16.3.2二次根式的加减(2)
- 格式:doc
- 大小:165.50 KB
- 文档页数:4
1《16.3二次根式的加减》本课在学习二次根式乘除运算及化简的基础上,本课在学习二次根式乘除运算及化简的基础上,从算术平方根的运算出发,从算术平方根的运算出发,研究二次根式的加减运算.二次根式的运算方法与数的运算方法本质上是一致的.二次根式的运算方法与数的运算方法本质上是一致的.实数的运算律对二次根式的运算仍实数的运算律对二次根式的运算仍然适用.结合二次根式的化简、乘除和加减运算,利用交换律、结合律、分配律及多项式乘法公式进行二次根式的混合运算.进行二次根式的混合运算.1. 1. 探索二次根式加减运算的方法和步骤;探索二次根式加减运算的方法和步骤;2.2. 会进行二次根式的加减运算.会进行二次根式的加减运算.3.3. 通过探究二次根式的加减运算体会数学中的类比思想通过探究二次根式的加减运算体会数学中的类比思想. .4.4. 类比有理数混合运算和整式混合运算,探索二次根式的加、减、乘、除混合运算顺序的步骤和方法方法. .5.5. 能熟练地进行二次根式的加、减、乘、除混合运算能熟练地进行二次根式的加、减、乘、除混合运算. .6.6. 通过学习二次根式的加、减、乘、除混合运算的学习,培养学生的运算能力、推理能力.1.1. 在化简二次根式的基础上,应用分配律进行二次根式的加减运算.在化简二次根式的基础上,应用分配律进行二次根式的加减运算.2.2. 熟练并准确地进行二次根式的加、减、乘、除混合运算熟练并准确地进行二次根式的加、减、乘、除混合运算. .课件课件◆ 教材分析 ◆ 教学目标◆ 教学重难点 ◆◆ 课前准备◆◆ 教学过程第一课时一、复习引入:一、复习引入:问题1:什么叫最简二次根式?你能将18,8,23化为最简二次根式吗?化为最简二次根式吗? 问题2:现有一块长7.5dm,7.5dm,宽宽5dm 的木板的木板,,能否采用如图的方式能否采用如图的方式,,在这块木板上截出两个面积分别是8dm 2和18dm 2的正方形木板的正方形木板? ? 提问提问::①大、小正方形木板的边长分别为18dm 和8dm,dm,木板是木板是否够宽否够宽??②木板是否够长呢②木板是否够长呢??③怎样计算818+的结果呢的结果呢? ?问题3:计算下列各式:(1)a+2a a+2a;;(2)3x-2x 3x-2x;;解:(1)a+2a=(1+2)a=3a a+2a=(1+2)a=3a;;(2)3x-2x=(3-2)x=x 3x-2x=(3-2)x=x;;【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备. .二、新课讲解:1.1.探究二次根式的加法探究二次根式的加法探究二次根式的加法. .问题4:请类比整式的加减,计算下列各式::请类比整式的加减,计算下列各式:(1)323+;(2)52-53.解:(1)333)21(323=+=+;(2)55)23(52-53=-=.【点拨】最简二次根式中,被开方数相同的二次根式的加减,直接把系数相加减,根号和根号内的数不变内的数不变. .问题5:53+能合并吗?为什么?82+呢?呢?解:53+不能合并,因为它们被开方数不相同;不能合并,因为它们被开方数不相同;232)21(22282=+=+=+.【小结】(1)二次根式能够进行合并的条件:①首先将二次根式化成最简二次根式;②观察被开方数是否相同开方数是否相同. .(2)二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并式合并. .练习1:下列各组二次根式中,能够合并的一组二次根式是(:下列各组二次根式中,能够合并的一组二次根式是( )A .xy 与y x 2B .22y x +与22y x - C .mn 与n m + D.ab 2与ba 2 练习练习:2:2:2::(教材P13练习)下列计算是否正确?为什么?练习)下列计算是否正确?为什么?(1)3838-=-;(2)9494+=+;(3)22223=-.解:(1)∵228=和3的被开方数不相同,的被开方数不相同,∴不能合并∴不能合并,,故错误故错误. .(2)∵53294=+=+,1394=+,故9494+¹+,故错误;,故错误;(3)∵22)23(2223=-=-,故正确故正确. .[点拨点拨]]化为最简二次根式后,只有被开方数相同的二次根式才能合并化为最简二次根式后,只有被开方数相同的二次根式才能合并. .2.2.二次根式加法的运用二次根式加法的运用二次根式加法的运用. .问题7:(教材例题)计算:(1)4580-;(2)a a 259+;(3)483316122+-;(4))53()2012(-++.解:(1)553-544580==-; (2)a a a a a 853259=+=+;(3)3102831232-28483316122+=+=+-; (4)533535232)53()2012(+=-++=-++.练习3:(教材P13练习2)计算:(1)4580-;(2)a a 9194+; (3)52080+-;(4))2798(18-+;(5))681()5.024(--+.解:(1)553-544580==-; (2)a a a a a =+=+31329194; (3)535525452080=+-=+-;(4)33210332723)2798(18-=-+=-+;.42636422262)642()2262()681()5.024(5+=+-+=--+=--+)(问题6:前面问题2中,怎样计算818+的结果呢的结果呢??木板长7.5dm,7.5dm,宽宽5dm 5dm,是否够长?,是否够长?,是否够长?解:818+=2223+···化为最简二次根式·化为最简二次根式=2)23(+···乘法分配率·乘法分配率=25≈7.077.07<<7.5故木板够长故木板够长. .练习4:(教材P13练习3)如果两个圆的圆心相同,他们的面积分别是12.56和25.1225.12,求圆环的,求圆环的宽度d (π取3.143.14,结果保留小数点后两位),结果保留小数点后两位),结果保留小数点后两位). .解:∵解:∵S S 圆=πr 2,∴d=r 大圆-r 小圆小圆=2224814.356.1214.312.25-=-=-=-ππ小圆大圆S S ≈0.83 答:圆环的宽度d 为0.83.三、课堂小结:三、课堂小结:1.1. 知识梳理:(1)二次根式合并的前提:化成最简二次根式之后,被开方数相同)二次根式合并的前提:化成最简二次根式之后,被开方数相同. .(2)二次根式加减的实质:合并被开方数相同的最简二次根式)二次根式加减的实质:合并被开方数相同的最简二次根式. .2.2.二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:①化成最简二次根式后,如果被开方数不相同,则不能进行合并;①化成最简二次根式后,如果被开方数不相同,则不能进行合并;②合并被开方数相同的最简二次根式时,②合并被开方数相同的最简二次根式时,只合并根式外的因式,即系数相加减,被开方数和根指数只合并根式外的因式,即系数相加减,被开方数和根指数不变不变. .3.3. 二次根式加减运算的步骤:①去括号;②化简;③判断并合并.二次根式加减运算的步骤:①去括号;②化简;③判断并合并.4.4.二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别运算运算二次根式的乘除法二次根式的乘除法 二次根式的加减法二次根式的加减法 系数系数系数相乘除系数相乘除 系数相加减系数相加减被开方数被开方数 被开方数相乘除被开方数相乘除 被开方数不变被开方数不变化简化简 结果化成最简二次根式结果化成最简二次根式先化成最简二次根式先化成最简二次根式,,再合并被开方数相同的二次根式的二次根式((同类二次根式同类二次根式) )四、随堂测试:四、随堂测试:1.1.下列各式计算正确的是下列各式计算正确的是下列各式计算正确的是 ( () A.532=+ B.13334=- C.363332=´ D.3327=¸ 解析解析:A.:A.:A.不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;B.B.合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;C.C.应为应为18363332=´=´´,故错误;,故错误;D.39327327==¸=¸,故正确,故正确. .故选D.2.2.以下二次根式以下二次根式以下二次根式::①12,②22,③32,④27中, 化简后能合并成一项的是化简后能合并成一项的是化简后能合并成一项的是( ( ( )A.A.①和②①和②①和②B. B.②和③②和③②和③C. C.①和④①和④D.D.③和④③和④③和④解析:①3212=;②222=;③3632=;④3327=. 3.3. 计算:2-23的值是(的值是() A.2 B.3 C.2 D.22 解析:解析:..222)13(2-23=-=.4.4. 一个等腰三角形的两边长分别为2332,, 则三角形的周长为则三角形的周长为则三角形的周长为. . 解析:分两种情况讨论:(1)当32为腰长,23为底边长时,周长为3423+;(2)当23为腰长,为32底边长时,周长为3226+.5.5. 若最简二次根式若最简二次根式14232+a 与16322-a 的被开方数相同的被开方数相同,,则a= a= . 解析:由题意得4a 2+1=6a 2-1-1,解得,解得a=a=±±1.6.6. 计算:(1)233-2332++; (2)101015-40+.第二课时一、复习引入:一、复习引入:1.1.计算:(1)728+;(2)68´;(3)324¸. 解:(1)282622728=+=+;(2)34486868==´=´;(3)228324324==¸=¸.【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备. .2.2. 计算:(1)(2x-y)(2x-y)··zx zx;;(2)(2x 2y+3xy 2)÷xy xy;;(3)(2x+y)(x-3y) (3)(2x+3y)(2x-3y);(2x+3y)(2x-3y);((4)(2x+1)2+(2x-1)2.解:(1)(2x-y)(2x-y)··zx=2x 2z-xyz z-xyz;;(2)(2x 2y+3xy 2)÷xy=2x 2y ÷xy+3xy 2÷xy=2x+2y xy=2x+2y;;(3)(2x+y)(x-3y)=2x 2-6xy+xy-3y 2=2x 2-5xy-3y 2;(4)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x 2-9y 2;(5)(2x+1)2+(2x-1)2=4x 2+4x+1+4x 2-4x+1=8x 2+2.提问:上面的运算用到了哪些法则和公式?提问:上面的运算用到了哪些法则和公式?学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式. .【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算. .二、新课讲解:二、新课讲解:问题1:如果把上面的x ,y ,z 改成二次根式呢?以上的运算法则是否仍然成立?改成二次根式呢?以上的运算法则是否仍然成立?例1.1.(教材(教材P14例题3)计算:(1)6)38(´+;(2)226324¸-)(.解:(1)6)38(´+=6368´+´=1848+=2334+;(2)2263-24¸)( =22632224¸-¸=3232-.【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率. . 练习1:(教材P14练习1)计算:(1))53(2+;(2)5)4080(¸+; 解:(1))53(2+=5232´+´=106+;(2)5)4080(¸+=540580¸+¸=816+=224+.【小结】(1)与有理数、实数运算一样,在混合运算中先乘除,后加减;)与有理数、实数运算一样,在混合运算中先乘除,后加减;(2)最终的结果一定要化为最简二次根式)最终的结果一定要化为最简二次根式. . .问题2.2.(教材(教材P14面例4)例2.2. 计算:(1))52()32(-×+;(2))35)(35(-+. 解:(1))52()32(-×+=152523)2(2--+=15222--=2213--;(2))35)(35(-+=22)3()5(-=5-3=2.提问:你能说出上面两道题中每一步的依据是什么吗?提问:你能说出上面两道题中每一步的依据是什么吗?【小结】乘法公式使计算准确、简便,因此能用运算公式的,尽可能用运算公式.因为二次根式表示数,二次根式的运算也是实数的运算.根式表示数,二次根式的运算也是实数的运算.练习2:计算:(1))17(72--=;(2))2332)(2332(+-=.答案为:7214+-;6.练习3:计算2)322215324(×+-的结果是(的结果是( ) A. A. 303-3320 B.30-3320 C.332303- D.332302- 练习3 计算:(1))2762)(6227(-+;(2)2)377(-;(3)22)632()632(-+--+解:(1))2762)(6227(-+=222762)()(-=24-98=-74=-74;;(2)2)377(-=22)37(3772)7(+´´-=2114154-;(3)22)632()632(++--+=)]632()632)][(632()632[(++--++++-+ =)62()3222(-×+=21238--.练习4:已知4x 2+y 2-4x-6y+10=0-4x-6y+10=0,求下面式子的值,求下面式子的值,求下面式子的值. . )1()(2y x y x y x y y xx +-+解:由4x 2+y 2-4x-6y+10=0得到得到(2x-1)(2x-1)2+(y-3)2=0,∴2x-1=0,y-3=0.解得,解得,x=x=21,y=3. )1()(2yx y x y x y y xx +-+ =yx x y y x 12--+ =y y x x y y y x--+=x y -当x=21,y=3时,时, 原式原式==223213-=-. 三、课堂小结:三、课堂小结:师生共同回顾本节课所学主要内容师生共同回顾本节课所学主要内容: :关于二次根式的四则混合运算关于二次根式的四则混合运算,,实质上就是实数的混合运算.(1)(1)运算顺序与有理式的运算顺序相运算顺序与有理式的运算顺序相同;(2);(2)运算律仍然适用运算律仍然适用运算律仍然适用;(3);(3);(3)与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似,,可以利用乘法公式与因式分解的方法来简化二次根式的有关运算.四、随堂检测:1. 下列二次根式中可以进行合并的是下列二次根式中可以进行合并的是( ) ( )A. ab 与2abB. 22n m + 与22n m -C. mn 与nm 11+ D. 438b a 与432b a 【知识点:同类二次根式】【知识点:同类二次根式】【参考答案】D【思路点拨】先化简成最简二次根式,再看被开方数是否相同【思路点拨】先化简成最简二次根式,再看被开方数是否相同. .2.2.计算:计算:)12)(12(-+的结果是(的结果是(). A.23+ B.23- C.1D.3 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】C C【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,本题利用平方差公式直本题利用平方差公式直接计算即可接计算即可. .3.3.若矩形相邻两边长分别是若矩形相邻两边长分别是cm 20和cm 125,则它们的周长是,则它们的周长是. .【知识点:二次根式混合运算】【知识点:二次根式混合运算】【参考答案】cm 514【思路点拨】矩形的周长【思路点拨】矩形的周长==(长(长++宽)×宽)×2 24. 计算:)4831375(12-+´的结果是(的结果是() A.23 B.32 C. 6D. 12 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】D D【思路点拨】123232)34335(12)4831375(12=´=-+´=-+´5. 计算:3)4841311527(¸+-【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】1-【解析】原式=1333)33533(-=¸-=¸+-略。
16.3 二次根式的混合运算教学设计案例一、.教学目标【知识与技能】含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.【过程与方法】复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.二、教学重难点【教学重点】二次根式的乘除、乘方等运算规律;【教学难点】由整式运算知识迁移到含二次根式的运算.三、教学方法引导发现法;类比法;尝试训练法四、教学过程设计(一)、创设情境、导入新课1.下列计算哪些正确,哪些不正确?325+=a b a b +=a b a b -=-()a a b a a b a+=+2.要进行二次根式加减运算,它们具备什么特征才能进行合并?(化为最简二次根式后,被开方数相同)(1)说出与 能合并的三个二次根式.(2)试举出一组能合并的二次根式. (板书课题16.3 二次根式的混合运算) (二)学习目标1.会进行二次根式的加减和简单的混合运算.2.能将结果写成最简二次根式的形式.3.能将整式运算的乘法公式(运算律)灵活应用于二次根式的运算中,从而简化解题步骤.(三)自学指导 1.计算: (1.注意运算顺序 2.运用运算律 ) 解:(整式运算的运算律在二次根式的运算中仍然适用.) 2.计算: (观察题目的特点是否能应用乘法公式)1132032a a a a -=-=523)2748)(3(63383)2(26327)1(÷-∙⎪⎪⎭⎫ ⎝⎛-⨯-3)2748)(3(63383)2(26327)1(÷-∙⎪⎪⎭⎫ ⎝⎛-⨯-3)2748)(3(63383)2(26327)1(÷-∙⎪⎪⎭⎫ ⎝⎛-⨯-633683)2(⨯-⨯=原式3633-=333)63(-=-=223327)1(⨯⨯-=原式633683⨯-⨯=2923-=327348)3(÷-÷=原式327348÷-÷=134=-=)23(231-+))((25232))((+解:(整式运算的乘法公式在二次根式的运算中仍然适用.)(四)合作探究 展示评价1.完成p 14练习2.计算: 解:(1)原式 (2)原式 (五)总结归纳 整式运算的运算律在二次根式的运算中仍然适用.整式运算的乘法公式在二次根式的运算中仍然适用.(六)综合运用 拓展提升1.计算:(1) (2) 解:2.比较二次根式 的大小.解:22132=-()原式()()123=-=225252323)2()(原式+⨯⨯+=205129++=51229+=()()()122333322-+()()()222322-+()()222233=-82719=-=-642324=+--22=+513)151(3--2(3552)-55531533)1(⨯-⨯-=原式5535)3(32-⨯-=55183553533-=--=22252553253)2()()(原式+⨯⨯-=50103045+-=103095-=137146++和2(614)20284+=+ ,2(713)20291+=+,61407130+>+>,,(七)达标检测2.下列计算正确的是( ) A. C 224=- D 2(3)3-=-(八)、总结反思1.会进行二次根式的加减和简单的混合运算,并能将结果写成( 最简二次根式 )的形式.2.会将整式运算的( 乘法公式 )灵活应用于二次根式的运算中.(十)、布置作业:教科书习题16.3第3,4,6题.五、板书16.3 二次根式的混合运算1、二次根式的加减和简单的混合运算顺序2、注意结果保留最简二次根式的形式.六、教学反思2028420291+<+,614713.∴+<+ 1.下列计算正确的是( ) 2222A.1081081082-=-=-=()()()()()()222B.2322324322C.333D.565611+-=-⨯=-+⨯-=-+=+=a b a b a b 10220=B.632=⨯。