第二章 有理数的运算 单元练习题(含答案)
- 格式:doc
- 大小:1.44 MB
- 文档页数:10
第二章 有理数的运算一、单选题1.徐州地铁1号线全长31900米,将31900用科学记数法表示为( )A .3.19×102B .0.319×103C .3.19×104D .0.319×1052.计算(−2)3+23等于( )A .0B .16C .32D .−323.武汉市某天凌晨的气温是−3℃,中午比凌晨上升了8℃,中午的气温是( )A .2℃B .3℃C .7℃D .5℃4.下列各对数中,数值相等的是( )A .−23与(−2)3B .−32与(−3)2C .(−1)2023与(−1)2024D .(−2)3与(−3)2 5.下列问题情境,不能用加法算式−2+8表示的是( )A .某日最低气温为−2℃,温差为8℃,该日最高气温B .用8元纸币购买2元文具后找回的零钱C .数轴上表示−2与8的两个点之间的距离D .水位先下降2cm ,再上升8cm 后的水位变化情况6.某粮店出售的三种品牌的面粉袋上分别标有质量为(50±0.2)kg ,(50±0.3)kg ,(50±0.4)kg 的字样,从中任意拿出两袋,则这两袋的质量最多相差与最少相差分别为( )A .0.8kg 和0.4kgB .0.6kg 和0.4kgC .0.8kg 和0kgD .0.8kg 和0.6kg 7.在简便运算时,把12×(−9991112)变形成最合适的形式是( ) A .12×(−1000+112)B .12×(−1000−112)C .12×(−999−1112)D .12×(−999+1112)8.在1,2,−2这三个数中,任意两数之商的最小值是( )A .12B .−12C .−1D .−29.规定a △b =a −2b ,则3△(−2)的值为( )A .7B .−5C .1D .−110.a ,b 两数在一条隐去原点的数轴上的位置如图所示,下列5个式子:℃a −b <0,℃a +b <0,℃ab <0,℃(a +1)(b +1)<0,℃(a −1)(b +1)<0中一定成立的有( )A.2个B.3个C.4个D.5个二、填空题11.将式子(−20)+(+3)−(−5)−(+7)省略括号和加号后变形正确的是.12.将13.549精确到十分位得.13.一潜艇所在的高度是−50m,一条鲨鱼在潜艇的上方20m处,那么鲨鱼所在的高度为m.14.在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8℃,已知山脚的温度是24℃,山顶的温度是4℃,试问这座山的高度是米.15.如果x、y都是不为0的有理数且xy<0,则代数式x|x|+|y|y的值是.16.如图所示是计算机某计算程序,若开始输入x=2,则最后输出的结果是.17.设非零数a是平方等于它本身的数,b是相反数等于它本身的数,c是绝对值最小的数,则a+b+c=.18.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第次后可拉出2048根细面条.三、解答题19.计算.(1)12−(−6)+(−5)−15;(2)−113÷(−3)×(−13);(3)(−23+58−16)×(−24);(4)−14+16÷(−2)3×|−3−1|.20.阅读下面的解题过程:计算:(−15)÷(13−112−3)×6.解:原式=(−15)÷(−256)×6(第一步)=(−15)÷(−25)(第二步)=−35(第三步)回答:(1)上面解题过程中有两个错误,两处错误分别是第______,______步.(2)请写出正确的计算过程.21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?22.出租车司机小李某天上午的营运都是在一条东西走向的大道上,规定向东为正,向西为负,这天上午小李的行车路程(单位:千米)如下:+3,−2,+15,−1,+12,−3,−2,−23.(1)当小李将最后一名乘客送到目的地时,车距出发地的距离是多少千米?在什么方向?(2)若每千米的营运额为7元,则小李这天上午的总营运额为多少元?(3)在(2)的条件下,如果营运成本为1.5元/千米,那么这天上午小李盈利多少元?参考答案:1.C2.A3.D4.A5.C6.C7.A8.D9.A10.C11.−20+3+5−712.13.513.−3014.250015.016.1817.118.1119.(1)−2(2)−427(3)5(4)−920.(1)二,三(2)108521.(1)不足5.5千克(2)389元22.(1)车在出发地西1千米处(2)427元(3)335.5元。
第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处 6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10、某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示请回答,该生成绩最好和最差的科目分别是什么?专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
第二章单元测试题(满分120分时间90分钟)一、选择题(40分)1.计算的结果为()A.B.C.1 D.32.的倒数是()A.3 B.C.D.3.下列说法正确的个数是()①的相反数是2024;②的绝对值是2024;③的倒数是A.3个B.2个C.1个D.0个4.2023年我国汽车出口总量为522.1万辆,同比增长57.4%,已经超越日本,成为全球汽车出口量第一的国家.数据522.1万用数学记数法表示为()A.B.C.D.5.某一天凌晨的温度是,中午的气温是,从凌晨到中午气温上升了()A.B.C.D.12℃6.下列计算正确的是()A.B.C.D.7.不改变原式的值,将写成省略加号的和的形式是()A.B.C.D.8.下列几组数中,互为相反数的是()A.和B.和C.和D.和9.设表示大于的最小整数,如,,则().A.B.C.D.10.有理数在数轴上的对应的位置如图所示,则下列各式①;②;③;④;⑤;⑥.一定成立的有()A.2个B.3个C.4个D.5个二、填空题。
(24分)11.计算:______.12.如图是某一天的天气预报,该天的温差是______.13.2024年全国新注册登记的新能源汽车预计约有1335万辆,将数据1335万用科学记数法表示为______.14.如果,则的值为_____.15.如图,乐乐将分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c、d 分别标上其中的一个数,则的值为______.16.定义运算:.下列结论:①;②;③若,则或;④若,则.其中正确的是______.(填序号即可).三、解答题。
(56分)17.计算题:(1) (2)(3) (4)18.(1)计算:;(2)计算:.19.为体现社会对教师的尊重,9月10日教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为升/千米,这天下午汽车共耗油多少升?20.据不完全统计,某市至少有6×105个水龙头漏水,这些水龙头每月流失的总水量约1.68×105立方米.(1)每个水龙头每月的漏水量约多少立方米?(结果精确到0.1立方米)(2)如果该市每立方米水费是1.9元,这些水龙头一年漏水量的总水费是多少万元?21.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?22.有一口深90厘米的枯井,井底有一只青蛙沿着井壁向上往井口跳跃,由于井壁较滑,每次跳跃之后青蛙会下滑一段距离才能稳住.下面是青蛙的几次跳跃和下滑情况(上跳为正,下滑为负,单位为厘米).第1次第2次第3次第4次第5次第6次第7次(1)除起跳点外,青蛙距离井底的最近距离是______厘米;青蛙距离井口的最近距离是______厘米;(2)在这7次跳跃并下滑稳定后,此时青蛙距离井口还有多远?(3)把每7次跳跃下滑记为一周,若青蛙之后的每周跳跃下滑情况都和第一周相同,那么青蛙在第几次跳出了井口?。
浙教版数学七年级上册第二章有理数的运算一、选择题1.下列各对数中,互为相反数的是( )A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.已知数549039用四舍五入法后得到的是5.490×105,则所得近似数精确到( ).A.十位B.百位C.千分位D.万位3.两数相加,如果和小于任何一个加数,那么这两个数( )A.同为正数B.同为负数C.一正数一负数D.一个为0,一个为负数4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.用“▲”定义一种新运算:对于任何有理数a和b,规定a▲b=ab+b2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A.−4B.4C.−8D.86.有理数a,b在数轴上的对应点如图所示,则下列式子中错误的是( )A.ab>0B.a+b<0C.a﹣b<0D.b﹣a<07.一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是( )A.26元B.44元C.56元D.80元8.若x、y二者满足等式x2−3y=3x+y2,且x、y互为倒数,则代数式x2−3(x+y)+5−y2−4xy的值为( )A.1B.4C.5D.99.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .1202110.计算机利用的是二进制数,它共有两个数码0,1,将一个十进制数转化为二进制,只需将该数写为若干个2n 的数字之和,依次写出1或0的系数即可,如十进制数字19可以写为二进制数字10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20,32可以写为二进制数字100000,因为32=32=1×25+0×24+0×23+0×22+0×21+0×20,则十进制数字70是二进制下的( )A .4位数B .5位数C .6位数D .7位数二、填空题11.2022年11月20日晚,卡塔尔世界杯正式开幕,仅两天时间,抖音世界杯总话题播放量高达21480000000次,其中数21480000000用科学记数法表示为 .12.计算(−1)2023÷(−1)2004= .13.一个数的立方等于它本身,这个数是 14.如图所示的程序图,当输入﹣1时,输出的结果是 .15.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .16.如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和a ,即a =9+1+3+5+7+9=34;步骤2:计算前12位数字中奇数位数字的和b ,即b =6+0+2+4+6+8=26;步骤3:计算3a 与b 的和c ,即c =3×34+26=128;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即d =130;步骤5:计算d 与c 的差就是校验码X ,即X =130−128=2.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是 .三、解答题17.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 18.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?19.已知a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,求代数式(−ab)2024−3(c+d)−n+m2的值.20.在一条不完整的数轴上从左到右有A,B,C三点,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以C为原点,写出点A,B所对应的数,计算p的值;(2)若p的值是﹣1,求出点A,B,C所对应的数;(3)在(2)的条件下,在数轴上表示|﹣0.5|、(﹣1)3和A,B,C所对应的数,并把这5个数进行大小比较,用“<”连接.21.现定义一种新运算“*”,对任意有理数a、b,规定a*b=ab+a﹣b,例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值;(2)求(﹣3)*[(﹣2)*5]的值.22.目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.一户居民一个月用电量(单位:度)电价(单位:元/度)第1档不超过180度的部分0.5第2档超过180度的部分0.7(1)若该市某户12月用电量为200度,该户应交电费 元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?23.如图,已知数轴上有A,B两点,分别代表−40,20,两只电子蚂蚁甲,乙分别从A,B两点同时出发,甲沿线段AB以1个单位长度秒的速度向右运动,到达点B处时运动停止;乙沿BA方向以4个单位长度秒的速度向左运动.(1)A,B两点间的距离为 个单位长度;乙到达A点时共运动了 秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】A8.【答案】A9.【答案】B10.【答案】D11.【答案】2.148×101012.【答案】−113.【答案】0或±114.【答案】715.【答案】0或4或﹣416.【答案】417.【答案】(1)解:如图所示(2)50(3)-818.【答案】(1)守门员最后回到了球门线的位置(2)12米(3)54米19.【答案】解:∵a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,∴ab=1,c+d=0,m2=9,n=−1,∴(−ab)2024−3(c+d)−n+m2=(−1)2024−3×0−(−1)+9=1−0+1+9=11.20.【答案】(1)解:若以C为原点,∵AB=2,BC=1,∴B表示﹣1,A表示﹣3,此时,p=(﹣3)+(﹣1)+0=﹣4;(2)解:设B对应的数为x,∵AB=2,BC=1,则A点表示的数为x﹣2,C表示的数为x+1,p=x+x+1+x﹣2=﹣1;x=0,则B点为原点,∴A表示﹣2,C表示1;(3)解:如图所示:故﹣2<(﹣1)3<0<|﹣0.5|<1.21.【答案】(1)解:2*(﹣3)=2×(﹣3)+2﹣(﹣3)=﹣6+2+3=﹣1;(2)解:(﹣3)*[(﹣2)*5]=(﹣3)*[(﹣2)×5+(﹣2)﹣5]=(﹣3)*(﹣17)=(﹣3)×(﹣17)+(﹣3)﹣(﹣17)=51﹣3+17=65.22.【答案】(1)104(2)解:当0≤x≤180时,该户12月应交电费为0.5x元;当x>180时,该户12月应交电费为0.5×180+0.7(x−180),=90+0.7x−126,=(0.7x−36)(元).(3)解:∵104<125,∴x>180,∴0.7x−36=125,∴x=230.答:该户12月用电量为230度.23.【答案】(1)60;15(2)解:60÷(4+1)=12,−40+12=−28.答:甲,乙在数轴上的−28点相遇(3)解:两种情况:相遇前,(60−10)÷(4+1)=10;相遇后,(60+10)÷(4+1)=14,答:10秒或14秒时,甲、乙相距10个单位长度;(4)解:乙到达A点需要15秒,甲位于−40+15=−25,乙追上甲需要25÷(1+4)=5(秒)此时相遇点的数是−25+5=−20,故甲,乙能在数轴上相遇,相遇点表示的数是−20.。
第二章 有理数的运算单元测试题班级 ______________ 学号一、选择题1、以下表达正确的选项是〔 〕(A)有理数中有最大的数. (B)零是整数中最小的数.(C)有理数中有绝对值最小的数. (D)假设一个数的平方与立方结果相等,则这个数是0.2、 以下近似数中,含有3个有效数字的是〔 〕 〔A 〕5 430. 〔B 〕5.430×106〔C 〕0.543 0. 〔D 〕5.43万.3、已知两数相乘大与0,两数相加小于0,则这两数的符号为( )(A) 同正. 〔B 〕同负. 〔C 〕一正一负. 〔D 〕无法确定. 4、假设-2减去一个有理数的差是-5,则-2乘这个有理数的积是〔 〕 〔A 〕10. 〔B 〕-10. 〔C 〕6. 〔D 〕-6. 5、算式〔61-21-31〕×24的值为〔 〕 〔A 〕-16. 〔B 〕16. 〔C 〕24. 〔D 〕-24. 6、已知不为零的a,b 两数互为相反数,则以下各数不是互为相反数的是〔 〕 〔A 〕5 a 与5 b . (B)a 3与b 3. (C)a 1与b1. (D)a 2与b 2. 7、按下面的按键顺序在某型号计算器上按键:显示结果为〔 〕〔A 〕56.25. 〔B 〕5.625. 〔C 〕0.562 5. 〔D 〕0.056 25.8.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米, 超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费 ( )A.64元B.66元C.72元D.96元 9. 3是331的近似值,其中331叫做真值,假设某数由四舍五入得到的近似数是27,则以下各数中不可能是27的真值的是 ( )A.26.48B.26.53C.26.99D.27.02 10.小华和小丽最近测了自己的身高,小华量得自己约1.6m ,小丽测得自己的身高约为1.60m ,以下关于她俩身高的说法正确的选项是 ( )A.小华和小丽一样高B.小华比小丽高C.小华比小丽低D.无法确定谁高 二、填空题 11. -32的倒数是 ;-32的相反数是 ,-32的绝对值是 ;-32的平方是 . 12、比较以下各组数的大小:〔1〕43 65; 〔2〕-87 -98; 〔3〕 -22 〔-2〕2;〔4〕〔-3〕3 -33.13、〔1〕近似数2.5万精确到 位;有效数字分别是 ;〔2〕1纳米等于十亿分之一米,用科学记数法表示25米= 纳米. 14.数轴上表示有理数-3.5与4.5两点的距离是 . 15.(-1)2+(-1)3+…+(-1)2010= .16.李明与王伟在玩一种计算的游戏,计算的规则是|d c b a |=ad -bc,李明轮到计算|1523|,根据规则|1523|=3×1-2×5=3-10=-7,,现在轮到王伟计算|5632|得 .17、我国著名数学家华罗庚曾经说过这样一句话:“数形结合百般好,隔裂分家万事休”.如图, 在一个边长为1的正方形纸板上,依次贴上面积为21,41,81,161,…,1021的小长方形纸片,请你写出最后余下未贴部分的面积的表达式: .18.a 是不为1的有理数,我们把a -11称为a 的差倒数....如:3的差倒数是311-=-21,-1的差倒数是)1(11--=21.已知a 1=2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2010= 。
单元测试(二) 有理数的运算(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分) 1.16的倒数是(D ) A .-16B .16C .-6D .62.比-5大3的数是(A )A .-2B .-8C .8D .23.计算-42的结果等于(B )A .-8B .-16C .16D .84.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作.根据规划,“一带一路”地区覆盖总人口约为440 000 000人,这个数用科学记数法表示为(C )A .44×108B .4.4×109C .4.4×108D .4.4×10105.某地一天的最高气温是8 ℃,最低气温是-2 ℃,则该地这天的温差是(A )A .10 ℃B .-10 ℃C .6 ℃D .-6 ℃6.下列各式运算的结果不是互为相反数的是(D )A .3×(-2)与(-12)÷(-2)B .(-2)3与23C .-12与12D .23和37.(东阳期中)下列说法正确的是(D )A .-22与(-2)2相等B .如果两个有理数的和为零,那么这两个数一定是一正一负C .-a 表示一个负数D .两个有理数的差不一定小于被减数 8.(路桥区校级期中)下列说法正确的是(A )A .若a >0,ab <0,则b <0B .若|a |=|b |,则a =bC .若a 2=b 2,则a =bD .若xy <0,yz <0,则zx <09.某食品罐头的标准质量为100 g ,超过100 g 记为正数,不足100 g 记为负数,记录如下:-2 g ,-4 g ,0 g ,+2 g ,-3 g ,+5 g ,则这6盒罐头的总质量为(B )A .616 gB .598 gC .600 gD .602 g10.(桐乡校级期中)如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是(C )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题(每小题4分,共24分) 11.比2小5的数是-3.12.浙江省陆域面积10.414 1万平方公里,是我国面积最小的省份之一.数字10.414 1精确到十分位为10.4.13.+5.8的相反数与-7.1的绝对值的和是1.3. 14.若||a -2与||b +1互为相反数,则a +b =1.15.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm ),数轴上的两点A ,B 恰好与刻度尺上的“0 cm ”和“7 cm ”分别对应,若点A 表示的数为-2.3,则点B 表示的数应为4.7.16.如图是一个计算程序,若输入的值为-1,则输出的结果应为7.三、解答题(共66分) 17.(12分)计算:(1)15+(-11)-2; (2)-14+6-34;解:原式=15-11-2=2. 解:原式=6-(14+34)=5.(3)-2×6+(-4)÷2; (4)(-2)×12÷(-13)×3.解:原式=-12+(-2)=-14. 解:原式=2×12×3×3=9.18.(12分)计算:(1)-62÷32×23+0.53; (2)(17-38+528)×(-56);解:原式=-36×23×23+18=-16+18=-1578. 解:原式=-17×56+38×56-528×56=-8+21-10 =3.(3)-12-34×[-32×(-23)2-2]÷(-1)2 014.解:原式=-1-34×(-9×49-2)÷1=-1-34×(-6)÷1=-1+92=72.19.(7分)用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b =ab 2+2ab +a .如:1☆3=1×32+2×1×3+1=16.求(-2)☆3的值.解:(-2)☆3=-2×32+2×(-2)×3+(-2)=-18-12-2=-32.20.(9分)已知有理数x ,y 分别满足|x |=5,|y |=2,且xy <0,求x -y 的值.解:∵|x |=5,|y |=2,且xy <0, ∴x =5,y =-2或x =-5,y =2.则x -y =5-(-2)=7或x -y =-5-2=-7.21.(12分)有一张厚度为0.1毫米的纸,将它对折1次后,厚度为2×0.1毫米.请在下面括号内填上适当的数:(1)对折3次后,厚度为23×0.1毫米;(2)对折20次后,厚度为多少毫米?大约有多少层楼高?(每层楼高度为3米)(参考数据:219=524 288,220=1 048 576,221=2 097 152)解:对折20次后,厚度为:220×0.1=1 048 576×0.1=104 857.6(毫米),104 857.6毫米=104.857 6米,104.857 6÷3≈35(层).答:厚度为104 857.6毫米,大约有35层楼高.22.(14分)上海股民杨百万上星期五交易结束时买进某公司股票1 000股,每股50元,下表为本周内每日该股的涨跌情况(星期六、日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)已知买进股票还要付成交金额2‰的手续费,卖出时还需付成交额2‰的手续费和1‰交易税,如果在星期五按收盘价将全部股票卖出,他的收益情况如何?(注意:‰不是百分号,是千分号)解:(1)星期三收盘时,每股是:50+4+4.5-1=57.5(元).(2)周内每股最高价为:50+4+4.5-1+2.5=60(元),最低价为50+4=54(元).(3)50+4+4.5-1+2.5-5=55(元),1 000×55×(1-3‰)-1 000×50×(1+2‰)=4 735(元).答:他赚了4 735元.。
第二章 有理数的运算一、单选题1.在(−23)4中,底数和指数分别是( )A .23,4B .−23,4C .4,−23D .4,232.生活中,有时也用“千千万”来形容数量多,“千千万”就是100亿,“千千万”用科学记数法可表示为( )A .0.1×1011B .10×109C .1×1010D .1×10113.小磊解题时,将式子(−16)+(−7)−56+(−4)先变成[(−16)−56]+[(−7)+(−4)]再计算结果,则小磊运用了( )A .加法交换律B .加法结合律C .加法交换律和加法结合律D .以上均不正确4.下列计算正确的是( )A .−3.5÷78×(−34)=−3B .−2÷3×13=−2C .−6÷(−4)×56=54D .−130÷(16÷15)=−15.甲、乙、丙三地的海拔高度分别为30m,−15m,−10m ,那么最高的地方比最低的地方高( )A .5mB .10mC .25mD .45m6.某地一天早晨的气温是−7°C ,中午温度上升了11°C ,半夜又下降了9°C ,则半夜的气温是( )A .0°CB .2 °CC .−5°CD .9°C7.已知|a b −4|+(b−2)2=0,则a+b 的值是( )A .4B .0C .0或4D .±28.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,如图,根据刘徽的这种表示方法,观察图①,可推算图②所得到的数值为( )图①表示(+1)+(−1)=0图②A.1B.−1C.7D.−79.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式m−cd+a+bm的值为()A.-3B.1C.±3D.-3或110.已知a,b为有理数,下列说法:①若a+b=0,则|a|=|b|;②若a,b互为相反数,则ab=−1;③若a+b<0,ab>0,则|a+b|=−a−b;④若|a−b|+a−b=0,则b>a.其中正确的有()A.1个B.2个C.3个D.4个二、填空题11.29.5万精确到位12.计算:(﹣4)+(﹣2)=.13.如图是一个运算程序,若输入的数为10,则输出的数为.14.绝对值小于6的所有整数的和为.15.数轴上的点A表示的数为−12,点B表示的数为−4,则A,B之间的距离为.16.小明与小刚规定了-种新运算△:a△b=3a-2b.小明计算2△5= -4,请你帮小刚计算20△(-5)= .17.已知点A和点B在同一数轴上,点A表示数−1,点B和点A相距2个单位长度,则点B表示的数是.18.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|= .(2)找出所有符合条件的整数x,使得|x-(-5)|+|x-2|=7,这样的整数是.三、解答题19.计算:(1)−72−(−6)÷(−12)2;(2)(−13+12−512)×(−24);(3)(−81)÷214×(−49)×24;(4)−24+(−5)×(−2)2−1÷(−13)2.20.计算复杂的有理数加减法时,有的可采用整数、分数部分分离的方法计算,如以下示例:(−202356)+(−202223)+404623+(−112)=(−2023)+(−56)+(−2022)+(−23)+4046+23+(−1)+(−12),=[(−2023)+(−2022)+4046+(−1)]+[(−56)+(−23)+23+(−12)],=0+(−43),=−43,请利用上述方法计算:(−206)+40134+(−20423)+(−112).21.动物园的小猴子在一条笔直的钢绳上进行“走钢丝”训练.假设从绳上的点A 处出发,向右走的路程记为正数,向左走的路程记为负数,现有一次训练记录:+6,+1,+10,−7,−6,+10,−12.(单位:米)(1)小猴子最后是否回到出发点A ?(2)若小猴子每走1米就奖励两粒豆,求小猴子这次训练共得到多少粒豆?22.某果农把自家果园的苹果包装后放到了网上销售.原计划每天卖30箱,但由于种种原因,实际每天的销售量与计划量相比有出入,如表是某星期的销售情况(超额记为正,不足记为负,单位:箱).星期一二三四五六日与计划量的差值+4﹣3﹣5+7﹣8+21﹣6(1)根据记录的数据可知前五天共卖出 箱;(2)本周实际销售总量达到了计划数量没有?(请通过计算做出判断)(3)若每箱苹果售价为50元,同时需要支出运费3元/箱,那么该果农本周总共收入多少元?23.(1)请你参考黑板中老师的讲解,用运算律简便计算:利用运算律有时能进行简便计算.例198×12=(100−2)×12=1200−24=1176例2−16×233+17×233=(−16+17)×233=233①999×15;+999×(−15)−999×1835.②999×11845(2)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”.(提出问题)三个有理数a、b、c满足abc>0,求|a|a +|b|b+|c|c的值.(解决问题)由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.当a,b,c都是正数,即a>0,b>0,c>0时,则:|a|a +|b|b+|c|c=aa+bb+cc=1+1+1=3;当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,即:|a|a +|b|b+|c|c=aa+−bb+−cc=1+(−1)+(−1)=−1,所以|a|a+|b|b+|c|c的值为3或−1.(探究)请根据上面的解题思路解答下面的问题:①已知a<0,b>0,c>0,则|a|a =___________,|b|b=___________,|c|c=___________;②三个有理数a,b,c满足abc<0,求|a|a +|b|b+|c|c的值;24.如图,已知点A,B,C从左到右依次在数轴上,所表示的数分别为x,−10,200,现将一把最小刻度为1cm的刻度尺放到数轴上,测得点A与点B的距离为5cm.(1)若数轴的1个单位长度为1cm.①x的值为________;点A与点C的距离为________个单位长度;②求点A,B,C所表示的数的和;(2)若数轴的1个单位长度不是1cm,且刻度尺上表示“8”和“10”的刻度分别对应数轴上的−14,−10.①求x的值;②若点D在数轴上,且点A与点C的距离是点A与点D的距离的2倍,求点D所表示的数;③若刻度尺的最大刻度为30cm,将数轴的单位长度变为原来1的后,用刻度尺能测量出数轴k上点B与点C的距离,直接写出k的最小整数值.参考答案:1.B2.C3.C4.C5.D6.C7.C8.B9.D10.B11.千12.﹣613.1714.015.816.7017.1或−318.7;-5、-4、-3、-2、-1、0、1、2;19.(1)-25;(2)6;(3)256;(4)-4520.−105.1221.(1)小猴最后没有回到出发点A(2)小猴应得104粒豆22.(1)145;(2)达到了;(3)10340元.23.(1)①14985,②99900;(2)①−1,1,1,②−3或者1 24.(1)①−15,215;②175(2)①x=−20;②−130或90;③4。
第二章 有理数的运算一、单选题1.天宫空间站每天大约要绕地球15周半,大约每90分钟,航天员就要经历一次日出与日落,经计算,空间站绕地球一周的路程大约为43000千米.将数据43000可用科学记数法表示为( )A .43×103B .4.3×104C .4.3×105D .0.43×1052.把算式(−5)−(−4)+(−7)−(+2)写成省略括号的形式,结果正确的是( )A .−5−4−7+2B .−5+4−7+2C .−5+4−7−2D .−5−4+7−23.下列各数中,结果相等的是( )A .23和32B .(−2)3和−23C .(−3)2和−32D .|−2|3和(−2)34.某市一天的最高气温为2°C ,最低气温为−9°C ,那么这天的最高气温比最低气温高( )A .−11°CB .−7°C C .11°CD .7°C5.计算|−2|−23×(−3)的结果为( )A .–26B .–22C .26D .226.下列算式:①(−2)+(−3)=−5; ②(−2)×(−3)=−6; ③−32−(−3)2=0; ④−27÷13×3=−27,其中正确的有( )A .0个B .1个C .2个D .3个7.绝对值不大于2的所有负整数的和为( )A .0B .-1C .-2D .-38.若−1<a <0,则对a 、−a 、a 2、a 3排列正确的是( )A .a <a 3<a 2<−aB .a <−a <a 2<a 3C .a <a 3<−a <a 2D .−a <a <a 2<a 39.如果a ,b 满足a +b >0且ab <0,则下列各式中正确的是( )A .a >0,b <0B .a <0,b >0C .a >0,b <0且|a |<|b |D .a ,b 异号,且正数的绝对值较大10.若|a |=2,|b |=23,且ab <0,则a b =( )A .3B .−2C .−3D .3或−3二、填空题11.计算|−18|+6= .12.比-3.5大的所有负整数的和为 .13.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别为−3,1,若BC =2,则AC 等于 .14.若a 、b 互为相反数,c 、d 互为倒数,|x |=3,则式子−2(a +b )+cd +x 的值为 .15.若|a +3|+(b ﹣1)2=0,则a +b = .16.规定“*”是一种运算符号,且a *b =ab ﹣3a ,则计算(﹣3)*2= .17.小明和小聪坐公交从学校去体育馆参加运动会,他们从学校门口的公交车站上车,上车后发现包括他们俩共13人,经过2个站点小明观察到上下车情况如下(记上车为正,下车为负):A (+4,-2),B (+6,-5).经过A ,B 这两站点后,车上还有 人.18.有一个数值转换器,其工作原理如图所示,若输入-2,则输出的结果是 .三、解答题19.计算:(1)−20−(−18); (2)2×(−3)+8÷(−2);(3)−22+[1−(−3)2]×|−14|; (4)(−24)×(0.25−38)+(−1)2023.20.“十一”黄金周期间,某超市家电部大力促销,收银情况如下表,下表为当天与前一天的营业额的涨跌情况(上涨为正,下跌为负,单位:万元).已知9月30日的营业额为26万元:10月1日10月2日10月3日10月4日10月5日10月6日10月7日+4+3+20−1−3−5(1)家电部黄金周内哪天收入最高,为多少万元?哪天收入最低,为多少万元?(2)家电部黄金周内平均每天的营业额是多少万元?21.小明骑摩托车从咖啡店出发,在东西向的大道上送咖啡.如果规定向东行驶为正,向西行驶为负,一天中小明的五次行驶记录如下(单位:km):−7,+8,−4,+6,−5.(1)求第五次咖啡送完时小明在咖啡店的什么方向?距离多少千米?(2)若摩托车每千米耗油量为0.2升,小明从出发送第一次咖啡到送完五次咖啡后返回咖啡店共耗油多少升?22.外卖送餐为我们的生活带来了许多便利,某学习小组调查了一名外卖小哥一周每天的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“+”,低于40单的部分记为“−”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量/单−3+4−5+14−8+7+12求该外卖小哥这一周平均每天送餐多少单.23.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作−10.上星期图书馆借出图书记录如下:星期星期一星期二星期三星期四星期五记录数值+8−7+6+12小明统计时不小心把星期四的数据滴上墨水了,请你根据以上信息,回答下列问题:(1)上星期三借出图书多少册?(2)上星期二比上星期三少借出图书多少册?(3)上星期五比上星期四多借出图书15册,被污染的数据是多少?(4)上星期图书馆一共借出图书多少册?24.阅读材料:求1+2+22+…+22023+22024的值.解:设S=1+2+22+…+22023+22024将等式两边同时乘以2,得2S=2+22+23+…+22024+22025将下式减去上式,得S=22025−1即1+2+22+…+22023+22024=22025−1请你仿照此法计算:(1)1+3+32+33+⋯+310(2)15+152+153+⋯+1519参考答案:1.B2.C3.B4.C5.C6.B7.D8.A9.D10.C11.2412.-613.6或214.4或−215.﹣2.16.317.1618.-219.(1)-2;(2)-10;(3)-6;(4)2.20.(1)家电部黄金周内10月3日、4日收入最高,为35万元;10月7日收入最低,为26万元(2)家电部黄金周内平均每天的营业额是32万元21.(1)西方,2km(2)6.4升22.该外卖小哥这一周平均每天送餐43单23.(1)56册(2)13册(3)−3(4)266册24.(1)311−12(2)519−14×519。
第2章有理数的运算检测题
【本试卷满分100分,测试时间90分钟】
一、选择题(每小题3分,共30分)
1.有理数a、b在数轴上对应的位置如图所示,则()
A.a+b<0
B.a+b>0
C.a-b=0
D.a-b>0
2.下列运算正确的是()
A. B. C. D.=8
3.计算的值是()
A.0
B.-54
C.-72
D.-18
4.下列说法中正确的有()
①同号两数相乘,符号不变;②异号两数相乘,积取负号;
③互为相反数的两数相乘,积一定为负;
④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.
A.1个
B.2个
C.3个
D.4个
5.气象部门测定发现:高度每增加1 km,气温约下降5 ℃.现在地面气温是15 ℃,那么
4 km高空的气温是()
A.5 ℃
B.0℃
C.-5 ℃
D.-15 ℃
6.计算等于()
A.-1
B.1
C.-4
D.4
7.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()
A.90分
B.75分
C.91分
D.81分
8.若规定“!”是一种数学运算符号,且1!=1,2!=1×2=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,
则
!
98!
100的值为( ) A.
49
50
B.99!
C.9 900
D.2! 9.已知,,且,则
的值为( )
A.-13
B.+13
C.-3或+13
D.+3或-13
10.若
,则a 与b 的大小关系是( )
A.a =b =0
B.a 与b 不相等
C.a ,b 异号
D.a ,b 互为相反数 二、填空题(每小题3分,共24分) 11.若规定
,则
的值为 .
12.如图所示,在数轴上将表示-1的点向右移动3个单位长度后,对应点表示的数是_________.
13.甲、乙两同学进行数字猜谜游戏.甲说:一个数的相反数就是它本身,乙说:一个数的倒数也等于它本身,请你猜一猜_______. 14.计算:
_________.
15.某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 .
16.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,用科学记数法表示
两只手上约有 个细菌.
17.某年级举办足球循环赛,规则是:胜一场得3分,平一场得1分,输一场得-1分,某班
比赛结果是胜3场平2场输4场,则该班得 分.
18.如图是一个数值转换机的示意图,若输入x 的值为3,的值为-2,则输出的结果
为 .
三、解答题(共46分) 19.(12分)计算:
(1); (2);
(3)2
1
1; (4).
20.(5分)已知:,
,且
,求
的值.
21.(5分)某工厂本周内计划每日生产300辆电动车,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):
(1)本周三生产了多少辆电动车?
(2)本周总生产量与计划生产量相比,是增加还是减少?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
22.(6分)为节约用水,某市对居民用水规定如下:大户(家庭人口4人及4人以上者)每月用水15 m3以内的,小户(家庭人口3人及3人以下者)每月用水10 m3以内的,按每立方米收取0.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25 m3,则这户本月应交水费多少元?
23.(6分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:)如下:
(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?
(2)将最后一名乘客送到目的地时,老王距上午出发点多远?
(3)若汽车耗油量为0.4/,这天上午老王耗油多少升?
24.(6分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):
(1)到这个周末,李强有多少节余?
(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?
(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?
25.(6分)观察下列各式:
….
猜想:
(1)的值是多少?
(2)如果为正整数,那么的值是多少?
参考答案
一、选择题
1.A 解析:由数轴可知是负数,是正数,离原点的距离比离原点的距离大,所以
,故选A.
2.B 解析:,A 错;
,C 错;
,D 错.只有B 是正
确的. 3.B 解析:
.
4.B 解析: ①错误,如(-2)×(-3)=6,符号改变; ③错误,如0×0,积为0;②④正确.
5.C 解析:15-5×4=-5(℃).
6.C 解析:
.
7.C 解析:小明第四次测验的成绩是
故选C.
8.C 解析:根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴
1
97981
98×99×100!98!100⨯⨯⨯⨯⨯= =100×99=9 900,故选C . 9.C 解析:因为,
,所以
,
.又
,所以
.
故
或
.
10.A 解析:因为,又
,所以
. 二、填空题 11.
解析:
.
12.2 解析:
.
13.1 解析:因为相反数等于它本身的数是,倒数等于它本身的数是,
所以,所以
14.
解析:
.
15.78分 解析:(分).
16.
17.7 解析:(分).
18.5 解析:将代入
得
.
三、解答题 19.解:(1)
.
(2)
.
(3)2
1
1
.
(4)
.
20.解:因为,所以.因为,所以.
又因为,所以
. 所以或
.
21.分析:(1)明确增加的车辆数为正数,减少的车辆数为负数,依题意列式,再根据有理数的加减法法则计算;
(2)首先求出总生产量,然后和计划生产量比较即可得到结论;
(3)根据表格可以知道产量最多的一天和产量最少的一天各自的产量,然后相减即可得到结论.
解:(1)本周三生产的电动车为:(辆).
(2)本周总生产量为
(辆),
计划生产量为:300×7=2 100(辆),2 100-2 079=21(辆),
所以本周总生产量与计划生产量相比减少21辆.
或者由,
可知本周总生产量与计划生产量相比减少21辆.
(3)产量最多的一天比产量最少的一天多生产了(辆),
即产量最多的一天比产量最少的一天多生产了35辆.
22.解:因为该用户是大户,所以应交水费(元).
答:这户本月应交水费28元.
23.解:(1)因为,
所以将第6名乘客送到目的地时,老王刚好回到上午出发点.
(2)因为
,
所以将最后一名乘客送到目的地时,老王距上午出发点.
(3)因为
,,
所以这天上午老王耗油.
24.分析:(1)七天的收入总和减去支出总和即可;
(2)首先计算出一天的节余,然后乘30即可;
(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.
解:(1)由题意可得:(元). (2)由题意得:14÷7×30=60(元).
(3)根据题意得:10+14+13+8+10+14+15=84,
84÷7×30=360(元).
答:(1)到这个周末,李强有14元节余.
(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.
(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.
25.解:(1).
(2).。