinterpretations.However, research is underway to find ways toimprove this situation.For the time being we have to estimate theoptimal pressure support to compensate for airwayresistances.Loops – other possibilitiesIn addition to pressure-volume (PV) loops, othercombinations of parameters are also possible. Some ofthese are already used in pulmonology but are notparticularly widespread in intensive care medicine.Some diagnostic procedures require the patient’scooperation.Flow-volume loopThe flow-volume loop is occasionally used to obtaininformation about airway resistance, when aspirationshould be carried out and about the patient’s reactionto bronchial therapy.Increased airway resistances as a result of sputumetc. can in many patients be recognized by a saw-toothed-shape loop. A smoother loop then verifies thatmeasures such as suctioning which have been takento improve airway resistance have been successful. [5]In patients with obstructive diseases the expiratorybranch of the loop only changes shape when the setLoops – a good thing all round39 PEEP is greater than intrinsic PEEP. The fact that theshape of the loop does not change, however, does notnecessarily have anything to do with flow limitation.[1]40Trends reviewedGraphic trend displays enable ventilation processes tobe assessed at a later stage, with the development ofcontinuously measured values displayed in graphicform. Trend displays may be of interest in a variety ofdifferent applications, and each application willrequire a different period of observation. For instance,for assessing a process of weaning, several days oreven weeks will need to be displayed in one diagram,while an event which occurs suddenly calls for asmuch detail as possible to be shown in the diagram.The areas of application for trend displays in ventilationare extremely varied due to the wide range of possiblecombinations of the individual parameters. Thefollowing are just a few examples, designed to makethe reader think of further possible applications.Trends reviewed41was reduced there was a drop in minute volume (MV),although this drop was compensated for after a shorttime by the MV (MVspont.) spontaneously breathed bythe patient.Trends reviewed42pressure support was reduced. Initially this reductionwas also compensated for by the patient, though lateron a lasting reduction in MV can be seen, after whichthe ventilator support was once again increased.。
压力容器专业词汇A B类 Category AB 安全阀 Safety valve安装 Installation 鞍式支座 saddle support凹面 concave 半球形封头 Hemispherical heads棒 bars 保温支撑 insulation support爆炸性 explosive 泵 pump变径段 reducers 标记 stamping标志 marking 标志的移植 Transfering marking波纹板 Corrugating Paper 补强管 reinforcing nozzle补强圈 reinforcing ring 不锈钢 stainless steel不圆度 out-of-roundness 材料 materials材料证明书 Certification of material 超声检验 Ultrasonic Examination衬里 Linings 成型 Forming成型封头 Formed heads 尺寸 Dimensions翅片管 finned tubes 冲击试验 impact test储罐 storage tank 传热面积 heat transfer surface磁粉检验 Magnetic Particle Examination 次要应力 secondary stress粗糙度 roughness 淬火 Quenching带折边的锥形 toriconical 弹簧 springs弹簧垫圈 spring washer 弹性模量 modulus of Elasticity挡板 baffle plate 低合金钢容器 low alloy steel vessels 低温容器 Low-temperature vessels 地震烈度 seismic intensity垫板Backing strip 垫片gasket垫圈washer 碟形封头Dished heads顶丝jbckscrew 定距管spacer定位销pin dowel 定义Definitions毒性toxicity 镀锌容器Galvanized vessels锻件Forgings 对焊法兰welding neck flange耳座lug 阀门valves法兰flanges 法兰接触面Flange contact facings防冲板impingement baffle 防腐蚀衬里Corrosion resistant linings 防火fire protection 防涡流挡板vortex breaker非受压件nonpressure parts 非圆形容器Noncircular vessels峰值应力peak stress 腐蚀裕量corrosion allowance附加载荷supplementary loading 附件attachments复合板Clad plate 覆层容器clad vessels盖板Cover plates 杆rods or bars过渡段transition in 过渡圆角Knuckles焊后热处理after postweld heat treating 焊接工艺welding procedure specification 焊接接头welding joints 焊接系数welding coefficient厚度thickness 滑动的sliding环向应力hoop stress 回火tempering基本地震加速度basic seismic acceleration 基本分压basic wind pressure计算厚度calculated thickness 技术条件form of Specification加强圈 stiffening rings 夹套容器 Jacketed vessels检查孔 Inspection openings 检验 inspection角焊 Fillet welds 接地板 earth lug截止 Stop valves 介质特性 fluid property金属温度 Metal temperature 筋板 rib plate径向应力 radial stress 静(压力)水头 static head局部 areas 局部 local局部焊后热处理 Local postweld heat treatment 矩形设计 rectangular design卡箍 clamp 开孔补强 reinforcement for openings快开盖 Quick-actuating closures 拉杆 tie rod裂缝 Cracking 流体(介质) fluid螺孔 holes for screw 螺母 nut螺塞 plug 螺栓 bolt螺纹 threaded 螺柱 studs名义厚度 nominal thickness 铭牌 Name plates内部构件 Internal structures 内衬筒 internal shell盘管 coil tube 配件 fittings膨胀节 expansion joint 平封头 Flat heads评定 Qualification 气孔 Porosity气压试验 Pneumatic test 钎焊 brazing强度 strength of 球形封头 spherically dished曲率 curvature 屈服 yielding全容积 total volume 缺陷 defects群座 skirt support 热处理 thermal treatment热处理 heat treatmen 热应力 thermal stress人孔 manholes 韧性 ductility容积 volume 容器 vessel容器净重 empty weight 容器类别 vessel classification塞焊 Plug welds 设计压力 design pressure射线超声检验 Radiographic Examination 渗透检验 Penetrant Examination石墨 graphite 试样 Test coupons适用范围 Scope 手孔 (ha)ndholes水压试验 hydrostatic test/hydraulic test/hydrotest 碳钢 carbon steel搪玻璃容器 enameled vessels 梯子、平台 ladders, platforms填充金属 filler metal 筒体 shell凸面 convex 凸缘 socket椭圆封头 Ellipsoidal heads 外压容器 vessels subjected to external pressure 未注尺寸公差 tolerance grade n0t noted 无支撑 unstayed系数 fact0r 现场安装 Fie1d assemb1y校核 checking 0f 泄放 (Disc)harge泄压装置 Pressure relieving (dev)ices 性能 properties许用工作压力 al1owable working pressure 许用应力 al1owable stress易然的 flammable 应力腐蚀 stress corrosion应力集中 stress concentration 预热 Preheating圆度 roundness 圆角和倒角 corners+fillets载荷 Loadings e(xpa)nded c0nnections 折流板 baffle plate蒸发器 (Evap)orators 直边长度 length 0f skirt直径 Diameter 制造 fabrication制造厂 fabricator 制造方法 methods 0f fabrication制造工艺 fabrication technology 周长 Girth主应力 primary stress 柱状壳体 Cylindrical shells铸铁容器 cast iron vessels 转角半径 knuckle radius装配 assembling 锥度 tapered锥壳 conical shell 锥形封头 Conical heads 资格 qualification纵向接头 Longitudinal joints 组对 fitting up无损检测专业词汇a cluster of flaws 密集区缺陷A.C magnetic saturation 交流磁饱和 ablution 清洗Absorbed dose rate 吸收剂量率 Absorbed dose 吸收剂量 Acceptanc limits 验收范围Acceptance level 验收水平验收标准 acceptance specification 验收规范 Acceptance standard 验收标准Accessories 附件配件辅助设备辅助器材 Accumulation test 累积检测 Accuracy 精确度准确度 acetone 丙酮Acoustic emission (AE) 声发射Acoustic emission count 声发射计数Acoustic emission transducer 声发射换能器 Acoustic holography 声全息术Acoustic impedance matching 声阻抗匹配 Acoustic impedance method 声阻法 Acoustic impedance 声阻抗 Acoustic wave 声波 Acoustical lens 声透镜Acoustic-ultrasonic 声-超声(AU) across 交叉横过 Activation 活化 Activity 活度additional stress 附加应力 address: 地址:?Adequate shielding 适当防护、适当屏蔽 AE 声发射air header 集气管"air set 空气中凝固, 常温自硬自然硬化" air supply 气源 aisle 过道走廊alarm condition 报警状态 alarm level 报警电平Alignment 对准定位调整校直 alkaline battery 碱性电池allowable variation 允许偏差容许变化 alternating current 交流电 aluminum powder 铝粉 amount 数量Ampere turns 安匝数amplifier panel 放大器面板 Amplitude 振幅、幅度 analyzer 分析器anchor bolt 锚定螺栓地脚螺栓Angle beam method 斜射法、角波束法 Angle beam probe 斜探头、角探头 angle fitting 弯头 angle iron 角钢角铁Angle of incidence 入射角 Angle of reflection 反射角 Angle of spread 扩散角Angle of squint 偏向角、偏斜角 Angle probe 斜探头、角探头 angle square 角尺 angle steel 角钢Angstrom unit 埃(长度单位) appearance 外观application drawing 操作图应用图arc cutting 电弧切割 arc gouging 电弧刨削 arc starting 起弧 arc welding 电弧焊Area amplitude response curve 面积振幅响应曲线 Area of interest 评定区、关注区域 argon arc welding 氩弧焊Arliflcial disconlinuity 人工不连续性、人工缺陷 arrangement diagram 布置图arrival time interval(Δtij)到达时间差(Δtij) Artifact 人为缺陷Artificial defect 人工缺陷 A-scan A型扫描 A-scope A型显示 assembly 装配 At present 目前Attenuation coefficient 衰减系数 Attenuator 衰减器Audible leak indicator 音响泄漏指示器automatic temperature recorder 温度自动记录器 Automatic testing 自动检测Autoradiography 自动射线照相术 axiality 同轴度轴对称性 axonometric drawing 轴测图 back-feed 反馈background target 目标本底 background 背景本底backwall echo 底波底面回波 baiting valve 放料阀 band plate 带板banjo fixing 对接接头 Barium concrete 钡混凝土 Barn 靶Base fog 片基灰雾 base material 基底材料basic sensitivity 基准灵敏度 Bath 槽液、浴池、槽Bayard-Alpert ionization gage B-A型电离计 Beam angle 波束角、束张角 Beam axis 声束轴线Beam path location 声程定位、声束路径位置 Beam path 声程、声束路径 Beam ratio 光束比 Beam spread 声束扩散arc cutting 电弧切割 arc gouging 电弧刨削 arc starting 起弧 arc welding 电弧焊Area amplitude response curve 面积振幅响应曲线 Area of interest 评定区、关注区域 argon arc welding 氩弧焊Arliflcial disconlinuity 人工不连续性、人工缺陷 arrangement diagram 布置图arrival time interval(Δtij)到达时间差(Δtij) Artifact 人为缺陷Artificial defect 人工缺陷 A-scan A型扫描 A-scope A型显示 assembly 装配 At present 目前Attenuation coefficient 衰减系数 Attenuator 衰减器Audible leak indicator 音响泄漏指示器automatic temperature recorder 温度自动记录器 Automatic testing 自动检测Autoradiography 自动射线照相术 axiality 同轴度轴对称性 axonometric drawing 轴测图 back-feed 反馈background target 目标本底 background 背景本底backwall echo 底波底面回波 baiting valve 放料阀 band plate 带板banjo fixing 对接接头 Barium concrete 钡混凝土 Barn 靶Base fog 片基灰雾 base material 基底材料basic sensitivity 基准灵敏度 Bath 槽液、浴池、槽Bayard-Alpert ionization gage B-A型电离计 Beam angle 波束角、束张角 Beam axis 声束轴线Beam path location 声程定位、声束路径位置 Beam path 声程、声束路径 Beam ratio 光束比 Beam spread 声束扩散buckling deformation 翘曲变形 buried depth 埋深burn through 烧蚀烧穿 bus duct 母线槽 butt joint 对接butt jointing 对接接头 butt weld 对接焊缝 butt welding 对接焊 cable armor 电缆铠装cable channel 电缆槽电缆管道 cable fitting电缆配件 cable gland 电缆衬垫 cable laying 电缆敷设cable routing电缆路由选择 Cable sheath 电缆包皮层cable testing bridge 电缆测试电桥 cable tray 电缆盘cable trunk 电缆管道电缆主干线 calculation sheet 计算书Calibrated Density Reference Scale 标准密度校验片 Calibration instrument 校准仪器 calorimeter 热量计Capillary action 毛细管作用 Capping ends 顶盖末端 carbon steel tube 碳钢管 carbon steel 碳钢 Carrier fluid 载液Carry over of penetrate 渗透剂转入 cascade connection 串联连接 Cassette 暗盒 Cathode 阴极cathodic protection system 阴极保护系统 caulking metal 填隙合金[金属](材料) CCD Camera 电荷耦合摄像机 cement lined piping 水泥衬里管线 center bearing bracket 中心支架 center line 中心线center plate 中心板拨盘Central conductor method 中心导体法Central conductor 中心导体中线(三相四线制) centralized 集中的centripetal canting pull rope 向心斜拉索 certification of fitness 质量合格证书 channel bases沟渠基底channel steel expansion ring 槽钢胀圈 Characteristic curve of film 胶片特性曲线 Characteristic curve 特性曲线Characteristic radiation 特征辐射标识辐射Charge Coupled Device 电荷耦合器件(简称CCD) "check against 检查, 核对" check valve 止回阀 Chemical fog 化学灰雾 chipping 修琢chronometer精密计时表 Ci 居里Cine-radiography 射线(活动)电影摄影术连续射线照相 Circuit breaker断路开关 circular array 圆形阵列Circumferential coils 圆环线圈Circumferential field 周向磁场环形磁场 circumferential joint 周圈接缝Circumferential magnetization method 周向磁化法 circumferential weld 环焊缝 civil engineer 土木工程师civil works 土建工程建筑工程 clamp 夹钳clamping fixture 胎具夹具 Clean 清理 Clean-up 清除Clearing time 定透时间 coaxial cable 同轴电缆 cockle stairs 螺旋梯 Coercive force 矫顽力Coherence length 相干长度(谐波列长度) Coherence 相干性 Coil method 线圈法Coil reference 线圈参考(参照线圈) Coil size 线圈尺寸 Coil spacing 线圈间距Coil technique 线圈技术线圈法 Coil test 线圈试验Coincidence discrimination 符合性鉴别一致性鉴别 cold lap 冷隔Cold-cathode ionization gage 冷阴极电离计 collar extension 环口 Collimation 准直 Collimator 准直器 collision 碰撞冲突color identification 彩色识别Combined colour contrast and fluorescent penetrant 着色荧光渗透剂 commencement 开始 company 公司 comply with 遵守component part 构件 (组合)零件部件comprehensive analysis and judgement 综合分析判断 Compressed air drying 压缩空气干燥 compression joint 压接压力接合compression pump 压缩机压气机[泵] Compressional wave 压缩波 Compton scatter 康普顿散射Computed Radiography(CR)计算机辅助射线成像技术 condensation 冷凝 conducting wire 导线 conductive paste 导电膏 conduit box [电]导管分线匣 conduit entry 导管引入装置 conduit outlet 电线引出口 connector 接线器连接器 Console 控制台construction work 施工工程consumable insert (焊接)自耗嵌块 consumer 用户Contact pads 接触垫contactor 触头接触器触点开关 content gauge 液位计Continuous emission 连续发射Continuous linear array 连续线性阵列 Continuous method 连续法 Continuous spectrum 连续谱 Continuous wave 连续波Continuously Welded (CW) 连续焊 Contrast agent 对比剂造影剂 Contrast aid 反差增强剂Contrast sensitivity 对比灵敏度 Contrast stretch 对比度扩展 Contrast 对比度衬度control cable控制电缆操纵索 control console 控制台 Control echo 控制回波 control unit 控制单元control valve actuator 阀控传动机构 control valve控制阀color identification 彩色识别Combined colour contrast and fluorescent penetrant 着色荧光渗透剂 commencement 开始 company 公司 comply with 遵守component part 构件 (组合)零件部件comprehensive analysis and judgement 综合分析判断 Compressed air drying 压缩空气干燥 compression joint 压接压力接合compression pump 压缩机压气机[泵] Compressional wave 压缩波 Compton scatter 康普顿散射Computed Radiography(CR)计算机辅助射线成像技术 condensation 冷凝 conducting wire 导线 conductive paste 导电膏 conduit box [电]导管分线匣 conduit entry 导管引入装置 conduit outlet 电线引出口 connector 接线器连接器 Console 控制台construction work 施工工程consumable insert (焊接)自耗嵌块 consumer 用户Contact pads 接触垫contactor 触头接触器触点开关 content gauge 液位计Continuous emission 连续发射Continuous linear array 连续线性阵列 Continuous method 连续法 Continuous spectrum 连续谱 Continuous wave 连续波Continuously Welded (CW) 连续焊 Contrast agent 对比剂造影剂 Contrast aid 反差增强剂Contrast sensitivity 对比灵敏度 Contrast stretch 对比度扩展 Contrast 对比度衬度control cable控制电缆操纵索 control console 控制台 Control echo 控制回波 control unit 控制单元control valve actuator 阀控传动机构 control valve控制阀Decibel(dB) 分贝Defect detection sensitivity 缺陷探测灵敏度 defect evaluation zone 缺陷评定区 Defect resolution 缺陷分辨力 Defect 缺陷Definition 清晰度定义 delivery 发货Demagnetization factor 退磁因子退磁系数 Demagnetization 退磁Demagnetizer 退磁装置退磁器 Densitometer 黑度计密度计Density comparison strip 黑度比较片密度比较条 Density Strip 黑度比较片密度比较条 Density 黑度(底片)密度 depth scan 深度扫描 description 说明描述 design pressure 设计压力 Detecting medium 检验介质Detergent remover 洗净液去垢剂 Developer aqueous 水性显像剂 Developer dry 干式显象剂Developer liquid film 液膜显象剂Developer nonaqueous(suspend)非水(悬浮)显象剂 Developer station 显像工位显影台 Developer 显像剂显影剂Developing time 显像时间显影时间 Development 显影differential discriminator (电子)差动式鉴频器 Diffraction mottle 衍射斑点衍射斑纹 Diffuse indications 扩散指示 Diffusion 扩散漫射digital detector 数字探测器(X射线实时成像) Digital display 数字显示数显Digital image acquisition system 数字图像采集系统 Digital Radiography(DR)数字射线成像技术Digital Thermometer 数字温度计(用于测定胶片处理液的温度) Digital timer for darkroom 暗室用计时器(在暗室中可调及报警) Dilatational wave 膨胀波疏密波 dimensional inspection 尺寸检验Dip and drain station 浸渍和流滴工位浸渍与滴落台 Direct contact magnetization 直接接触磁化 Direct contact method 直接接触法 Direct exposure imaging 直接曝光成像directional beam 定向辐射(指定向辐射的工业X射线机)Directivity 指向性disassembly and assembly 拆装 Discontinuity 不连续性 Distance marker 距离标志Distance-gain-size DGS曲线(距离-增益-尺寸曲线)(DGS德文为A VG) "distribution board 配电盘, 配电屏" Dose equivalent 剂量当量 Dose rate meter 剂量率计 dose 剂量Dosemeter 剂量计 dosimeter 剂量计Double crystal probe 双晶探头 Double probe technique 双探头法Double transceiver technique 双发双收法 Double traverse technique 双光路技术 doubleskin 重皮 down lead 引下线DR(Digital Radiography)数字射线成像技术 Dragout 废酸洗液Drain time 滴落时间排液时间 drain 排水管排水沟排水道排水 draught 气流 Drift 漂移Dry developer 干式显像剂Dry developing cabinet 干式显像柜 Dry method 干法 Dry powder 干粉 Dry technique 干法Drying oven 干燥箱干燥炉 Drying station 干燥工位干燥台 Drying time 干燥时间 drying 烘干 D-scan D型扫描 D-scope D型显示dual element transducers 双晶探头双晶片换能器 Dual search unit 双探头双探测装置双探测器 Dual-focus tube 双焦点(X射线)管 due date 到期日预定日期Duplex wire type Image Quality Indicator 双线型像质指示器双线像质计 Duplex-wire image quality indicator 双线像质指示器双线像质计 duplicate part 备件 Duration 持续时间 Dwell time 停留时间dye penetrant examination 着色渗透检验Decibel(dB) 分贝Defect detection sensitivity 缺陷探测灵敏度 defect evaluation zone 缺陷评定区 Defect resolution 缺陷分辨力 Defect 缺陷Definition 清晰度定义 delivery 发货Demagnetization factor 退磁因子退磁系数 Demagnetization 退磁Demagnetizer 退磁装置退磁器 Densitometer 黑度计密度计Density comparison strip 黑度比较片密度比较条 Density Strip 黑度比较片密度比较条 Density 黑度(底片)密度 depth scan 深度扫描 description 说明描述 design pressure 设计压力 Detecting medium 检验介质Detergent remover 洗净液去垢剂 Developer aqueous 水性显像剂 Developer dry 干式显象剂Developer liquid film 液膜显象剂Developer nonaqueous(suspend)非水(悬浮)显象剂 Developer station 显像工位显影台 Developer 显像剂显影剂Developing time 显像时间显影时间 Development 显影differential discriminator (电子)差动式鉴频器 Diffraction mottle 衍射斑点衍射斑纹 Diffuse indications 扩散指示 Diffusion 扩散漫射digital detector 数字探测器(X射线实时成像) Digital display 数字显示数显Digital image acquisition system 数字图像采集系统 Digital Radiography(DR)数字射线成像技术Digital Thermometer 数字温度计(用于测定胶片处理液的温度) Digital timer for darkroom 暗室用计时器(在暗室中可调及报警) Dilatational wave 膨胀波疏密波 dimensional inspection 尺寸检验Dip and drain station 浸渍和流滴工位浸渍与滴落台 Direct contact magnetization 直接接触磁化 Direct contact method 直接接触法 Direct exposure imaging 直接曝光成像directional beam 定向辐射(指定向辐射的工业X射线机)Directivity 指向性disassembly and assembly 拆装 Discontinuity 不连续性 Distance marker 距离标志Distance-gain-size DGS曲线(距离-增益-尺寸曲线)(DGS德文为A VG) "distribution board 配电盘, 配电屏" Dose equivalent 剂量当量 Dose rate meter 剂量率计 dose 剂量Dosemeter 剂量计 dosimeter 剂量计Double crystal probe 双晶探头 Double probe technique 双探头法Double transceiver technique 双发双收法 Double traverse technique 双光路技术 doubleskin 重皮 down lead 引下线DR(Digital Radiography)数字射线成像技术 Dragout 废酸洗液Drain time 滴落时间排液时间 drain 排水管排水沟排水道排水 draught 气流 Drift 漂移Dry developer 干式显像剂Dry developing cabinet 干式显像柜 Dry method 干法 Dry powder 干粉 Dry technique 干法Drying oven 干燥箱干燥炉 Drying station 干燥工位干燥台 Drying time 干燥时间 drying 烘干 D-scan D型扫描 D-scope D型显示dual element transducers 双晶探头双晶片换能器 Dual search unit 双探头双探测装置双探测器 Dual-focus tube 双焦点(X射线)管 due date 到期日预定日期Duplex wire type Image Quality Indicator 双线型像质指示器双线像质计 Duplex-wire image quality indicator 双线像质指示器双线像质计 duplicate part 备件 Duration 持续时间 Dwell time 停留时间dye penetrant examination 着色渗透检验Dye penetrant 着色渗透剂Dynamic leak test 动态泄漏检测Dynamic leakage measurement 动态泄漏测量 Dynamic radiography 动态射线照相法 Dynamic range 动态范围 earth resistance 接地电阻 earth wire 接地线地线 earthing device 接地装置 earthing pole 接地极Echo frequency 回波频率 Echo height 回波高度 Echo indication 回波指示Echo transmittance of sound pressure 声压往复透过率 Echo width 回波宽度 Echo 回波echodynamic patterns 回波动态波型 eddy current coil 涡流检测线圈Eddy current flaw detector 涡流探伤仪 eddy current probe 涡流检测探头 Eddy current testing 涡流检测 Eddy current 涡流涡电流 Edge echo 棱边回波 Edge effect 边缘效应 Edge 边缘棱边Effective depth penetration (EDP)有效穿透深度有效透入深度 Effective focus size 有效焦点尺寸Effective magnetic permeability 有效磁导率Effective permeability 有效磁导率有效渗透率相对渗透率 Effective reflection surface of flaw 缺陷有效反射面 Effective resistance 有效电阻 Elastic medium 弹性介质 elbow 弯管接头管肘Electric displacement 电位移electric force compounded grease 电力复合脂 electric heat tracing 电伴随加热 electric machine 电机 electric pressure 电压 electrical appliance 电器 Electrical center 电中心 electrical material电气材料"electrical panel 配电板,配电盘" electrified 带电Electrode 电极电焊条Electrolytic Sliver recovery unit 电解银回收装置(从定影液中回收银)Electromagnet 电磁铁Electro-magnetic acoustic transducer 电磁声换能器 Electromagnetic induction 电磁感应 Electromagnetic radiation 电磁辐射 Electromagnetic testing 电磁检测Electro-mechanical coupling factor 机电耦合系数 electron linear accelerator 电子直线加速器 Electron radiography 电子辐射照相术 Electron volt 电子伏恃Electronic linear scans (E-scans) 电子线性扫描 Electronic noise 电子噪声Electronic scanning (E-scans) 电子扫描(E-扫描) Electrostatic spraying 静电喷涂 E-mail: 电子邮件:? 电子邮箱:embedded part 预埋件嵌入[埋置]部分 emission count (声)发射计数 Emulsification time 乳化时间 Emulsification 乳化 Emulsifier 乳化剂Encircling coils 环形线圈End effect 端部效应端点效应 "end socket 端头, (钢索的)封头" Energizing cycle 激励周期 enfoldment 折迭 envelope 包络包迹environment visible light 环境可见光 Equalizing filter 均衡滤波器平衡滤波器 equipment 器材设备Equivalent I.Q.I. Sensitivity 当量象质指示器灵敏度 Equivalent method 当量法Equivalent nitrogen pressure 等效氮压当量氮气压力 Equivalent penetrameter sensifivty 当量透度计灵敏度 Equivalent 当量Erasabl optical medium 可消光介质 erection 架设Etching 浸蚀腐蚀侵蚀蚀刻Evaluation threshold 评价阈值评定阈 Evaluation 评定Event count rate 事件计数率 Event count 事件计数Examination area 检验范围 Examination region 检验区域 examination 试验检验考试 examine and approve 审批exfoliation 剥落脱落Exhaust pressure/discharge pressure 排气压力/排放压力出口压力输送压力 Exhaust tubulation 排气管道Expanded time-base sweep 时基线展宽时基扫描扩展 "expansion bolt 伸缩栓, 扩开螺栓" expansion joint 伸缩接头Exposure and darkroom accessories 曝光与暗室附件 Exposure chart 曝光曲线 Exposure fog 曝光灰雾 Exposure table 曝光表 Exposure 曝光 Exposure 曝光Extended source 扩展源延长源external diameter of the pipe 管子直径 external diameter 外径 extra fee 额外费用? eye survey 目测fabrication drawing 制造图纸制作图 fabrication tolerance 制造容差 fabrication 加工制造Facility scattered neutrons 易散射中子 fall off 脱落False indication 假指示虚假指示伪显示虚假显示 Family 族系列 Far field 远场Fast neutron detectors 快中子探测器Fast/slow timing Oscilloscope 带快慢调速的示波器 Fax: 传真:?FBH 平底孔(缩写) feeder 馈电线Feed-through coil 穿过式线圈 ferritic 铁素体的field fabricated 工地制造的现场装配的 field installation 现场安装 field instrument 携带式仪表 Field 场(磁场、声场) filament 灯丝Fill factor 填充系数 filler metal 焊料焊丝 filler rod 焊条fillet weld 角焊填角焊 filling water test 充水试验 Film badge 胶片剂量计 Film base 片基exfoliation 剥落脱落Exhaust pressure/discharge pressure 排气压力/排放压力出口压力输送压力 Exhaust tubulation 排气管道Expanded time-base sweep 时基线展宽时基扫描扩展 "expansion bolt 伸缩栓, 扩开螺栓" expansion joint 伸缩接头Exposure and darkroom accessories 曝光与暗室附件 Exposure chart 曝光曲线 Exposure fog 曝光灰雾 Exposure table 曝光表 Exposure 曝光 Exposure 曝光Extended source 扩展源延长源external diameter of the pipe 管子直径 external diameter 外径 extra fee 额外费用? eye survey 目测fabrication drawing 制造图纸制作图 fabrication tolerance 制造容差 fabrication 加工制造Facility scattered neutrons 易散射中子 fall off 脱落False indication 假指示虚假指示伪显示虚假显示 Family 族系列 Far field 远场Fast neutron detectors 快中子探测器Fast/slow timing Oscilloscope 带快慢调速的示波器 Fax: 传真:?FBH 平底孔(缩写) feeder 馈电线Feed-through coil 穿过式线圈 ferritic 铁素体的field fabricated 工地制造的现场装配的 field installation 现场安装 field instrument 携带式仪表 Field 场(磁场、声场) filament 灯丝Fill factor 填充系数 filler metal 焊料焊丝 filler rod 焊条fillet weld 角焊填角焊 filling water test 充水试验 Film badge 胶片剂量计 Film base 片基film cassette 胶片暗盒 Film contrast 胶片对比度film density 胶片密度,底片黑度 film evaluation scope 底片评定范围Film gamma 胶片γ值(胶片灰度系数)Film Hangers (Channel Type)槽式洗片架(手工洗片的一种洗片架类型) Film Hangers (Clip Type)夹式洗片架(手工洗片的一种洗片架类型) Film Hangers for manual processing 洗片架(手工洗片的胶片挂架) Film marking equipment 胶片标记器材Film processing chemicals 胶片处理药品洗片药品 Film processing 胶片冲洗加工底片处理Film speed 胶片速度(胶片感光速度胶片感光度) Film unsharpness 胶片不清晰度film viewer 底片评片灯观片灯底片观察用光源 Film viewing equipment 评片装置(观片灯) Film viewing screen 胶片观察屏 Filter 滤波器滤光板过滤器 Final test 最终检验fire barriers 防火间隔防火屏障 Fixing 固定flange connection 凸缘联接 flange gasket 法兰垫片 flange joint 凸缘接头flange sealing surface 法兰密封面 flange 边缘轮缘凸缘法兰 flash plate 闪熔镀层 flash point 闪点Flat-bottomed hole equivalent 平底孔当量 Flat-bottomed hole 平底孔Flaw characterization 伤特性缺陷特征 Flaw echo 缺陷回波flaw height(thru-wall dimension) 缺陷自身高度(缺陷在壁厚方向的尺寸) Flaw 伤缺陷瑕疵裂纹 flexible conduit 软管 Flexural wave 弯曲波flicker-free images 无闪烁图像 Floating threshold 浮动阀值 floor slab 楼板flow instrument 流量计 flow sheet 流程图 Fluorescence 荧光Fluorescent dry deposit penetrant 干沉积荧光渗透剂 Fluorescent examination method 荧光检验法 Fluorescent light 荧光荧光灯Fluorescent magnetic particle inspection 荧光磁粉检验 Fluorescent magnetic powder 荧光磁粉 Fluorescent penetrant 荧光渗透剂 Fluorescent screen 荧光屏 fluorography 荧光照相术Fluorometallic intensifying screen 荧光金属增感屏 Fluoroscopy 荧光检查法 flushing 冲洗填缝flux cored arc welding 带焊剂焊丝电弧焊 Flux leakage field 磁通泄漏场漏磁场 Flux lines 磁通线 flux 焊剂,熔化 Focal distance 焦距 Focal spot 焦点Focus electron 电子焦点聚焦电子束 Focus length 焦点长度聚焦长度 Focus size 焦点尺寸聚焦尺寸 Focus width 焦点宽度聚焦宽度Focused beam 聚焦束(声束、光束、电子束) Focusing probe 聚焦探头Focus-to-film distance(f.f.d) 焦点-胶片距离(焦距) Fog density 灰雾密度 Fog 灰雾Footcandle 英尺烛光 formula 公式foundation ring 底圈foundation settlement 基础沉降 Freguency 频率Frequency constant 频率常数Fringe 干涉带干扰带条纹边缘 Front distance of flaw 缺陷前沿距离 Front distance 前沿距离 full-scale value 满刻度值Full-wave direct current(FWDC)全波直流 Fundamental frequency 基频 Furring 毛状迹痕毛皮 fusion arc welded 熔弧焊 fusion 熔融熔合gage glass 液位玻璃管Gage pressure 表压表压力 Gain 增益gamma camera γ射线照相机(γ射线探伤机) gamma equipment γ射线设备 Gamma radiography γ射线照相术Gamma ray source container γ射线源容器 Gamma ray source γ射线源 Gamma rays γ射线gamma source γ射线源γ源Gamma-ray radiographic equipment γ射线照相装置 Gamme ray unit γ射线机γ射线装置 Gap scanning 间隙扫查间隙扫描 gas cutting 气割gas shielded arc welding 气体保护焊 Gas 气体 Gate 闸门Gating technique 选通技术脉冲选通技术 gauge board 仪表板样板模板规准尺 Gauss 高斯Geiger-Muller counter 盖革.弥勒计数器 generating of arc 引弧Geometric unsharpness 几何不清晰度 girth weld 环形焊缝 gland bolt 压盖螺栓 Goggles 护目镜 gouging 刨削槽 Gray(Gy) 戈瑞Grazing angle 掠射角切线角入射余角 Grazing incidence 掠入射切线入射 grind off 磨掉 grinder 磨床磨工grinding wheel 砂轮片砂轮 groove face (焊缝)坡口面 grounding conductor 接地导体 Group velocity 群速度 grouting 灌(水泥)浆"guide wire 尺度[定距]索,准绳" "gusset plate角撑板, 加固板" Half life 半衰期Half-value layer(HVL) 半值层半价层 Half-value method 半波高度法半值法 Half-wave current (HW)半波电流 Halogen leak detector 卤素检漏仪 Halogen 卤素hanger 吊架挂架洗片架 Hard hat 安全帽Hard X-rays 硬X射线Hard-faced probe 硬膜探头硬面探头 Harmonic analysis 谐波分析Harmonic distortion 谐波畸变 Harmonics 谐频谐波 head face 端面 Head wave 头波heat absorbing glass 吸热玻璃 heat affected area 热影响区 heat exchangers 热交换器 heat transfer 热传输 Heating boxes 加热箱Helium bombing 氦轰击法 Helium drift 氦漂移Helium leak detector 氦检漏仪Hermetically tight seal 气密密封密封密封装置 High energy X-rays 高能X射线 high frequency generator 高频发电机 high frequency 高频 High vacuum 高真空highly sophisticated image processing 高度完善的图像处理 hoisting upright column 吊装立柱Holography 全息照相术(光全息、声全息) horizontal line 水平线hydrophilic emulsifier 亲水乳化剂 Hydrophilic emulsifier 亲水性乳化剂Hydrophilic remover 亲水性洗净剂亲水性去除剂 hydrostatic pressure test静水压试验 Hydrostatic test 水压试验静水压试验 Hysteresis 磁滞滞后I.F. (intermediate frequency) 中频(30~3000千周/秒)IACS =International Annealed Copper Standard 国际退火(软)铜标准 ice chest 冰箱ice machine 制冰机,冷冻机 ice 冰iconoscope 光电摄像管ID (①inside ②inside dimensions) ①内径②内部尺寸 ID coil ID线圈 =Inside Diameter 内径线圈 idea 概念,意见,思想 ideal 理想的,想象的identical 同一的,恒定的,相同的 identification mark 识别标志 identification 鉴定,辨别,验明 identifier 鉴别器identify pulse 识别脉冲idiopathetic 自发的,特发的IEM (ion exchange membrane) 离子交换膜illuminance 照(明)度 illuminant 照明的,发光的 illuminating lamp 照明灯泡 illuminating loupe 放大照明镜 illuminating mirror 照明镜 illumination apparatus 照明器 illumination plate 照明板 illumination 照明的,照射illuminator ①照明器,照明装置②反光镜 illuminometer 照度计illustration(abbr. illus.) 图解,例证,具体说明 image amplifier 图像放大器,影像增强器 image analysis system 图像分析系统 Image contrast 图像对比度影像对比 image converter 影像转换器 Image definition 图像清晰度 Image enhancement 图像增强 image freeze 影像冻结image intensifier tube 影像增强管图像增强管 image intensifier 像亮化器,图像增强器 Image magnification 图像放大 image monitor 图像监视器 image multiplier 影像倍增器 image pick-up tube 摄像管image quality indication 像质指示Image Quality Indicator (IQI)像质计像质指示器 Image quality indicator sensitivity 像质指示器灵敏度 Image quality 图像质量image reproducer 显像管,显像器 image store 图像存储器 image tube 显像管imager 图像仪,显像仪 imagination 想象imagine 想象,推测,设想Imaging line scanner 图像线扫描器图像行扫描器 Imaging Plates(IP)成像板 immediate payment 立即付款 Immersion probe 液浸探头Immersion rinse 浸没清洗浸液清洗 immersion system 浸渍装置液浸系统 Immersion testing 液浸试验Immersion time 浸没时间浸入时间 immersion 浸没,浸渍 impact strength 冲击强度impacter 冲击器impedance matching 阻抗匹配Impedance plane diagram 阻抗平面图。
压力容器专业词汇A B类Category A B安全阀Safety valve安装Installation鞍式支座saddle support凹面concave半球形封头Hemispherical heads棒bars保温支撑insulation support爆炸性explosive泵pump变径段reducers标记stamping标志marking标志的移植Transfering marking波纹板Corrugating Paper补强管reinforcing nozzle补强圈reinforcing ring不锈钢stainless steel不圆度out-of-roundness材料materials材料证明书Certification of material超声检验Ultrasonic Examination衬里Linings成型Forming成型封头Formed heads尺寸Dimensions翅片管finned tubes冲击试验impact test储罐storage tank传热面积heat transfer surface磁粉检验Magnetic Particle Examination次要应力secondary stress粗糙度roughness淬火Quenching带折边的锥形toriconical弹簧springs弹簧垫圈spring washer弹性模量modulus of Elasticity挡板baffle plate低合金钢容器low alloy steel vessels低温容器Low-temperature vessels地震烈度seismic intensity垫板Backing strip垫片gasket垫圈washer碟形封头Dished heads顶丝jbckscrew定距管spacer定位销pin dowel定义Definitions毒性toxicity镀锌容器Galvanized vessels锻件Forgings对焊法兰welding neck flange耳座lug阀门valves法兰flanges法兰接触面Flange contact facings防冲板impingement baffle防腐蚀衬里Corrosion resistant linings防火fire protection防涡流挡板vortex breaker非受压件nonpressure parts非圆形容器Noncircular vessels峰值应力peak stress腐蚀裕量corrosion allowance附加载荷supplementary loading附件attachments复合板Clad plate覆层容器clad vessels盖板Cover plates杆rods or bars过渡段transition in过渡圆角Knuckles焊后热处理after postweld heat treating焊接工艺welding procedure specification 焊接接头welding joints焊接系数welding coefficient厚度thickness滑动的sliding环向应力hoop stress回火tempering基本地震加速度basic seismic acceleration基本分压basic wind pressure计算厚度calculated thickness技术条件form of Specification加强圈stiffening rings夹套容器Jacketed vessels检查孔Inspection openings检验inspection角焊Fillet welds接地板earth lug截止Stop valves介质特性fluid property金属温度Metal temperature筋板rib plate径向应力radial stress静(压力)水头static head局部areas局部local局部焊后热处理Local postweld heat treatment 矩形设计rectangular design卡箍clamp开孔补强reinforcement for openings快开盖Quick-actuating closures拉杆tie rod裂缝Cracking流体(介质)fluid螺孔holes for screw螺母nut螺塞plug螺栓bolt螺纹threaded螺柱studs名义厚度nominal thickness铭牌Name plates内部构件Internal structures内衬筒internal shell盘管coil tube配件fittings膨胀节expansion joint平封头Flat heads评定Qualification气孔Porosity气压试验Pneumatic test钎焊brazing强度strength of球形封头spherically dished曲率curvature屈服yielding全容积total volume缺陷defects群座skirt support热处理thermal treatment热处理heat treatmen热应力thermal stress人孔manholes韧性ductility容积volume容器vessel容器净重empty weight容器类别vessel classification塞焊Plug welds设计压力design pressure射线超声检验Radiographic Examination渗透检验Penetrant Examination石墨graphite试样Test coupons适用范围Scope手孔(ha)ndholes水压试验hydrostatic test/hydraulic test/hydrotest 碳钢carbon steel搪玻璃容器enameled vessels梯子、平台ladders, platforms填充金属filler metal筒体shell凸面convex凸缘socket椭圆封头Ellipsoidal heads外压容器vessels subjected to external pressure 未注尺寸公差tolerance grade n0t noted无支撑unstayed系数fact0r现场安装Fie1d assemb1y校核checking 0f泄放(Disc)harge泄压装置Pressure relieving (dev)ices性能properties许用工作压力al1owable working pressure许用应力al1owable stress易然的flammable应力腐蚀stress corrosion应力集中stress concentration预热Preheating圆度roundness圆角和倒角corners+fillets载荷Loadingse(xpa)nded c0nnections折流板baffle plate蒸发器(Evap)orators直边长度length 0f skirt直径Diameter制造fabrication制造厂fabricator制造方法methods 0f fabrication制造工艺fabrication technology周长Girth主应力primary stress柱状壳体Cylindrical shells铸铁容器cast iron vessels转角半径knuckle radius装配assembling锥度tapered锥壳conical shell锥形封头Conical heads资格qualification纵向接头Longitudinal joints组对fitting up无损检测专业词汇a cluster of flaws 密集区缺陷A.C magnetic saturation 交流磁饱和ablution 清洗Absorbed dose rate 吸收剂量率Absorbed dose 吸收剂量Acceptanc limits 验收范围Acceptance level 验收水平验收标准acceptance specification 验收规范Acceptance standard 验收标准Accessories 附件配件辅助设备辅助器材Accumulation test 累积检测Accuracy 精确度准确度acetone 丙酮Acoustic emission (AE) 声发射Acoustic emission count 声发射计数Acoustic emission transducer 声发射换能器Acoustic holography 声全息术Acoustic impedance matching 声阻抗匹配Acoustic impedance method 声阻法Acoustic impedance 声阻抗Acoustic wave 声波Acoustical lens 声透镜Acoustic-ultrasonic 声-超声(AU)across 交叉横过Activation 活化Activity 活度additional stress 附加应力address: 地址:?Adequate shielding 适当防护、适当屏蔽AE 声发射air header 集气管"air set 空气中凝固, 常温自硬自然硬化" air supply 气源aisle 过道走廊alarm condition 报警状态alarm level 报警电平Alignment 对准定位调整校直alkaline battery 碱性电池allowable variation 允许偏差容许变化alternating current 交流电aluminum powder 铝粉amount 数量Ampere turns 安匝数amplifier panel 放大器面板Amplitude 振幅、幅度analyzer 分析器anchor bolt 锚定螺栓地脚螺栓Angle beam method 斜射法、角波束法Angle beam probe 斜探头、角探头angle fitting 弯头angle iron 角钢角铁Angle of incidence 入射角Angle of reflection 反射角Angle of spread 扩散角Angle of squint 偏向角、偏斜角Angle probe 斜探头、角探头angle square 角尺angle steel 角钢Angstrom unit 埃(长度单位) appearance 外观application drawing 操作图应用图arc cutting 电弧切割arc gouging 电弧刨削arc starting 起弧arc welding 电弧焊Area amplitude response curve 面积振幅响应曲线Area of interest 评定区、关注区域argon arc welding 氩弧焊Arliflcial disconlinuity 人工不连续性、人工缺陷arrangement diagram 布置图arrival time interval(Δtij)到达时间差(Δtij) Artifact 人为缺陷Artificial defect 人工缺陷A-scan A型扫描A-scope A型显示assembly 装配At present 目前Attenuation coefficient 衰减系数Attenuator 衰减器Audible leak indicator 音响泄漏指示器automatic temperature recorder 温度自动记录器Automatic testing 自动检测Autoradiography 自动射线照相术axiality 同轴度轴对称性axonometric drawing 轴测图back-feed 反馈background target 目标本底background 背景本底backwall echo 底波底面回波baiting valve 放料阀band plate 带板banjo fixing 对接接头Barium concrete 钡混凝土Barn 靶Base fog 片基灰雾base material 基底材料basic sensitivity 基准灵敏度Bath 槽液、浴池、槽Bayard-Alpert ionization gage B-A型电离计Beam angle 波束角、束张角Beam axis 声束轴线Beam path location 声程定位、声束路径位置Beam path 声程、声束路径Beam ratio 光束比Beam spread 声束扩散Beam 声束、光束bellow type 波纹管式bend 弯管弯头弯曲bending deformation 挠曲变形弯曲变形Bending 挠曲弯曲Betatron 电子感应加速器beveled edges 坡口beveling 磨斜棱磨斜边成斜角Bid 投标出价Bimetallic strip gage 双金属片计Bipolar field 双极磁场bisectrix 等分线Black and White Transmission Densitometer 黑白透射密度计Black light filter 黑光滤波器、黑光过滤片Black light 黑光,紫外光Blackbody equivalent temperature 黑体等效温度Blackbody 黑体Bleakney mass spectrometer 波利克尼质谱仪Bleedout 渗出、漏出blind plate 隔离盲板盲板blind 挡板窗帘blinding plate 盲板block up 封堵垫高blowhole 喷水孔通风孔通气孔(气)孔铸孔砂[气]眼气泡bolt 螺栓螺钉bolton 螺栓紧固bonding wire 接合线焊线boost pressure 升压both sides welding 双面焊接Bottom echo 底波底面回波bottom plate 底板Bottom surface 底面Boundary echo 边界回波、界面回波branch connection 分支接续分支连接Brand name 商标名称品牌breaking of contact 断接卡Bremsstrahlung 轫致辐射bridge 桥Broad-beam 宽射束宽(声、光)束Brush application 刷涂B-scan B型扫描B扫描B-scan presentation B型扫描显示B-scope B型显示buckle 满扣扣住buckling deformation 翘曲变形buried depth 埋深burn through 烧蚀烧穿bus duct 母线槽butt joint 对接butt jointing 对接接头butt weld 对接焊缝butt welding 对接焊cable armor 电缆铠装cable channel 电缆槽电缆管道cable fitting电缆配件cable gland 电缆衬垫cable laying 电缆敷设cable routing电缆路由选择Cable sheath 电缆包皮层cable testing bridge 电缆测试电桥cable tray 电缆盘cable trunk 电缆管道电缆主干线calculation sheet 计算书Calibrated Density Reference Scale 标准密度校验片Calibration instrument 校准仪器calorimeter 热量计Capillary action 毛细管作用Capping ends 顶盖末端carbon steel tube 碳钢管carbon steel 碳钢Carrier fluid 载液Carry over of penetrate 渗透剂转入cascade connection 串联连接Cassette 暗盒Cathode 阴极cathodic protection system 阴极保护系统caulking metal 填隙合金[金属](材料)CCD Camera 电荷耦合摄像机cement lined piping 水泥衬里管线center bearing bracket 中心支架center line 中心线center plate 中心板拨盘Central conductor method 中心导体法Central conductor 中心导体中线(三相四线制)centralized 集中的centripetal canting pull rope 向心斜拉索certification of fitness 质量合格证书channel bases沟渠基底channel steel expansion ring 槽钢胀圈Characteristic curve of film 胶片特性曲线Characteristic curve 特性曲线Characteristic radiation 特征辐射标识辐射Charge Coupled Device 电荷耦合器件(简称CCD)"check against 检查, 核对"check valve 止回阀Chemical fog 化学灰雾chipping 修琢chronometer精密计时表Ci 居里Cine-radiography 射线(活动)电影摄影术连续射线照相Circuit breaker断路开关circular array 圆形阵列Circumferential coils 圆环线圈Circumferential field 周向磁场环形磁场circumferential joint 周圈接缝Circumferential magnetization method 周向磁化法circumferential weld 环焊缝civil engineer 土木工程师civil works 土建工程建筑工程clamp 夹钳clamping fixture 胎具夹具Clean 清理Clean-up 清除Clearing time 定透时间coaxial cable 同轴电缆cockle stairs 螺旋梯Coercive force 矫顽力Coherence length 相干长度(谐波列长度)Coherence 相干性Coil method 线圈法Coil reference 线圈参考(参照线圈)Coil size 线圈尺寸Coil spacing 线圈间距Coil technique 线圈技术线圈法Coil test 线圈试验Coincidence discrimination 符合性鉴别一致性鉴别cold lap 冷隔Cold-cathode ionization gage 冷阴极电离计collar extension 环口Collimation 准直Collimator 准直器collision 碰撞冲突color identification 彩色识别Combined colour contrast and fluorescent penetrant 着色荧光渗透剂commencement 开始company 公司comply with 遵守component part 构件(组合)零件部件comprehensive analysis and judgement 综合分析判断Compressed air drying 压缩空气干燥compression joint 压接压力接合compression pump 压缩机压气机[泵]Compressional wave 压缩波Compton scatter 康普顿散射Computed Radiography(CR)计算机辅助射线成像技术condensation 冷凝conducting wire 导线conductive paste 导电膏conduit box [电]导管分线匣conduit entry 导管引入装置conduit outlet 电线引出口connector 接线器连接器Console 控制台construction work 施工工程consumable insert (焊接)自耗嵌块consumer 用户Contact pads 接触垫contactor 触头接触器触点开关content gauge 液位计Continuous emission 连续发射Continuous linear array 连续线性阵列Continuous method 连续法Continuous spectrum 连续谱Continuous wave 连续波Continuously Welded (CW) 连续焊Contrast agent 对比剂造影剂Contrast aid 反差增强剂Contrast sensitivity 对比灵敏度Contrast stretch 对比度扩展Contrast 对比度衬度control cable控制电缆操纵索control console 控制台Control echo 控制回波control unit 控制单元control valve actuator 阀控传动机构control valve控制阀control wiring 控制线路control 控制控制器convenience receptacle 电源插座convexity 凸面Copper intensifying screens 铜增感屏core rod 芯棒corresponding 相应的cotton fibre 棉质纤维Couplant 耦合剂Coupling losses 耦合损失Coupling medium 耦合介质Coupling 耦合CR(Computed Radiography)计算机辅助射线成像技术Cracking 破裂裂纹裂化裂解crate 板条箱柳条箱crater crack (焊接)弧坑裂纹Creeping wave 爬波蠕变波Critical angle 临界角Cross section 横截面Cross talk 串音Cross-drilled hole 横孔crossed yoke 交叉磁轭Crystal 晶片晶体C-scan C型扫描C扫描C-scope C型显示C-shape detector C型探测器(X射线实时成像)"cubicle 室,箱"Curie point 居里点Curie temperature 居里温度Curie(Ci) 居里current attenuation 电流衰减Current flow method 通电法电流法Current induction method 电流感应法Current magnetization method 电流磁化法cushion 垫层衬垫Cut-off level 截止电平cutting opening 切孔切开Cutting 切割CW (Continuously Welded) 连续焊Dark room packing 暗室包装(在暗室条件下将X射线胶片装入暗盒)data logger 数据记录器datum mark 基准点Dead zone 盲区死区Decay curve 衰变曲线Decibel(dB) 分贝Defect detection sensitivity 缺陷探测灵敏度defect evaluation zone 缺陷评定区Defect resolution 缺陷分辨力Defect 缺陷Definition 清晰度定义delivery 发货Demagnetization factor 退磁因子退磁系数Demagnetization 退磁Demagnetizer 退磁装置退磁器Densitometer 黑度计密度计Density comparison strip 黑度比较片密度比较条Density Strip 黑度比较片密度比较条Density 黑度(底片)密度depth scan 深度扫描description 说明描述design pressure 设计压力Detecting medium 检验介质Detergent remover 洗净液去垢剂Developer aqueous 水性显像剂Developer dry 干式显象剂Developer liquid film 液膜显象剂Developer nonaqueous(suspend)非水(悬浮)显象剂Developer station 显像工位显影台Developer 显像剂显影剂Developing time 显像时间显影时间Development 显影differential discriminator (电子)差动式鉴频器Diffraction mottle 衍射斑点衍射斑纹Diffuse indications 扩散指示Diffusion 扩散漫射digital detector 数字探测器(X射线实时成像)Digital display 数字显示数显Digital image acquisition system 数字图像采集系统Digital Radiography(DR)数字射线成像技术Digital Thermometer 数字温度计(用于测定胶片处理液的温度)Digital timer for darkroom 暗室用计时器(在暗室中可调及报警)Dilatational wave 膨胀波疏密波dimensional inspection 尺寸检验Dip and drain station 浸渍和流滴工位浸渍与滴落台Direct contact magnetization 直接接触磁化Direct contact method 直接接触法Direct exposure imaging 直接曝光成像directional beam 定向辐射(指定向辐射的工业X射线机)Directivity 指向性disassembly and assembly 拆装Discontinuity 不连续性Distance marker 距离标志Distance-gain-size DGS曲线(距离-增益-尺寸曲线)(DGS德文为A VG)"distribution board 配电盘, 配电屏"Dose equivalent 剂量当量Dose rate meter 剂量率计dose 剂量Dosemeter 剂量计dosimeter 剂量计Double crystal probe 双晶探头Double probe technique 双探头法Double transceiver technique 双发双收法Double traverse technique 双光路技术doubleskin 重皮down lead 引下线DR(Digital Radiography)数字射线成像技术Dragout 废酸洗液Drain time 滴落时间排液时间drain 排水管排水沟排水道排水draught 气流Drift 漂移Dry developer 干式显像剂Dry developing cabinet 干式显像柜Dry method 干法Dry powder 干粉Dry technique 干法Drying oven 干燥箱干燥炉Drying station 干燥工位干燥台Drying time 干燥时间drying 烘干D-scan D型扫描D-scope D型显示dual element transducers 双晶探头双晶片换能器Dual search unit 双探头双探测装置双探测器Dual-focus tube 双焦点(X射线)管due date 到期日预定日期Duplex wire type Image Quality Indicator 双线型像质指示器双线像质计Duplex-wire image quality indicator 双线像质指示器双线像质计duplicate part 备件Duration 持续时间Dwell time 停留时间dye penetrant examination 着色渗透检验Dye penetrant 着色渗透剂Dynamic leak test 动态泄漏检测Dynamic leakage measurement 动态泄漏测量Dynamic radiography 动态射线照相法Dynamic range 动态范围earth resistance 接地电阻earth wire 接地线地线earthing device 接地装置earthing pole 接地极Echo frequency 回波频率Echo height 回波高度Echo indication 回波指示Echo transmittance of sound pressure 声压往复透过率Echo width 回波宽度Echo 回波echodynamic patterns 回波动态波型eddy current coil 涡流检测线圈Eddy current flaw detector 涡流探伤仪eddy current probe 涡流检测探头Eddy current testing 涡流检测Eddy current 涡流涡电流Edge echo 棱边回波Edge effect 边缘效应Edge 边缘棱边Effective depth penetration (EDP)有效穿透深度有效透入深度Effective focus size 有效焦点尺寸Effective magnetic permeability 有效磁导率Effective permeability 有效磁导率有效渗透率相对渗透率Effective reflection surface of flaw 缺陷有效反射面Effective resistance 有效电阻Elastic medium 弹性介质elbow 弯管接头管肘Electric displacement 电位移electric force compounded grease 电力复合脂electric heat tracing 电伴随加热electric machine 电机electric pressure 电压electrical appliance 电器Electrical center 电中心electrical material电气材料"electrical panel 配电板,配电盘"electrified 带电Electrode 电极电焊条Electrolytic Sliver recovery unit 电解银回收装置(从定影液中回收银)Electromagnet 电磁铁Electro-magnetic acoustic transducer 电磁声换能器Electromagnetic induction 电磁感应Electromagnetic radiation 电磁辐射Electromagnetic testing 电磁检测Electro-mechanical coupling factor 机电耦合系数electron linear accelerator 电子直线加速器Electron radiography 电子辐射照相术Electron volt 电子伏恃Electronic linear scans (E-scans) 电子线性扫描Electronic noise 电子噪声Electronic scanning (E-scans) 电子扫描(E-扫描)Electrostatic spraying 静电喷涂E-mail: 电子邮件:? 电子邮箱:embedded part 预埋件嵌入[埋置]部分emission count (声)发射计数Emulsification time 乳化时间Emulsification 乳化Emulsifier 乳化剂Encircling coils 环形线圈End effect 端部效应端点效应"end socket 端头, (钢索的)封头"Energizing cycle 激励周期enfoldment 折迭envelope 包络包迹environment visible light 环境可见光Equalizing filter 均衡滤波器平衡滤波器equipment 器材设备Equivalent I.Q.I. Sensitivity 当量象质指示器灵敏度Equivalent method 当量法Equivalent nitrogen pressure 等效氮压当量氮气压力Equivalent penetrameter sensifivty 当量透度计灵敏度Equivalent 当量Erasabl optical medium 可消光介质erection 架设Etching 浸蚀腐蚀侵蚀蚀刻Evaluation threshold 评价阈值评定阈Evaluation 评定Event count rate 事件计数率Event count 事件计数Examination area 检验范围Examination region 检验区域examination 试验检验考试examine and approve 审批exfoliation 剥落脱落Exhaust pressure/discharge pressure 排气压力/排放压力出口压力输送压力Exhaust tubulation 排气管道Expanded time-base sweep 时基线展宽时基扫描扩展"expansion bolt 伸缩栓, 扩开螺栓"expansion joint 伸缩接头Exposure and darkroom accessories 曝光与暗室附件Exposure chart 曝光曲线Exposure fog 曝光灰雾Exposure table 曝光表Exposure 曝光Exposure 曝光Extended source 扩展源延长源external diameter of the pipe 管子直径external diameter 外径extra fee 额外费用?eye survey 目测fabrication drawing 制造图纸制作图fabrication tolerance 制造容差fabrication 加工制造Facility scattered neutrons 易散射中子fall off 脱落False indication 假指示虚假指示伪显示虚假显示Family 族系列Far field 远场Fast neutron detectors 快中子探测器Fast/slow timing Oscilloscope 带快慢调速的示波器Fax: 传真:?FBH 平底孔(缩写)feeder 馈电线Feed-through coil 穿过式线圈ferritic 铁素体的field fabricated 工地制造的现场装配的field installation 现场安装field instrument 携带式仪表Field 场(磁场、声场)filament 灯丝Fill factor 填充系数filler metal 焊料焊丝filler rod 焊条fillet weld 角焊填角焊filling water test 充水试验Film badge 胶片剂量计Film base 片基film cassette 胶片暗盒Film contrast 胶片对比度film density 胶片密度,底片黑度film evaluation scope 底片评定范围Film gamma 胶片γ值(胶片灰度系数)Film Hangers (Channel Type)槽式洗片架(手工洗片的一种洗片架类型)Film Hangers (Clip Type)夹式洗片架(手工洗片的一种洗片架类型)Film Hangers for manual processing 洗片架(手工洗片的胶片挂架)Film marking equipment 胶片标记器材Film processing chemicals 胶片处理药品洗片药品Film processing 胶片冲洗加工底片处理Film speed 胶片速度(胶片感光速度胶片感光度)Film unsharpness 胶片不清晰度film viewer 底片评片灯观片灯底片观察用光源Film viewing equipment 评片装置(观片灯)Film viewing screen 胶片观察屏Filter 滤波器滤光板过滤器Final test 最终检验fire barriers 防火间隔防火屏障Fixing 固定flange connection 凸缘联接flange gasket 法兰垫片flange joint 凸缘接头flange sealing surface 法兰密封面flange 边缘轮缘凸缘法兰flash plate 闪熔镀层flash point 闪点Flat-bottomed hole equivalent 平底孔当量Flat-bottomed hole 平底孔Flaw characterization 伤特性缺陷特征Flaw echo 缺陷回波flaw height(thru-wall dimension) 缺陷自身高度(缺陷在壁厚方向的尺寸)Flaw 伤缺陷瑕疵裂纹flexible conduit 软管Flexural wave 弯曲波flicker-free images 无闪烁图像Floating threshold 浮动阀值floor slab 楼板flow instrument 流量计flow sheet 流程图Fluorescence 荧光Fluorescent dry deposit penetrant 干沉积荧光渗透剂Fluorescent examination method 荧光检验法Fluorescent light 荧光荧光灯Fluorescent magnetic particle inspection 荧光磁粉检验Fluorescent magnetic powder 荧光磁粉Fluorescent penetrant 荧光渗透剂Fluorescent screen 荧光屏fluorography 荧光照相术Fluorometallic intensifying screen 荧光金属增感屏Fluoroscopy 荧光检查法flushing 冲洗填缝flux cored arc welding 带焊剂焊丝电弧焊Flux leakage field 磁通泄漏场漏磁场Flux lines 磁通线flux 焊剂,熔化Focal distance 焦距Focal spot 焦点Focus electron 电子焦点聚焦电子束Focus length 焦点长度聚焦长度Focus size 焦点尺寸聚焦尺寸Focus width 焦点宽度聚焦宽度Focused beam 聚焦束(声束、光束、电子束)Focusing probe 聚焦探头Focus-to-film distance(f.f.d) 焦点-胶片距离(焦距)Fog density 灰雾密度Fog 灰雾Footcandle 英尺烛光formula 公式foundation ring 底圈foundation settlement 基础沉降Freguency 频率Frequency constant 频率常数Fringe 干涉带干扰带条纹边缘Front distance of flaw 缺陷前沿距离Front distance 前沿距离full-scale value 满刻度值Full-wave direct current(FWDC)全波直流Fundamental frequency 基频Furring 毛状迹痕毛皮fusion arc welded 熔弧焊fusion 熔融熔合gage glass 液位玻璃管Gage pressure 表压表压力Gain 增益gamma camera γ射线照相机(γ射线探伤机)gamma equipment γ射线设备Gamma radiography γ射线照相术Gamma ray source container γ射线源容器Gamma ray source γ射线源Gamma rays γ射线gamma source γ射线源γ源Gamma-ray radiographic equipment γ射线照相装置Gamme ray unit γ射线机γ射线装置Gap scanning 间隙扫查间隙扫描gas cutting 气割gas shielded arc welding 气体保护焊Gas 气体Gate 闸门Gating technique 选通技术脉冲选通技术gauge board 仪表板样板模板规准尺Gauss 高斯Geiger-Muller counter 盖革.弥勒计数器generating of arc 引弧Geometric unsharpness 几何不清晰度girth weld 环形焊缝gland bolt 压盖螺栓Goggles 护目镜gouging 刨削槽Gray(Gy) 戈瑞Grazing angle 掠射角切线角入射余角Grazing incidence 掠入射切线入射grind off 磨掉grinder 磨床磨工grinding wheel 砂轮片砂轮groove face (焊缝)坡口面grounding conductor 接地导体Group velocity 群速度grouting 灌(水泥)浆"guide wire 尺度[定距]索,准绳""gusset plate角撑板, 加固板"Half life 半衰期Half-value layer(HVL) 半值层半价层Half-value method 半波高度法半值法Half-wave current (HW)半波电流Halogen leak detector 卤素检漏仪Halogen 卤素hanger 吊架挂架洗片架Hard hat 安全帽Hard X-rays 硬X射线Hard-faced probe 硬膜探头硬面探头Harmonic analysis 谐波分析Harmonic distortion 谐波畸变Harmonics 谐频谐波head face 端面Head wave 头波heat absorbing glass 吸热玻璃heat affected area 热影响区heat exchangers 热交换器heat transfer 热传输Heating boxes 加热箱Helium bombing 氦轰击法Helium drift 氦漂移Helium leak detector 氦检漏仪Hermetically tight seal 气密密封密封密封装置High energy X-rays 高能X射线high frequency generator 高频发电机high frequency 高频High vacuum 高真空highly sophisticated image processing 高度完善的图像处理hoisting upright column 吊装立柱Holography 全息照相术(光全息、声全息)horizontal line 水平线hydrophilic emulsifier 亲水乳化剂Hydrophilic emulsifier 亲水性乳化剂Hydrophilic remover 亲水性洗净剂亲水性去除剂hydrostatic pressure test静水压试验Hydrostatic test 水压试验静水压试验Hysteresis 磁滞滞后I.F. (intermediate frequency) 中频(30~3000千周/秒)IACS =International Annealed Copper Standard 国际退火(软)铜标准ice chest 冰箱ice machine 制冰机,冷冻机ice 冰iconoscope 光电摄像管ID (①inside ②inside dimensions) ①内径②内部尺寸ID coil ID线圈=Inside Diameter 内径线圈idea 概念,意见,思想ideal 理想的,想象的identical 同一的,恒定的,相同的identification mark 识别标志identification 鉴定,辨别,验明identifier 鉴别器identify pulse 识别脉冲idiopathetic 自发的,特发的IEM (ion exchange membrane) 离子交换膜illuminance 照(明)度illuminant 照明的,发光的illuminating lamp 照明灯泡illuminating loupe 放大照明镜illuminating mirror 照明镜illumination apparatus 照明器illumination plate 照明板illumination 照明的,照射illuminator ①照明器,照明装置②反光镜illuminometer 照度计illustration(abbr. illus.) 图解,例证,具体说明image amplifier 图像放大器,影像增强器image analysis system 图像分析系统Image contrast 图像对比度影像对比image converter 影像转换器Image definition 图像清晰度Image enhancement 图像增强image freeze 影像冻结image intensifier tube 影像增强管图像增强管image intensifier 像亮化器,图像增强器Image magnification 图像放大image monitor 图像监视器image multiplier 影像倍增器image pick-up tube 摄像管image quality indication 像质指示Image Quality Indicator (IQI)像质计像质指示器Image quality indicator sensitivity 像质指示器灵敏度Image quality 图像质量image reproducer 显像管,显像器image store 图像存储器image tube 显像管imager 图像仪,显像仪imagination 想象imagine 想象,推测,设想Imaging line scanner 图像线扫描器图像行扫描器Imaging Plates(IP)成像板immediate payment 立即付款Immersion probe 液浸探头Immersion rinse 浸没清洗浸液清洗immersion system 浸渍装置液浸系统Immersion testing 液浸试验Immersion time 浸没时间浸入时间immersion 浸没,浸渍impact strength 冲击强度impacter 冲击器impedance matching 阻抗匹配Impedance plane diagram 阻抗平面图impedance transducer 阻抗传感器,阻抗换能器Impedance 阻抗impeller ①叶轮,转子②压缩机Imperfection 不完整性缺陷imperial gallon(abbr. ip gal) 英国标准加仑(英制容量单位合4.546升)imperial quart 英制夸脱import ①进口②输入import and export firm 进出口商行import border station 进口国境站名import licence position 进口许可证importation ①输入,传入②进口货impression technic 印模术impression tray 印模盘impression 压迹,印模,版Impulse eddy current testing 脉冲涡流检测impulse generator 脉冲发生器impulse oscilloscope 脉冲示波器impulse recorder 脉冲自动记录器impulse scaler 脉冲计数器impulse timer 脉冲计数器impulse transmitting tube 脉冲发射管impulse 冲动,搏动,脉冲impulser 脉冲发生器,脉冲传感器impurity 不纯,杂质In (①indium ②inch) ①铟②英寸(等于25.4毫米)in parallel 并联in phase 同相的in series 串联in toto 全,整体in vacuo 在真空中inaction 无作用inadequacy 机能不全,闭锁不全Inc. (incorporated) 股份有限公司incandescent lamp 白炽灯inch(abbr.In;in) 英寸incidence ①入射,入射角②发生率incident angle 入射角incident illumination 入射光incident light 入射光incident ray 入射光incidental 偶发的,非主要的inclination 倾斜,斜度inclined tube type manometer 斜管式压力计include 包括,计入inclusion 包含包埋杂质incoming line 进线口incompatible 不相容的,禁忌的incompetence 机能不全,闭锁不全inconvertible 不可逆的incorporation ①并入②公司increase 增加,增大,增长Incremental permeability 增量磁导率indent 订单index ①指数,索引②指针index card 索引卡片index hand 指针index signal 指示信号indexer 指数测定仪,分度器indicate 指示,表明Indicated defect area 缺陷指示面积Indicated defect length 缺陷指示长度indicated light 指示灯indicating bell 指示铃indicating lamp 指示灯Indication 指示indicator ①指示器,显示器②指针③指示剂indicator paper 试纸indicatrix 指示量,指示线,特征曲线indifferent electrode 无关电极indiffusible 不扩散的indirect export 间接出口Indirect exposure 间接曝光indirect import 间接进口Indirect magnetization method 间接磁化法Indirect magnetization 间接磁化Indirect scan 间接扫查indium(abbr.In) 铟individual 个体的,个别的indoor 室内的induce 引起,感应,诱导Induced current method 感应电流法induced electricity 感生电,感应电Induced field 感应磁场感生场induct 感应,引导,引入inductance bridge flowmeter 感应电桥流量计inductance meter 电感测定计inductance 电感,感应系数induction ①引导,前言②感应,电感③吸气induction apparatus 感应器induction coil 感应线圈inductive transducer 感应传感器inductogram X射线照片inductometer 电感计inductor 感应器,感应机inductorium 感应器inductosyn 感应式传感器industrial exhibition 工业展览会industrial radiographic film dryer 工业射线胶片干燥器industrial robot 工业机器人Industrial X-ray films 工业X射线胶片industrial(abbr.indust.) 工业的,产品的industry 工业,产业indutrial X-ray machin 工业X射线机inert 惰性的,无效的inference 推论,推断infinite 无限的,无穷的infinitesimal 无限小的,无穷小的infinity 无穷大,无限,无限距inflame 燃,着火inflammable 可燃的,易燃的inflation 膨胀,充气,打气inflator 充气机inflow 流入,吸入,进气influence 影响,感应influx 流入,注入inform 报告,通告,告诉information generator 信息发送器information storage unit 信息存储器information 情报,资料,消息,数据infra- 下,低于,内,间infranics 红外线电子学infrared ①红外线的②红外线infrared detector 红外线探测器infrared drier 红外线干燥器infrared equipment 红外线设备infrared furnace 红外线炉infrared gas analyzer 红外线气体分析仪infrared heater 红外线加热器Infrared imaging system 红外成象系统infrared lamp 红外线灯infrared laser 红外激光器infrared light 红外线infrared liner polarizer 红外线直线偏振镜infrared photography 红外摄影术infrared radiation 红外线照射infrared radiator 红外线辐射器infrared rays 红外线Infrared sensing device 红外传感装置infrared spectrophotometer 红外分光光度计infrared thermography 红外热成象红外热谱infrasonic frequency 次声频infrequent 稀有的,不常见的Inherent filtration 固有滤波Inherent fluorescence 固有荧光inherent 生来的,固有的,先天的inheritance 遗传,继承inhibition 抑制,延迟,阻滞inhibitor 抑制剂抑制器inhomogeneous 不纯的,不均匀的in-house 自身的,内部的initial charge 起始电荷initial data 原始数据Initial permeability 起始磁导率初始磁导率Initial pulse width 始波宽度始脉冲宽度Initial pulse 始脉冲initial 开始的,最初的initiator ①创造人②引发剂injection syringe 注射器injection 注射,喷射injector pump 注射泵injector 注射器,喷射器injury 伤,损伤,损害ink jet printer 墨水喷射印刷机,喷水式打印机ink jet recorder 墨水喷射记录器ink writer 印字机ink writing oscillograph 记录示波仪ink 墨水,油墨inlay 嵌体,嵌入inlead 引入线inlet port 入口inlet 入口,入线,输入inner 内部的innocuous 无害的,良性的innovation 革新,改革innumerable 无数的,数不清的ino- 纤维inoperative 无效的,不工作的inorganic chemistry 无机化学inorganic 无机的inosculation 吻合,联合in-out box 输入-输出盒input buffer 输入缓冲器input coupler 输入耦合器input device 输入装置input filter 输入滤波器input impedance 输入阻抗input output adapter 输入-输出衔接器input tranformer 输入变压器input 输入,输入电路inscription 标题,注册insert ①插入物,垫圈②插入,植入insert tube 嵌入式X射线管Inserted coil 插入式线圈inserter 插入器,插入物insertion 插入inset 插页,插图,插入Inside coil 内部线圈inside 内部,内侧,在……里面Inside-out testing 外泄检测泄出检测insignificant 无意义的,轻微的insolation 曝晒,日照insoluble 不溶解的inspection certificate 检验证明书inspection fee 检验费Inspection frequency 检测频率inspection machine 检验设备Inspection medium 检查介质检验介质inspection standard 检验标准Inspection 检查检验inspection 验收,检查,商检inspector ①测定器②检验员inspectoscope 检查镜inspissator 浓缩器,蒸浓器instability 不稳定性install 安装,装置installation ①安装②装置,设备installation fundamental circle 安装基准圆。
压力容器工程规定Engineering Specification for Pressure VesselsC O N T E N T S目录1. GENERAL 概述1.1 Scope 范围1.2 Codes, Standards and Regulations 规范、标准及规章1.3 Units 单位1.4 Purchaser’s Drawing and Documents 买方图纸及文件1.5 Vendor’s Drawings and Documents 卖方图纸及文件1.6 Site Condition 现场条件2. DESIGN 设计2.1 Design Pressure 设计压力2.2 Design Temperature 设计温度2.3 Corrosion Allowances 腐蚀余度2.4 Materials 材料2.5 Loading Conditions and Strength Calculation 负荷条件及强度计算2.6 Tolerances 允许偏差3. DETAIL DESIGN 详细设计3.1 Shells and Heads 容器壁及顶3.2 Internals 内件3.3 Nozzles and Manholes 设备口及人孔3.4 Bolts, Nuts and Gaskets 螺栓、螺母及垫片3.5 Supports 支架3.6 Miscellaneous 其它4. FABRICATION 制作4.1 Plate Layout 排板4.2 Forming 成型4.3 Welding 焊接4.4 Heat Treatment 热处理5. INSPECTION AND TESTS 检测及试验6. NAMEPLATE, PAINTING AND MARKING 铭牌、刷漆及标识6.1 Nameplate 铭牌6.2 Painting 刷漆6.3 Marking 标识7. PACKING AND SHIPPING 包装和运输7.1 General 概述7.2 Packing and Preparation for Shipping 包装与运输准备7.3 Shipping 运输Appendix A: Tolerance for Pressure Vessels 附A:压力容器允许偏差1. GENERAL1.1 Scope1.1.1 This specification together with the engineering drawings covers the requirements for the materials, design, fabrication, inspection, testing and supply of pressure vessels used for CIBA SBR 3rd line project inZhenjiang, the People’s Republic of China.本规范及工程图纸包含对中国镇江CIBA SBR第3条线工程中使用的压力容器的材料、设计、制作、检测、试验及供应的要求。
腹部影像=文章编号>1007-9424(2010)06-0622-05成人腹股沟区CT影像解剖赵爽*,黄子星*,刘荣波*,周莹*=摘要>目的探讨多层螺旋CT(mult i2detector row spir al CT,MDCT)及多平面重建(multi2planer recon2 str uction,MP R)技术对显示正常成人腹股沟区解剖结构的价值。
方法回顾性收集2009年7~12月期间于我院行腹股沟区CT薄层扫描检查腹股沟区结构正常的成年受检者50例(男30例,女20例),并使用MPR获得冠状位及矢状位图像,观察轴位、冠状位及矢状位影像对腹股沟区主要解剖结构的显示。
结果各平面均可显示所有受检者的双侧腹壁下动脉(100/100,100%)、双侧精索(60/60,100%)及双侧子宫圆韧带(40/40,100%)。
冠状位图像上可显示所有受检者双侧的/影像学股三角0(100/100,100%)。
双侧腹股沟韧带在所有受检者(100/100,100%)的冠状位图像及34例受检者(68/100,68%)的矢状位图像上显示,但轴位图像上仅3例男性受检者(6/100,6%)可显示。
双侧腹股沟管及腹股沟深环可在所有受检者(100/100,100%)的冠状位及46例受检者(92/100,92%)的矢状位图像上显示。
冠状位腹股沟管宽度:男性左侧(0.97?0.35)cm,右侧(0.89?0.23)cm;女性左侧(0.62?0.11)cm,右侧(0.71?0.11)cm,双侧间差异无统计学意义(男P=0.059,女P=0.067),但性别间差异有统计学意义(左侧P=0.007,右侧P=0.009)。
腹股沟深环横径:男性左侧(1.32?0.31)cm,右侧(1.31?0.36)cm;女性左侧(1.07?0.35)cm,右侧(1.07?0.30)cm,双侧间差异无统计学意义(男P=0.344,女P=0.638),性别间差异有统计学意义(左侧P=0.001,右侧P=0.002)。
a r X i v :a s t r o -p h /0607011v 1 3 J u l 2006Coronal loop widths and pressure scale heightsG.J.D.PetrieNational Solar Observatory,Tucson,AZ 85719ABSTRACTThe scale heights of stratification and the widths of steady solar coronal loops exhibit properties unexplained by standard theory:observed scale heights are often much greater than static theory predicts,while the nearly-constant widths of loop emission signatures defy theoretical expectations for large flux tubes in stratified media.In this work we relate the cross-sectional profile of a coronal flux tube to its density scale height in steady-state plasma flow regimes.Steady flows may shorten or lengthen the scale height according to how the tube cross-sectional area varies with arclength.In a near-potential corona the flux tubes are expected to be sufficiently expansive in many active regions for scale heights to be increased by steady flows.On the other hand,cases where scale lengths are actually increased to observed sizes form a small part of the solution space,close to regimes where density profiles reverse.Therefore,although steady flows are the only steady process known to be capable of extending scale heights significantly,they are not expected to be not responsible for the majority of extended active region scale heights.Subject headings:hydrodynamics;methods:analytical;Sun:corona;Sun:mag-netic fields1.IntroductionIn the solar corona,closed plasma loops are believed to trace lines of magnetic force that penetrate the photosphere from below and expand to fill the coronal volume above an active region (Bray et al.1991,Aschwanden 2004).They are curved filamentary struc-tures connecting regions of opposite magnetic polarity.Plasma loops are often observed as isolated brightened flux tubes embedded in a less emissive but more homogeneous field configuration.A broad consensus has developed that coronal loops are nearly isothermal along their arclengths,while temperatures and densities can vary on small scales between neighboring loop structures (Rosner et al.1978,Lenz et al.1999,Aschwanden et al.1999,2000,Aschwanden and Nitta2000,Schmelz et al.2001,Martens et al.2002,Schmelz2002, Winebarger et al.2002).This can be explained by the thermal conductivity being much more efficient along than across the magneticfield in the nearly fully-ionized coronal gas (Spitzer1962).Two physical parameters which continue to cause controversy are the scale height of hydrostatic stratification and the width of the observed loop-shaped emission patterns.Loop emission in active regions is frequently clearly visible at heights several times greater than the hydrostatic scale height associated with the temperature of emission(Aschwanden et al.2001).Furthermore,the widths of these emission signatures remain remarkably constant along their entire lengths.These emission patterns are usually identified with magnetic flux tubes because of the efficientfield-aligned thermal conductivity of the corona,and they therefore defy theoretical expectations thatflux tubes must expand in a stratified magnetic field(Lopez Fuentes et al.2006).In this work we ask how steadyflows can affect scale heights in the expandingflux tubes of the stratified solar corona.The scale heights of steady loops have already been studied using steady magnetohydro-dynamic(MHD)theory by Petrie et al.(2003)and Gontikakis et al.(2005)(henceforth P03 and G05)and via a steady hydrodynamical(HD)simulation by Patsourakos et al.(2004) (henceforth P04).Intriguingly,these two approaches gave opposite conclusions about the influence of steadyflows on scale heights.While P04concluded that plasmaflows reduce the pressure scale height relative to the static case,P03and G05found that the opposite can be true:that steadyflows can push the pressure scale height above that of the static case to typical observed values.In this work we reconcile these results and address the question of what effect steadyflows may have in the corona.2.Flux tube expansion and conservation of magnetic and massfluxThe variation of cross-sectional area along a loop is particularly important to under-standing plasma dynamics along loops.P03,P04and G05recently conducted different studies of how steady plasmaflows along loops may influence the observed fall-offof plasma density,and therefore emission intensity,with increasing height.P04assume that loop cross-sectional areas are constant or nearly constant along loops,invoking observations by Klimchuk(2000)and Watko&Klimchuk(2000).Traditionally HD models have assumed a constant cross-section(Orlando et al.1995a,b;Reale&Peres2000,Winebarger et al.2003). Cargill&Priest(1980,1982)investigated the effects of varyingflux tube cross-sections.Such a constant cross-sectional profile is not to be expected of aflux tube in a stratifiedmagneticfield,where the solenoidal condition on the magneticfield B,∇·B=0,requires thatd(ρvA)=0,ρvA=constant,(2)dswhereρis the plasma density and v thefield-aligned velocity,can be integrated to give the result that the massflux densityρv is also inversely proportional to the cross-sectional area A along theflux tube,i.e.the magneticflux and the massflux are directly proportional along the tube.Therefore,if the gas density falls offwith height,vA must increase with height.If A is(nearly)constant,this implies a velocity magnitude which increases with height as in P04. On the other hand,P03and G05presented examples with velocity magnitudes decreasing with height.For this to happen,the magneticfield strength must fall offwith height more quickly than the density(independently of the cross-section profile).This is a much stronger condition than the magnetic pressure falling offmore quickly than the gas pressure,which applies in the upper corona.If thefield strength does not decrease sufficiently quickly,the velocity will increase with height(see the unscaled examples in Petrie et al.2002).3.Momentum conservation and scale heightsThe conservation of momentum along aflux tube is described byρv dvds−ρg||,(3)where g||=gdz/ds is the component of the gravitational acceleration parallel to the tube, p(s)is the gas pressure,z(s)is the height of the tube above the base of the model as a function of arclength,g=g s R2/[R+z(s)]2,R is the solar radius and g s is the gravitational acceleration on the solar surface.Near a point s=s0on the tube the plasma temperature and gravitational acceleration may be assumed constant.For the static case v≡0,the gas pressure may be approximated near s=s0byp(s)=p1exp −z(s0)results and so the pressure scale height becomes smaller than that of the static case.On the other hand,the expandingflux tubes of P03and G05cause the velocity magnitudes to decrease with height,giving a downward inertial force component along each leg,a smaller pressure gradient and a longer scale height.Whether such a velocity pattern might be typical of coronalflux tubes or not and whether these velocities can routinely influence active-region scale heights in reality are questions taken up in the following sections.The above considerations demonstrate that the scenario is at least plausible.4.Flux tube widths in quiet and active coronalfieldsA clue to whether coronal scale heights might be lengthened in reality is gained by estimating the rates of fall-offwith radius of the simplest possible quiet-sun and active-region coronalfields.Under the simplifying assumption that there are no significant electric currents in the corona,the coronal magneticfield may be represented by B=−∇ψ(r,θ,φ) in spherical coordinates where(Altschuler&Newkirk1969)ψ=R∞n=1n m=0 (R/r)n+1××(g m n cos(mφ)+h m n sin(mφ))P m n(θ)].(5) Here the associated Legendre polynomial P m n(θ)is an n th-order polynomial of sin(θ)and cos(θ)and r=R is the solar surface.(The“source surface”introduced by Altschuler& Newkirk is not relevant to our argument and has been omitted here for simplicity.)The g m n and h m n coefficients refer to the multipole components of the magneticfield,e.g.the g01term is the standard polar dipole and the g11and h11terms are the two orthogonal equatorial dipole components.Higher-order terms refer to the quadrupole,octupole and higher moments.The principal index,n,is the total number of circles of nodes on the sphere for that multipole while the second index m is the number of those nodal circles passing through the pole (Hoeksema1984).Therefore small,intense features in the corona must be represented by high-order multipole terms.For example,a simple quiet-sun polar dipolefield varies on the scale of the solar meridian half-circumference,about2×106km,and is dominated at these scales by the n=1terms of Equation(5)which clearly decrease with radius as1/r3.The low-order terms such as this dipole dominate the magneticfield in quiet regions of the model(Hoeksema1984).On theother hand,the local magneticfield of an active region of characteristic length scale100Mm,about20times smaller is dominated by terms of order n=20and higher.Such an activeregionfield will be weaker at height r=R+50Mm than at r=R by a factor of about1.07222≈4.6,while a hydrostatic plasma at about1MK with scale height50M will fall offover the same range by a factor of e≈2.7.Meanwhile the dipolefield falls offby only1.0723≈1.2.This implies that active regions typically have sufficiently expansiveflux tubes for steadyflows to increase scale heights,while quiet regions do not.Of course many active regionfield structures are far from being well described by po-tential models.What the potential model does capture is the sharp fall-offof intense activeregionfield strengths as theflux tubes expand tofill the coronal volume above.While localcurrent systems may influence the structure of active regions,potential models adequatelydescribeflux tube expansions associated with active regions more often than not(Schrijveret al.2003).5.Isothermal steadyflow in a potential magnetic loopTo determine whether steadyflows may routinely extend scale heights to observed valuesunder the conditions described above,we give a simple analytical model of steady,isothermalplasmaflow through a potential loop-shaped magneticflux tube.We model a loop-shapedmagneticflux tube using a well-known potentialfield solution.We represent B by using amagneticflux function(per unit length in theˆy direction)as well as a potential function(also per unit length)in dimensionless coordinates(x,y,z)B=∇α(x,z)׈y=∇ψ(x,z).(6) ThefieldB=B0[C1cos(x),0,−C1sin(x)]exp(−z),(7) is a potential(current-free)field with potentialψ=C1sin(x)exp(−z)andflux function α(x,z)=C1cos(x)exp(−z).Field lines coincide with level curves ofα(x,y).The equation for thefield line defined byα=α0,forα0constant,is found to bez=log[C1cos(x)]−logα0.(8) It can be seen from Equation(8)that twofield lines defined byα=α1andα=α2,forα1andα2constants,differ from each other only by a vertical translation,and that for any point(x,z1)on thefirstfield line,the corresponding point on the secondfield line(x,z2) can be found from it by moving vertically a distance,z2−z1=logα1v dv Z0−g s dZk B T0/m is the isothermal sound speed,k B is Boltzmann’s constant and m isthe mean particle mass,taken to be half a proton mass in a pure,fully ionized hydrogenplasma.In this equation,the temperature and theflux tube expansion factor are representedby c s and Z0respectively.For T0=106K as in the model presented here,c s≈129km/s. For a106K plasma in a tube with this expansion factor,c2s/Z0>g s so that the velocity ofany subsonicflow decreases with height,as anticipated in Section4,and scale heights aretherefore lengthened.Examples with less expansive tubes and/or cooler plasma such thatc2s/Z0>g s would have a shortened scale length.Afirst integral can be found on eliminating s:Z(v)=v2/2−c2s log(|v|/c s)dz =1v2−c2s.(12)At the critical point v=c s this gradient becomes infinite.A further critical point arises when v=√a density inversion-unlikely to be a steady phenomenon in the solar atmosphere.Since√c s andg s Z0,which≈99km/s for a tube with this expansion factor and a temperature of1MK.The models of P03and G05fall into this category,with adjustments for temperature-this is how they were able to reproduce the scale heights of observations.While velocity profiles ranging from about45-100km/s seem capable of lengthening scale heights considerably,these cases make up a small minority of the solution class,most of which is indistinguishable from the equivalent static class of solutions.The subclass capable of extending scale heights significantly involves velocities larger than those typically observed in steady loops.Therefore,unless there is a reason why many loop plasmas should assume such velocity profiles for long periods of time,steadyflows do not seem to be responsible for the scale heights routinely observed in active regions.6.DiscussionWe have shown that the cross-sectional profile of a coronal magneticflux tube de-termines whether steadyflow through the tube will increase or reduce the scale height of stratification in the tube.If tube cross-sectional areas increase sufficiently with height,the scale height would be enhanced by steadyflows,in agreement with many observations of super-hydrostatic scale heights in active region loops.Wefind that this is likely to occur near active regions where the typical fall-offmagneticfield strength with height is estimatedto be sufficiently great.On the other hand,these scale-height extensions are not expected to be significant in the majority of cases since theflow regimes capable of such extensions are rare and involve velocities larger than those typically observed.Several unresolved questions remain.Observations repeatedly show that loop emission pattern widths vary little with arclength,in which case steadyflows would decrease scale heights.Near-constantflux tube cross-sections are inconsistent withfield strengths decreas-ing with height,as is well known.This leads us to question whether these emission patterns really representflux tubes.One tentative explanation for emission patterns of constant width is that these pat-terns delineate loci of magneticfield diffusions which,locally to very narrow regions,heat successive narrow loop strands and accelerate them from these regions during thefield re-connections(Petrie2006).Dissipations of spontaneous current sheets are expected to occur alongflux tube boundaries(Parker1994),and may well trace out magneticfield trajectories. If diffusion region sizes,accelerations due tofield diffusions and plasma cooling times are uncorrelated with height in the corona,diffusion processes should produce emission patterns of approximately constant width.Various obstacles stand in the way of determining whether these emission patterns really do representflux tubes and,if so,of measuring the typical cross-sectional area variation with length of theseflux tubes.It is very difficult to identify entire isolated loops in a single image.This is partly because length scales across loops are comparable to image pixel sizes, and partly because the observations are taken from a single vantage point.The second restriction will hopefully be relaxed by the forthcoming STEREO mission.There is also the question of the distribution of plasma within a loop:whether loop widths are equally well represented by the emission pattern at all heights.Aflux tube is highly unlikely to have a simple cross-sectional shape in the solar atmosphere,or to maintain a single shape along their entire lengths(Parker1994,Gudiksen et al.2005,Lopez Fuentes et al.2006).The distortion of aflux tube along its length may greatly influence its appearance from certain angles.A combined study of active regions using STEREO and a reliable magnetogram source such as GONG or SOLIS will enable us to test for correlations between sharp fall-offs of coronal magneticfield and extended scale heights.It is hoped that coronal magnetic field measurements(Lin et al.2004,Tomczyk et al.2004)will attain sufficiently high spatial resolution for us to check directly whether loopfield strengths decrease significantly with height.For now we can neither reconcile the nearly-constant width of loop emission patterns nor explain extended scale heights in active regions in general.If active regionflux tubes are as expansive as theoretical considerations predict,we have shown that steadyflows are atleast capable of reproducing the extended heights observed in active regions,but that this only occurs for a small subset of possibleflow regimes close to density inversion.Steadyflows are the only steady-state processes known to be capable of extending scale heights.Either the particularflow regimes capable of this occur often in active regions,or the majority of extended pressure scale heights observed in active regions remain unexplained and there is another process lengthening scale heights that we haven’t yet thought of.The search for such a process remains a challenge for the future and its success would be an important step towards a complete understanding the physics behind the bulk equilibrium of active regions.I thank the referee for constructive comments which led to a substantial improvement of the paper,and Markus Aschwanden for encouragement.This work was conducted while the author was a participant in the National Aeronautics and Space Administration(NASA) Postdoctoral Program at Goddard Space Flight Center,administered by the National Re-search Council(NRC)and Oak Ridge Associated Universities(ORAU),and was based at National Solar Observatory,Tucson.REFERENCESAltschuler,M.D.&Newkirk,G.,Jr.1969,Solar Phys.9,131Aschwanden,M.J.,Physics of the Corona,An Introduction(New York:Springer-Verlag) Aschwanden,M.J.,Newmark,J.S.,Delaboudini`e re,J.P.,Neupert,W.M.,Klimchuk,J.A., Gary,G.A.,Portier-Fozzani,F.&Zucker,A.1999,ApJ,515,842 Aschwanden,M.J.,Nightingale,R.W.,&Alexander D.2000,ApJ,541,1059 Aschwanden,M.J.&Nitta,N.2000,ApJ535L,59Aschwanden,M.J.,Schrijver,C.J.&Alexander,D.2001,ApJ550,1036Bray,R.J.,Cram,L.E.,Durrant,C.J.&Loughhead,R.E.1991,Plasma Loops in the Solar Corona,Cambridge University PressCargill,P.J.&Priest,E.R.1980,Solar Phys.65,251Cargill,P.J.&Priest,E.R.1982,Geophys.Astrophys.Fluid Dyn.20,227Goedbloed,J.P.&Lifschitz,A.1997,Phys.Plasmas4,3544Gontikakis,C.,Petrie,G.J.D.,Dara,H.C.&Tsinganos,K.2005,A&A434,1155Gontikakis,C.,Dara,H.C.,Zachariadis,Th.D.,Alissandrakis,C.E.,Nindos,A.,Vial,J.-C.&Tsiropoula,G.2006,Solar Phys.233,57Gudiksen,B.V.&Nordlund,A.2005,ApJ,618,1031Hoeksema,J.T.1984,PhD Thesis,Stanford UniversityKlimchuk,J.A.2000,Sol.Phys.193,53Lenz,D.D.,DeLuca,E.E.,Golub,L.,Rosner R.,and Bookbinder J.A.,1999,ApJ,517, 155Lin,H.,Kuhn,J.R.&Coulter,R.2004,ApJ613,L177Lopez Fuentes,M.C.,Klimchuk,J.A.&D´e moulin,P.2006,ApJ639,459Martens,P.C.H.,Cirtain,J.W.&Schmels,J.T.2002,ApJ577L,115Orlando,S.,Peres,G.&Serio,S.1995a,A&A294,861Orlando,S.,Peres,G.&Serio,S.1995a,A&A300,549Parker,E.N.1994,Spontaneous Current Sheets in Magnetic Fields(New York:Oxford Univ.Press)Patsourakos,S.,Klimchuk,J.A.&MacNeice,P.J.2004,ApJ603,322Patsourakos,S.&Klimchuk,J.A.2006,ApJ,in pressPetrie,G.J.D.2006,ApJS,in pressPetrie,G.J.D.,Gontikakis,C.,Dara,E.,Tsinganos,K.&Aschwanden,M.J.2003,A&A, 409,1065Petrie,G.J.D.,Vlahakis,N.&Tsinganos,K.2002,A&A,382,1081Rosner,R.,Tucker,W.H.&Vaiana,G.S.,1978,ApJ,220,643Schmelz,J.T.,Scopes,R.T.,Cirtain,J.W.,Winter,H.D.&Allen,J.D.2001,ApJ556,896 Schmelz,J.T.2002,ApJ578,L161Schrijver,C.J.,DeRosa,M.L.,Title,A.M.&Metcalf,T.R.2005,ApJ628,501Serio,S.,Peres,G.,Vaiana,G.S.,Golub,L.&Rosner,R.1981,ApJ243,288Spitzer,L.1962,Physics of Fully Ionized Gases(New York:Interscience)Tomczyk,S.et al.2004,AAS Meeting204,20.02Vlahakis,N.&Tsinganos,K.1998,MNRAS298,777Watko,J.A.&Klimchuk,J.A.2000,Sol.Phys.193,77Winebarger,A.R.,Warren,H.,van Ballegooijen,A.,DeLuca,E.E.&Golub,L.2002,ApJ 567,L89Fig.1.—Flux tube formed by twofield lines(solid lines)of the spatially self-similar potential field described in the text.Theflux tube central axis is represented by the dashed line.In this example theflux tube width increases exponentially by a factor of4between the footpoints at Z=0Mm and the apex at Z=50Mm.Fig. 2.—Solution curves for the velocity (left picture)and density (right picture)of the steady hydrodynamical model.The two critical solutions associated with the isothermal sound speed and the density reversal are represented by dashed lines:contours -1.24and -1.38respectively in the left picture and the lower and upper dashed lines respectively in the right picture.In the right picture,static density profiles are represented by dotted lines.For each solution,the density magnitude can be scaled freely:the solutions plotted equal mass flux ρvA for ease of presentation.Cases where dv/dz become infinite (contours of value ≥−1.24)are unphysical.。