地下水中天然氚的不同来源
- 格式:pdf
- 大小:31.92 KB
- 文档页数:5
一种新型的氚污染表面去污材料【摘要】氚污染是一种严重影响环境和健康的污染物,目前仍缺乏高效的去污材料。
本文介绍了一种新型的氚污染表面去污材料,通过制备方法与性能测试结果展示了其高效去除氚污染的能力。
展望其在环境治理领域中的广阔应用前景。
这种新型材料具有明显的优势,如高效去除氚污染、安全环保等。
研究表明,这种材料具有重要的研究价值,并提出了未来研究方向。
通过本研究,为解决氚污染问题提供了新的思路和方法,对于环境保护具有重要意义。
【关键词】氚污染、表面去污材料、制备方法、性能测试、应用前景、材料优势、研究价值、未来研究方向。
1. 引言1.1 背景介绍氚是一种主要来自核反应堆事故和核武器试验的放射性物质,它具有较长的半衰期,对环境和人类健康造成严重伤害。
在过去的几十年里,氚污染已经成为一个国际性的环境问题,迫切需要找到有效的解决方法。
传统的氚污染清理方法成本高昂且效率低下,因此急需一种新型的氚污染表面去污材料来解决这一难题。
这种新型材料能够快速高效地吸附氚并将其固定在材料表面,避免其进一步扩散到环境中。
这种材料的制备方法简单易行,成本低廉,具有较高的吸附容量和稳定性。
经过性能测试,这种材料表现出优异的去污效果,为氚污染清理提供了新的解决方案。
通过引入这种新型的氚污染表面去污材料,不仅可以有效减少氚污染对环境和人类健康造成的危害,还可以降低清理成本并提高清理效率。
该材料具有广阔的应用前景和市场潜力,将对氚污染治理产生积极影响。
1.2 研究意义氚是一种高毒性的放射性核素,其长期滞留在环境中会对人类健康和生态系统造成严重危害。
研究氚污染的有效治理方法至关重要。
目前已有一些氚污染治理技术,但存在成本高、效果有限等问题。
开发一种新型的氚污染表面去污材料具有重要的意义。
这种材料能够高效吸附氚污染物,实现对氚的高效去除,从而减少氚在环境中的积累和扩散。
与传统方法相比,这种材料制备简单、成本低廉、效果明显,并且对环境无毒副作用,具有广阔的应用前景。
海洋氚含量摘要:1.海洋氚含量的背景知识2.海洋氚含量的影响因素3.海洋氚含量的变化及其环境意义4.我国在海洋氚含量研究方面的进展正文:氚(Tritium)是一种氢的同位素,具有放射性,广泛存在于自然界。
在环境中,氚的含量可以反映出水循环和生态系统的变化。
海洋作为地球上最大的氚储存库,对于研究氚在地球系统中的行为具有重要意义。
本文将从海洋氚含量的背景知识、影响因素、变化及其环境意义和我国在海洋氚含量研究方面的进展四个方面进行介绍。
1.海洋氚含量的背景知识氚在地球上的分布广泛,包括水体、大气和生物体等。
其中,海洋是氚的主要储存库,约占全球氚总量的99%。
海洋氚主要有两个来源:一是通过大气降水,大气中的氚随着降水过程进入海洋;二是海洋生物体内氚的生成,如海洋生物死亡后,其体内氚会释放到海水中。
2.海洋氚含量的影响因素海洋氚含量受多种因素影响,包括气候变化、水循环、海洋生物生产力等。
气候变化可以影响大气降水,从而改变海洋氚的输入;水循环过程中的蒸发、降水等环节也会影响氚在海洋中的分布;海洋生物生产力则通过生物体内氚的生成与释放,影响海洋氚含量。
3.海洋氚含量的变化及其环境意义海洋氚含量的变化可以反映出海洋环境的变化,例如氚含量的增加可能意味着海洋表层水的升温。
此外,氚含量的变化还可以反映水循环和生态系统的变化,从而为研究地球系统的演化提供重要信息。
4.我国在海洋氚含量研究方面的进展我国在海洋氚含量研究方面取得了显著进展。
近年来,我国科学家通过多种技术手段,如同位素示踪、数值模拟等,研究了海洋氚含量的分布特征、变化规律以及其环境意义。
此外,我国还积极参与国际合作,为全球海洋氚研究贡献力量。
综上所述,海洋氚含量作为研究地球系统的重要指标,其变化和分布特征对于了解海洋环境和生态系统的演变具有重要意义。
自然界里的氚含量-回复题目:自然界中的氚含量及其相关影响引言:氚(Tritium)是一种放射性同位素,是氢的一种形态。
它存在于自然界中的水和许多其他有机和无机物中。
本文将深入探讨自然界中氚的含量,以及它对环境和人类健康的潜在影响。
第一部分:氚的来源和产生1. 氚的产生- 高能粒子与大气中的氮、氧反应形成氚- 碳-14与氢气反应形成氚- 核反应产生的氚2. 自然界中的氚来源- 氚存在于自然界的水中,包括海洋、湖泊、河流和地下水中- 氚可通过地下水和地下岩石中的自然放射性材料迁移第二部分:自然界中氚的含量1. 水体中的氚含量- 海水中的氚平均浓度约为0.12万亿分之一- 淡水中的氚浓度相对较低,约为海水的10-100倍- 地下水中的氚浓度通常比较接近淡水2. 氚在大气中的分布- 大气中的氚主要来自核反应和自然放射性材料的衰变- 氚会通过降水形式进入地表水和土壤中第三部分:氚的环境影响1. 生态系统影响- 氚的放射性衰变会导致伽马射线的释放,对生物组织造成潜在危害- 高氚浓度可能会影响水生生物的生长和繁殖2. 地下水和水源污染- 高浓度的氚可能对地下水和水源造成污染- 长期暴露于高氚浓度水源可能对人类健康产生负面影响第四部分:人类健康风险1. 氚摄入途径- 水和食物是人类主要摄入氚的途径- 氚通过皮肤接触、吸入和进食进入人体2. 氚的生物学半衰期和放射性影响- 氚在人体内的生物学半衰期约为10-12天- 高水平的暴露可能导致DNA损伤并增加癌症风险3. 暴露限制和控制- 根据国际放射性防护委员会的建议,制定了对氚暴露的限制和控制标准- 水和食物的监测可以帮助评估和控制氚的暴露风险结论:自然界中氚的含量因地区和环境条件的不同而有所变化。
了解氚的来源和含量,以及其环境和健康影响的潜力,是确保我们的环境健康和人类安全的重要一步。
通过合理的监测和控制措施,我们可以减少氚对生态系统和人类健康的潜在风险。
大气氚同位素示踪在环境科学中的应用大气氚同位素示踪在环境科学中被广泛应用,它是一种独特且有效的方法,用于追踪和研究地球大气中的水循环过程、气候变化以及人类活动对环境的影响。
本文将介绍大气氚同位素的来源、检测方法、应用范围以及在环境科学研究中的意义。
首先,我们来了解一下大气氚同位素的来源。
大气氚同位素主要来自于地球上的水源,例如海洋、湖泊、河流和地下水。
它在大气中以水蒸气的形式存在,并通过降水的方式重新进入到地球表面。
然而,由于大气层中的各种化学和物理过程,大气氚同位素的含量会发生变化。
其次,我们来探讨大气氚同位素的检测方法。
目前,常用的检测大气氚同位素的方法是利用质谱仪测量样品中的氚同位素含量。
通过收集大气中的降水样品,并加工处理后,可以获得样品中氚同位素的含量数据。
这种方法可以准确地测量氚同位素,并在环境科学研究中得到广泛应用。
大气氚同位素示踪在环境科学中的应用范围非常广泛。
一方面,它可以用于研究水循环过程。
例如,通过测量大气中的降水样品中的氚同位素含量,可以追踪水蒸气从海洋到内陆的传输过程,进一步了解水循环的动态变化。
另一方面,大气氚同位素也可以用于研究气候变化。
通过分析不同年份降水中的氚同位素含量,可以了解气候变化对水循环的影响,进而预测未来的气候趋势。
此外,大气氚同位素还可以用于研究人类活动对环境的影响。
例如,通过测量城市降水中的氚同位素含量,可以评估城市污染物的排放对环境的影响程度。
大气氚同位素示踪在环境科学研究中的意义重大。
首先,它可以提供关于水循环和气候变化的重要信息,有助于我们更好地了解地球的水资源和气候系统。
其次,大气氚同位素还可以用于监测和评估人类活动对环境的影响,为环境保护和可持续发展提供科学依据。
此外,大气氚同位素的研究还可以为气象学、物理学和地质学等学科的发展提供新的视角和方法。
总之,大气氚同位素示踪在环境科学中的应用具有重要的意义。
通过测量氚同位素的含量,我们可以追踪和研究水循环过程、气候变化以及人类活动对环境的影响。
氚在土壤中的吸附特征研究的开题报告
一、研究背景和意义
氚(3H)是一种放射性元素,在环境中普遍存在,其长半衰期以及潜在的辐射危害使得对其行为的研究具有重要的环境和健康方面的意义。
氚通常被认为是一种通过地下水或者大气降水进入土壤、植被及互动的重要物种。
大量的实验表明,氚在土壤中的生物地球化学行为和迁移规律都受到了多种因素的影响,其中最重要的因素是土壤的化学性质和微观结构。
二、研究目的
本研究旨在探究不同化学性质和微观结构对氚在土壤中的吸附特征的影响,为深入理解氚的迁移和生物地球化学行为提供基础数据。
三、研究内容和方法
1.不同类型的土壤样品的收集和分析。
2.扫描电镜(SEM)和透射电镜(TEM)技术分析土壤微观结构。
3.氚的吸附实验分析:采用自然环境中常见的水热时效法和悬浮液法来探究不同类型的土壤在不同温度和时间下对氚的吸附特征和影响因素。
四、预期结果和意义
本研究的预期结果是揭示氚在不同化学性质和微观结构下的吸附特征,为进一步研究氚的生物地球化学行为和迁移提供基础数据。
研究结果对于预测和控制人类和动物受到氚辐射危害,以及减少氚在环境中的污染具有重要的意义。
参考文献
1.杨天祥等.氚在不同类型土壤中迁移规律的研究.核农学报,2005,5(5):348-35
2.
2.Guoqiang Liu,Haiyan Wu,Yu Chang.氢氚在土壤-地下水界面上的扩散和吸附特征研究.岩土工程学报,2012,34(2):293-298.
3.Wenhong Lu,Qingxiang Zhou,Mei Wang.氚吸附性能及其对土壤生物利用的影响.中国环境科学,2008,28(8):1435-1440.。
第一章地下水无机化学成分一、名词解释1、侵蚀性CO 2 :当水中“游离CO2 ”,不不大于“平衡CO2 ”时,多余某些CO2对碳酸和金属构件等具备侵蚀性,这某些CO2 ,即为“侵蚀性CO2 ”。
2、游离CO 2溶解于水中CO2统称为游离CO2.3、平衡CO 2与HCO3-相平衡CO2 ,称为平衡CO2 。
4、 Ph5、去硝化作用在缺氧条件下,异养型去氮菌把NO3-、NO2- (还原)分解为气态氮(N2O 和N2 )过程。
6、硝化作用在自养型亚硝化菌和硝化菌作用下,NH4+被氧化为亚硝酸盐和硝酸盐作用。
7、微量组分不决定水化学类型8、大量组分决定水化学类型,普通含量不不大于100mg/L9、组分二、填空题1、地下水中化学组分可以分为四组:(大量组分),(微量组分),(放射性组分),和(气体组分);水中性点 pH 值随温度升高而()。
2 、Cl - 具备很强迁移性能,其因素在于:(不形成难溶化合物),(不被胶体所吸附),(不被生物所吸附))。
碳酸衍生物存在形式与水 pH 值关于,当 pH>8 时,以()占优势:当 pH<5 时,则以()占优势。
3、细菌按呼吸方式分有和两大类。
三、简答题1、地下水中氟来源简况。
2、地下水中重要气体成分及来源。
3、何谓地下水中微量元素?研究它有何意义?4、什么是硝化作用或去硝化作用,它们各在什么环境中进行?四、阐述题试论地下水中二氧化碳来源及其水文地球化学意义。
第三章水及水中元素同位素成分(一)名词解释1、同位素效应由于某种元素一种同位素被另一同位素所替代,从而引起物质在在物理、化学性质上浮现差别现象,称之为同位素效应。
同位素效应是导致同位素分馏主线因素。
2、同位素分馏3、温度效应大气降水中δ18O和δD 随处面或云层温度升高而增大,反之,则减少。
4、纬度效应大气降水中δ18o和δD值随纬度增长而减少。
5、高程效应大气降水中δ18O和δD随海拔高度增长而下降现象6、大陆效应大气降水中δ18O和δD由沿海到大陆内部逐渐减少得现象7、季节效应降水δ18D和δD值随气温,湿度,蒸发和降水季节变化而发生周期变化。
第22卷 第9期2007年9月地球科学进展A DVAN CE S I N E AR T H S C I E N C EV o l.22 N o.9S e p.,2007文章编号:1001-8166(2007)09-0922-09同位素指示的巴丹吉林沙漠南缘地下水补给来源马金珠1,黄天明1,丁贞玉1,W. M.E dm unds2(1.兰州大学西部环境教育部重点实验室,甘肃 兰州 730000;2.O x f o r d C e n t r e f o r W a t e r R e s ea r c h,O x f o r d U n i ve r s it y,O x f o r d,O X13 Q Y,U K)摘 要:通过恢复巴丹吉林沙漠及其周边地区大气降水氚值,并结合区域稳定同位素组合特征,揭示了区域地下水氚年龄的多解性与地下水稳定同位素的温度效应。
恢复的1963年核试验期氚高峰值达到2100T U,进入90年代平均为60T U。
1960年以来降水补给的地下水氚值都应大于15 T U,而1963年的高峰氚衰变至今应在200T U左右。
地下水实测氚值较低,表明由现代少量降水补给的地下水与大量的古水进行了混合。
影响降水中δ18O和δ2H分布的主要影响因子是月平均空气温度,对δ18O与δ2H的影响权重分别占到59.9%和57.0%。
巴丹吉林沙漠及其周边地区地下水较低的稳定同位素组成表明,其补给主要是晚更新世较冷环境下形成的,来源于东南部的雅布赖山区,部分浅层地下水接受现代降水与河流的补给。
关 键 词:稳定同位素;氚值;地下水补给;巴丹吉林沙漠中图分类号:P641.3 文献标识码:A 由于巴丹吉林沙漠独特的地理位置与地貌景观,曾经吸引了众多学者的关注,对沙漠的形成演化、水文气候变化与地下水补给机理等方面都进行了卓有成效的研究。
但是对于沙漠南缘湖泊与地下水的补给来源、高大沙丘的形成机制等重大科学问题始终没有定论。
空气氚碳本底-概述说明以及解释1.引言1.1 概述概述空气中的氚碳本底是指空气中存在的氚和碳的自然含量。
氚是一种放射性同位素,它的存在主要是由太阳风、宇宙射线和核武器试验等人类活动产生的核爆炸所引起。
而碳本底则是指空气中存在的各种来源的碳元素,包括自然来源和人类活动所释放的碳。
随着人类日益增加的能源需求和工业发展的加速,大量的氚和碳元素被释放到大气中,导致空气中的氚碳本底逐渐升高。
这对空气质量和环境健康带来了一定的影响和挑战。
本文将分别探讨空气中的氚和碳本底,并详细介绍它们的来源、浓度分布以及影响因素。
同时,对于减少空气中的氚碳本底、改善空气质量的措施也进行了探讨和总结。
通过本文的研究,我们可以更全面地了解空气中的氚碳本底问题,为环境保护和可持续发展提供科学依据。
同时,我们也呼吁社会各界共同努力,采取有效的措施来减少氚碳本底的生成和排放,为改善空气质量和保护生态环境做出贡献。
1.2 文章结构本文共分为引言、正文、结论三大部分。
2. 正文部分主要包括空气中的氚和空气中的碳本底两个小节。
2.1 空气中的氚在本节中,将详细介绍空气中的氚的来源、特征和对环境的影响。
首先,介绍氚的物理性质和化学性质,并解释氚与水气和水汽之间的相互作用。
其次,探讨氚在大气中的主要来源,如氢弥散过程、地下水释放以及人类活动等。
接着,讲解氚的测量方法和监测技术,包括氚的测量原理、不同探测设备的应用以及测量结果的解读。
最后,分析氚对环境和人类健康的潜在风险,包括氚在空气中的迁移和传播路径、氚的辐射效应以及潜在的致癌和遗传毒性。
2.2 空气中的碳本底本节将详细探讨空气中的碳本底的形成机理、成分及其对大气环境的影响。
首先,介绍碳本底的概念和定义,以及碳元素在大气中的存在形式,如二氧化碳、一氧化碳等。
然后,深入研究碳本底的来源,包括自然源和人为源,如化石燃料燃烧、工业排放等。
接着,分析碳本底的影响因素,如气象条件、地理位置等,以及碳循环的过程和机制。
RESOLUTION OF DIFFERENCES IN CONCENTRATION OF NATURALLY OCCURRING TRITIUM IN GROUNDWATER TRACER STUDIESMichael P. NearyAUTHOR: Senior Research Scientist, Center for Applied Isotope Studies, University of Georgia, 120 Riverbend Rd., Athens, GA 30602.REFERENCE: Proceedings of the 2003 Georgia Water Resources Conference, held April 23-24, 2003, at the University of Georgia. Kathryn J. Hatcher, editor, Institute of Ecology, The University of Georgia, Athens, Georgia.Abstract. The objective of this article is to describe the technique for improving the detection level of tritium in water by employing tritium enrichment. The utility of the method will be demonstrated with real data from a variety of ground and surface water sources. Data are presented that emphasize the insensitivity of the analysis to the source of water and its chemical constituents, the reproducibility of the analysis, and the sensitivity of the analysis to small differences in tritium concentration. In summary, the utility and current limits of application of naturally occurring tritium as a ground water tracer will be discussed.INTRODUCTIONTritium, the heaviest isotope of hydrogen, is in constant production in the atmosphere from the interaction of the energetic products of cosmic radiation and nuclei found there. Tritium, thus produced, is quickly incorporated into the water molecule, condensed as precipitation, and enters the terrestrial and aquatic water inventory.Natural levels of tritium in ground water, surface water, and sea water may be higher than 40 T.U. in some cases, but average less than 20 T.U. in the majority of these water sources. In perched or sequestered water tritium concentrations approach zero T.U. and is referred to as ‘dead’ water. The fact that tritium concentration is nearly constant, supports the idea that tritium decay and tritium production rates are very nearly equal (Kaufman, 1954). Tritium labeled water is, by some estimates, a nearly conservative tracer and an ideal one for hydrological studies. In fact useful natural tritium concentrations can be less than the detection level of modern instrumentation, which is ~ 0.4 T.U. ± 100%.One way to measure environmental tritium levels that are less than the detection level of the counters requires tritium enrichment prior to analysis (Östlund,1962). The use of tritium as an environmental tracer has become a more attractive technique as ultra low background liquid scintillation counters have been developed and tritium enrichment perfected.Liquid scintillation analysis following tritium enrichment of the sample is the most cost effective means currently available. Other analytical means are available that provide high quality data but are more costly (Neary, 1997).TRITIUM ENRICHMENTTritium enrichment methods have been investigated that employ the sample volume reduction as a means of determining the enrichment factor (Östlund,1962). Because of spray and evaporative losses during electrolysis such a calibration means is crude at best. Currently, the most repeatable and accurate calibration means relies on the measurement of the enriched of deuterium, which is naturally occurring, and enriching simultaneously with tritium. Thus each sample has an internal standard that can be used to measure the enrichment factor. Tritium enrichment is usually employed when the amount of water available, before enrichment, exceeds the amount that can be counted in a particular vial of a given volume. The minimum detectable concentration, MDC, will determine the lower quantitative limitation of the analysis for a given amount of tritium enrichment (Currie, 1968). When lower tritium levels are to be measured, then more enrichment -a larger enrichment factor- will be required.Tritium enrichment results in two significant changes in the sample. The first is an increase in the tritium activity, hence enrichment; and second a reduction in volume. Tritium enrichment is usually employed when the ‘traditional’ background measurement predicts a lowest level of detection, LLD, that is greater than that required. The LLD is minimum when the background is minimum and the counting time is greatest. The MDC is minimum when the LLD is minimum, the counting efficiency isLLD'4.653(1.)MDC'LLD7.151(eff(decay(yield(quantity(enrich (2)maximum, and the maximum effective volume of sample is counted, the lowest possible MDC will result. The lowest possible MDC permits the measurement of the minimum tritium concentration that is statistically significant with respect to the prevailing background. The maximum effective sample volume is the product of the enrichment factor and the volume of enriched sample actually counted.Minimum Detectable ConcentrationThe Minimum Detectable Concentration, MDC , expressed in Tritium Units, T.U. or pico Curies per Liter, pCi/L, is based on the lowest level of detection, LLD, expressed in counts per minute, cpm. LLD is a signal- to-noise consideration, which is computed in terms of the numerical risks selected for Type I and Type II errors and the counting time. The MDC relationship depends on a units scaling factor, the LLD, the volume of water counted, the enrichment factor, and counting efficiency.The primary reason to enrich the tritium in water is when the selected MDA is lower than can be achieved with the volume of water to be counted, given the traditional or expected background, and counting efficiency. As a practical matter, enrichment is always an option if the available water sample exceeds volume of water that can be incorporated into the smallest counting vial available, because the smallest vial/volume will always exhibit the lowest LLD all other parameters being equal.The LLD relies on a pre-selected probability that a false positive will result and a pre-selected probability that a true positive will result during the sample count measurement. Suppose:1." = the probability that it will be falsely concludedthat activity is present in a sample or the probability of a Type I error (false positive); and2.$ = the probability that it will be falsely concludedthat activity is absent from the sample or theprobability of a Type II error (false negative). Thus the following relationships hold:3.1-" = the probability that it will be correctlyconcluded that activity is present in the sample,the probability of a true positive and4.1-$ = the probability that it will be correctlyconcluded that activity is absent from the sample,the probability of a true negative.The strategy of (Currie,1968) has been widely adopted by radio chemistry laboratories. The development of a measure of the limit of detection that accounts for both Type I and Type II error is outlined in (Currie, 1968, Neary ,1997). The LLD net count rate, RN, as it approaches the background rate, RB,may be expressed by the following,For detectors that have very low backgrounds and low counting efficiency, Equation (1) include another term to account for the probability of falsely concluding that activity was present in the sample. The magnitude of the term is usually about 2.7.From Equation (1) it is clear that the magnitude of the LLD or the minimum net counting rate detectable over the background rate can be reduced by either background rate reduction and/or increasing the counting time. The relationship between MDC and the LLD is given by Equation (2). To further illustrate the circumstances under which tritium enrichment serves to permit a particular MDC, the relationship between MDC and the LLD is given in terms of the enrichment factorwhere:7.151= the ratio of DPM to Tritium Units (T.U.),eff= the counting efficiency or the ratio of CPM to DPM, decay = the radioactive decay or ingrowth that occurs during the count time and is unitless,yield= the fraction of the total amount of the nuclide present in the sample that is actually retrieved bythe chemical preparation of the sample aliquot andcounted,enrichmentfactor= the enrichment factor or ratio of the initial to final tritium concentrations, andquantity= the amount of enriched sample counted.The expressions for MDA and LLD, derived in detail (Neary 1997), must govern the selection of the counting experiment parameters. The decision to enrich tritium in a water sample is based on the MDC required and the quantity of water available to enrich. Thus, thebackground counts, the counting time, the counting efficiency, the sample volume to be counted, and the enrichment factor will determine the MDC. The estimated enrichment factor may rely on traditional values of the counting efficiency, and background, and a selected counting time. Thus, in advance of the water sampling, it is possible to determine the volume to be collected and the analytical parameters shown above.PROCEDUREThe basis for the tritium enrichment method is electrolysis of water (Ostlund, 1962). The typical electrolysis cell can electrolyze about 160 ml at a time; but with periodic additions of sample to the cell much more of the sample can be electrolyzed. For any sample volume the minimum final or recovered volume is ~5.00mL. The electrode assembly is comprised of a Nickel anode and an Iron cathode. Prior to electrolysis the electrolyte is made alkaline with sodium peroxide (~10 mg/ml). The enriched product is neutralized Dry CO2gas. The neutralized product is vacuum distilled with a double dry ice-isopropanol slush trap collection system.Both the method and apparatus are described in detail elsewhere (DOE,1990, EPA, 1980, Neary,1997)EXPERIMENTALTritium enrichment results in a single significant change in the sample, the increase in the tritium concentration, hence tritium enrichment. With the background minimized, counting efficiency maximized, and sample tritium concentration maximized, the lowest minimum detectable concentration, MDC, will define the lowest tritium concentration that can be detected.The MDC is based on the lowest level of detection, LLD, a signal to noise consideration, which is computed in terms of the numerical risks selected for Type I and Type II errors and the counting parameters (Currie, 1968, Neary,1997). The MDC relationship depends on the volume of water counted, and counting efficiency. As a practical matter, enrichment is always an option if the sample water exceeds the volume of water that can be accommodated by the smallest counting vial available. Because the smallest vial/volume will always exhibit the lowest LLD, all other parameters being equal, some advantage will accrue from enrichment.Thus, the necessity and extent of tritium enrichment should be defined by the analytical requirements of the experiment.DATAAll of the results were expressed in Tritium Units T.U. where 1 T.U. corresponds to 1 tritium atom in 1018 protons. The uncertainty is given at a 1 F confidence level and is the propagated uncertainty. The MDC is calculated according to (Neary,1997). Where deuterium data are listed, they are presented in parts per million, ppm. Deuterium concentration by enrichment can be related to the tritium enrichment and thus serves as an internal standard.The first data sets demonstrate the analytical advantage conferred by tritium enrichment. The first set of data are the results of analyzing tritium in the samples indicated without enrichment. The second data set are their results of analyzing the tritium concentration in the same samples after tritium enrichment. The counting conditions are the same in both cases except the counting time without enrichment was half that of the counting time with enrichment. For the data from the without enrichment measurements none of the tritium results are statistically significant because they are all less than the MDC; and their propagated errors are greater than the corresponding tritium result.Table 1. Arctic Ocean WaterWithout EnrichmentSample Tritium Propagated MDCID Concentration.Error T.U.T.U± T.U.1 2.1111.0114.62 2.4510.9614.638.6711.1714.547.2811.4514.55 1.4111.0114.567.4811.1814.4With EnrichmentSample Tritium Propagated MDC Enrichment ID Conc. Error T.U. FactorT.U± T.U.1 1.63 0.430.70 17.252 1.62 0.350.53 22.803 5.91 0.430.46 26.454 3.84 0.360.47 25.115 4.20 0.580.42 28.816 3.85 0.440.45 27.01In the next example, Spring Water fed by a confined aquifer in the American Southwest was enriched prior to tritium analysis. The results show ± 0.6 T.U. (CI=1) agreement between the sample and its duplicate results and very low MDCs. It is clear from the results for the other spring that recharge patterns may be different in the aquifer if it feeds both springs. The results could provide clear support of such a claim. The dead water, DW, verifies that no contamination occurred during the preparation and measurement of the sample tritium concentration.Table 2. Spring Water American Southwest Sample Tritium Propagated MDCID Concentration Error T.U.T.U.± T.U.DSpring12.980.600.73DSpring dup13.090.610.74 RSpring9.570.530.83DW0.240.20 1.06 The next example demonstrates a well mixed water source that drawn from a large irrigation reservoir in the American Southwest. The fact that it is well mixed is suggested by the agreement among and between the tritium concentration in the samples. The agreement of the duplicates at the 5 TU level provides confidence in the results for the other samples.Table 3. American SouthwestReservoir WaterSample Tritium Propagate MDC DID Conc. Error T.U. ppmT.U.± T.U.1 5.310.44 0.24140.982 5.380.29 0.10142.403 5.510.32 0.13148.664 5.990.40 0.21140.155 5.460.32 0.55141.615 dup 5.340.31 0.55141.796 5.730.37 0.75146.12DW0.470.13 0.60161.36Table 4. American South - Tunnel Seep Sample Tritium Propagated MDC DID Conc. Error T.U. ppmT.U. ±T.U.JD 1JD 2 8.12 0.48 0.80 147.94JD 316.24 0.89 1.34 147.53JD 415.40 0.81 1.14 147.61JD 58.23 0.44 0.62 147.42JD 69.44 0.50 0.70 147.94JD 78.17 0.50 0.91 147.64JD 7 D8.66 0.53 0.75 147.64DW 10.57 0.19 0.56 151.25DW 20.20 0.20 0.20 151.41The last set of samples is from selected seeps in a tunnel in the American South. The results were used ultimately to establish that surface water was entering the aquifer and selectively feeding two of the seeps sampled in a tunnel, JD 3 and JD 4.DISCUSSIONComparing the measured tritium concentrations listed in Table 1. for ‘With Enrichment’ and ‘Without Enrichment’, a trend toward lower tritium concentration for the tritium enriched samples is evident that cannot be justified on the basis of the estimated propagated uncertainty and the MDC, also listed in the table. It is often the case for tritium concentrations near background that it is unusually neither practical nor possible to measure tritium concentrations that meet the statistical criteria specified by the propagated error and the MDC. From the tritium concentration measured for these samples after tritium enrichment however the statistical criteria are meet without exception. These samples were drawn from the Arctic Ocean with in the normal range of salinity 34 to 36 0/00. Each sample was first carefully distilled, making certain the spray from the boiling pot did not carry over into the receiver. Reversible electrolytic couples can result for metal chlorides that extend the electrolysis time. In the case of these samples enough raw sample was distilled to provide 150 mL of distillate for electrolysis. Enrichment factors varied from 17X to 28X, averaging about 25X after 7-8 days of electrolysis. The details of the electrolysis are described in detail elsewhere (Neary,1997).Table 2. Lists tritium concentration measured in carbonate rich spring water after electrolysis of a distilled aliquant. This sample type presents the same problems encountered with brackish or brine waters. They must be stripped of their salt burden by distillation or other ion selective means. Duplicate results from the sample DSpring are shown to indicate that the reproducibility of the analytical method is acceptable ±0.06 T.U.. The difference in the tritium measured in the samples RSpring and DSpring is statistically significant and therefore uniquely identifies one source over the other. A tritium measurement in ‘dead’ water is supplied to represent a reference background level.Table 3. lists tritium concentrations in water samples drawn from the same depth of a quiescent irrigation reservoir before the introduction of spring run-off. A striking feature of the data is its dispersion. Likewise for the deuterium listed as well. Deuterium is measured before and after each electrolysis as a means of determining the enrichment factor. The reproducibility was ±0.03 T.U. .Table 4. lists tritium concentrations in water samples drawn from tunnel seeps. The magnitude of the tritium concentrations, the associated propagated error estimates, and MDC meet the needed statistically criteria to establish uniqueness between JD3 or JD4 and the rest of the samples. The deuterium data could not have served that purpose.In conclusion, tritium enrichment prior to analysis permits the identification of statistically unique levels and differences in tritium concentrations at ~1 T.U. level of <1 T.U.. With greater enrichment factors even lower levels may be measured. Such a measurement without tritium enrichment would be hopeless below ~10 T.U. and daunting at 20 T.U.. To better access water resources facile tracers with improved sensitivity are useful. The use of tritiated water as a tracer at or below ambient concentrations can be significantly broadened improved by tritium enrichment.BIBLIOGRAPHYCurrie, L. A., “Limits for Qualitative Detection and Quantitative Determination”, Analytical Chemistry,Vol.40, No.3, pgs 586-593, March 1968. Kaiuchi, M.,”Natural Tritium Measurements:Determination of Electronic Enrichment Factor ofTritium”, Int. J. Appl. Radiat. Isot., Volume 42,Number 8, pgs. 741-748, 1991.Kaufman, S., &Libby, W., “The Natural Distribution of Tritium”, Physical Review, Volume 93,Number 61954.Neary, M.P., “Tritium Enrichment-To Enrich or Not to Enrich?”, Radioactivity & Radiochemistry, Volume 8, Number 4,1997.Östlund,H.G. “The Electrolytic Enrichment of Tritium and Deuterium for Natural Tritium Levels”. Tritium in the Physical and Biological Sciences, Volume 1, Number 95, IAEA, Vienna, 1962.U.S. Environmental Protection Agency Prescribed Procedures for Measurement of Radioactivity inDrinking Water, Appendix C; EPA 600/4-80-032,August 1980.U.S. Department of Energy; Quality Control and Detection Limits - Section 4.5.3. EnvironmentalMeasurements Laboratory-Procedures Manual27th Edition; U.S. Department of Energy:Washington, DC; November 1990.。