奥数 染色问题
- 格式:docx
- 大小:442.47 KB
- 文档页数:3
专题14 染色问题1.下图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?2.展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入口进去,不重复地参观完全部展室后,从出口出来呢?3.图中的16个点表示16个城市,两个点之间的连线表示这两个城市有公路相通.问能否找到一条不重复地走遍这16座城市的路线?4.下图是由4个小方格组成的“L ”形硬纸片,用若干个这种纸片无重叠地拼成一个4 n 的长方形,试证明:n 一定是偶数.5.中国象棋盘上最多能放几只马互不相“吃”(“马”走“日”字,另不考虑“别马腿”的情况).6.能否用一个田字和15个4⨯1矩形覆盖8⨯8棋盘?7.能否用1个田字和15个T 字纸片,拼成一个8⨯8的正方形棋盘?8.在8⨯8棋盘上,马能否从左下角的方格出发,不重地走遍棋盘,最后回到起点?若能请找出一条路,若不能,请说明理由.9.下面三个图形都是从4⨯4的正方形分别剪去两个1⨯1的小方格得到的,问可否把它们分别剪成1⨯2的七个小矩形?(1)(2) (3)10.把三行七列的21个小格组成的矩形染色,每个小格染上红、蓝两种色中的一种.求证:总可以找到4个同色小方格,处于某个矩形的4个角上(如图)红红红红11.17个科学家互相通信,在他们的通信中共讨论3个问题,而任意两个科学家之间仅讨论1个问题.证明:至少有3个科学家,他们彼此通信讨论的是同一个问题.12.用一批1⨯2⨯4的长方体木块,能不能把一个容积为6⨯6⨯6的正方体木箱充塞填满?说明理由.13.在平面上有一个27⨯27的方格棋盘,在棋盘的正中间摆好81枚棋子,它们被罢成一个9⨯9的正方形.按下面的规则进行游戏:每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子,放进紧挨着这枚棋子的空格中,并把越过的这格棋子取出来.问:是否存在一种走法,使棋盘上最后恰好剩下一枚棋子?14.12⨯12的超极棋盘上,一匹超级马每步跳至3⨯4矩形的另一角(如图).问能否从任一点出发遍历每一格恰一次,再回到出发点(这种情况又称马有“回路”)?123———————————————答 案—————————————————————— 1. 不能.对房间染色,使最下面的两个房间染成黑色,与黑色相邻的房染成白色,则图中有7个黑色房间和5个白色房间.如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的. 2. 不能.对展室进行染色,使相邻两房间分别是黑色和白色的.此时入口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个展室,入口与出口展室的颜色应该不相同. 3. 不能.对这16个城市进行黑白相间的染色,一种颜色有9个,另一种颜色有7个.而要不重复地走遍这16个城市,黑色与白色的个数应该相等. 4. 如图,对4⨯n 长方形的各列分别染上黑色和白色.任一L 形纸片所占的3黑1白,第二类占3白1黑.设第一类有a 个,第二类有b 个,因为涂有两种颜色的方格数相等,故有3b +a =3a +b ,即a =b ,也就是说第一类与第二类相等,因此各种颜色的方格数都是4的倍数,总数是8的倍数,从而n 是偶然.5. 将棋盘黑白相间染色,由“马”的走法可知,放在黑点上的“马”,只能吃放在某些白点上的马.整个棋盘上黑、白点的个数均为45,故可在45个黑点放上马,它们是不能互吃的.6. 如图的方式对棋盘染色.那么一个田字形盖住1个或3个白格,而一个4⨯1的矩形盖住2个白格.这样一来一个田字和15个4⨯1的矩形能盖住的白格数是一个奇数,但上图中的白格数是一个偶数,因此一个田字形和15个4⨯1的矩n 个7. 将棋盘里黑白相间涂色.一个田字形盖住2个白格,一个T字形盖住3个或1个白格.故1个田字和15个T字盖住的白格数是一个奇数,但棋盘上的白格数是一个偶数.因此一个田字形和15个T字形不能盖住8⨯8的棋盘.8. 将棋盘黑白相间地染色后,马的走法是从一种颜色的格子跳到另一种颜色.棋盘上有32个白格与32个黑格,故马可能跳遍整个棋盘.图中给出了一种走法.564158355039603347445540593451384257464936533261454843543162375220530632211161329642141714251061922782312151287183269249. 先对4⨯4的棋盘黑白相间的涂色(如图),这道题的实际问题是问7个1⨯2矩形能否分别复盖剪去A、B;剪去A、C;剪去A、D的三个棋盘.若7个1⨯2矩形可以复盖剪残的棋盘,因为每个1⨯2矩形均可盖住一个白格和一个黑格,所以棋盘的白格与黑格数目应该相等.都是7个.而剪去A格和C格的棋盘(2)有5个白格8个黑格,剪去A、D的棋盘(3)有5个白格8个黑格,因此这两个剪损的棋盘均不能被7,也就不能剪成7个1⨯2的矩形.棋盘(1)可以被7个1⨯2的矩形所复盖.下面给出一种剪法:A11277B26543654310. 在第一行的7格中必有4格同色,不妨设这4格位于前4个位置,且均为红色.然后考虑前4列构成的3⨯4矩形.若第二行和第3行中出现2个或2个以上的红色格子.则该行的两个红色格子与第一行的红色格子就组成一个4角同为红色格子的矩形.若不然,则第2、3行中都至少有3个蓝格在前4列中,不妨设第2行前3格为蓝色,显然第三行中的前3格中至少有2个蓝格,故在二、三行的前4列中必存在四角都是蓝色的矩形.11. 将17个科学家用17个点代表,两点之间连结的线段表示两个科学家之间讨论的问题.用三种颜色给这些线段染色,表示三个问题,于是问题就变成:给17个点之间的所有连结线段用三种颜色染色,必有同色三角形.从任意一点,不妨设从A 向其他16点A 1,A 2,…A 16共可连成16条线段,用三种颜色染色,由抽屉原则可知,必有6条线段同色.设这6条线段为AA 1,AA 2,…AA 6且同为红色.考虑A 1,A 2,A 3,A 4,A 5,A 6这六点之间的连线,若有一条为红色,(如A 1A 2为红色) ,则三角形AA 1A 2为红色的同色三角形.若这六点之间的连线中,没有一条是红色的,则它们之间只能涂两种颜色.考虑从A 1引出的五条线段A 1A 2 A 1A 3 A 1A 4 A 1A 5 A 1A 6,由抽屉原理知,其中必有三条是同色的.不妨设这三条为A 1A 2 A 1A 3 A 1A 4,且同为蓝色.若三角形A 2A 3A 4的三边中有一条为蓝色的,则有一个蓝色的三角形存在;若三角形A 2A 3A 4三边都不是蓝色的,则它的三边是同为第三色的同色三角形.12. 把正方体木箱分成27个小正方体,每个小正方体的体积为2⨯2⨯2=8.将这些正方体如右图黑白相间染上色.显然黑色2⨯2⨯2的正方体有14个,白色2⨯2⨯2小正方体有13个.每一个这样的正方体相当于8个1⨯1⨯1的小正方体.将1⨯2⨯4的长方体放入木箱,无论怎么放,每个长方体木块盖住8个边长为1的单位正方体,其中有4个黑色的,4个白色的.木箱共含6⨯6⨯6=216个单位正方体,26个长方体木块共盖住8⨯26=208个单位正方体,其中黑白各占104个,余下216-208=8个单位正方体是黑色的.但是第27个1⨯2⨯4长方体木块不管怎样A A 1A 2A 3A 4A 5A 6A 1A 2A 3A4放,也无法盖住这8个黑色单位正方体.13. 如图,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘分成了三个部分.按照游戏规则,每走一步,有两种颜色方格中的棋子数分别减少了1个,而第三种颜色的棋子数增加了一个.这表明每走一步,每个部.因为一开始时,81枚棋子摆成一个9 9的正方形,显然三个部分的棋子数是相同的,从而每走一步,三部分中的棋子数的奇偶性是相同的.如果走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另一部分上的棋子数为奇数.这种结果是不可能出现的.14. 用两种方法对超级棋盘染色.首先,将棋盘黑白相间染色,则马每跳一步,它所在的方格就要改变一次颜色.不妨设第奇数步跳入白格.其次,将棋盘的第3,4,5及8,9,10这六行染成黑色,其余六行染成白色.在此种染色方式下,马从白格一定跳入黑格.又因黑白格总数相同,马要遍历每一格恰一次又回到出发点,因此,马从黑格只能跳入白格而不能跳入黑格.不妨设马第奇数步跳入白格.但是对于一种满足要求跳法,在两种染色方式下第奇数步跳入的格子的全体是不同的,这显然是不可能的,故题目要求的跳法是不存在的.。
小学奥数杂题染色问题【三篇】
导读:本文小学奥数杂题染色问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】 1.如图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?
解析:对房间染色,使最下面的两个房间染成黑色,与黑色相邻的房染成白色,
则图中有7个黑色房间和5个白色房间.
如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.
点评:完成本题也可根据要求据图中的房间实际找下路线,看是否能够找到.【第二篇】展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入口进去,不重复地参观完全部展室后,从出口出来呢? 答案:不能.对展室进行染色,使相邻两房间分别是黑色和白色的.此时入口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个展室,入口与出口展室的颜色应该不相同. 【第三篇】染色问题基本解法:三面涂色和顶点有关8个顶点。
两面染色和棱长有关。
即新棱长(棱长-2)×12一面染色和表面积有关。
同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6 0面染色和体积有关。
用新棱长计算体积公式(棱
长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。
五年级奥数:染色问题染色问题的解题思路染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。
图一首先,拿到一道题先认真观察,看这个题的突破点。
什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。
例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。
找到这个区域问题就容易解决了。
这个区域可以任意添色就是染最多的颜色。
本题中有4种颜色那么A可以染4种颜色了。
完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。
这道题找到了最特殊的A区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。
区域B跟A、C相连那么 B可以染2种。
D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。
E连接A、D也有两种可能。
F也是连接着A、E有两种可能。
这道题就解出来了。
有4×3×2×2×2=96种可能。
这道题跟以下一道题有异曲同工之效,大家不妨一起看下图二。
图二图中A与B、C相连有4种染色方式,为第一特殊区域。
而B是与A相连的第二特殊区域(切记,此时选第二特殊区域,乃是跟第一特殊区域相连的一个区域)B有3种可能,C连接A、B则有2种可能,D连接B、C则有2种可能,同理E也有2种可能。
所以此题有4×3×2×2×2=96种可能的染色。
再来看一个稍微复杂点的问题如图三 图三图中A有5种染色方式C------ 4,B-----3,D-----3,E------3,F------3,G------3。
1. 如右图,对A,B,C,D,E五个区域分别用红黄绿蓝白五种颜色中的某一种来着色,规定相邻的区域着不同色,问有多少种不同的着色方案?【组合十讲P37】2 用红黄蓝三种颜色涂在右图的圆圈中,每个圆圈中,每个圆圈只涂一种颜色,并且要使每条连线两端的圆圈涂上不同颜色,问一共有多少种不同的涂法?3.某植物园计划在A,B,C,D,E五个地块栽种四种不同颜色的郁金香,每个地块内的郁金香必须同色,相邻的(有公共边界的)地块郁金香不能同色,不相邻可以同色,问共有多少种不同的方案?4。
如图对A,B,C,D,E,F,G七个区域分别采用红,黄,绿,蓝,白五种颜色中的某一种来着色,规定相邻的区域不能同色,那么有多少种不同的着色方案?5.用红,黄,蓝,三种颜色把如图的8个小圆圈涂上颜色,每个圆圈只涂一种颜色,并且有连线的两个圆圈不能同色,那么有多少种不同涂色方案?【希望杯P107】6. 一根划分成相等5段的钢管,若要用红,白两种颜色分别对每一段着色,问共有几种不同的涂色方案?(倒置后相同的两种涂色方案视为同种)8。
如图用4种颜色对A,B,C,D,E五个区域涂色,要求相邻的区域涂不同的颜色,那么,共有几种涂法?9。
用三种颜色染正方体的6条边,相邻边不同色,有多少种染法?【教程P133】10. 如图,用红,黄,蓝三种颜色给一个五边形的各个顶点染色,同一边的两段点不能同色,且顶点A 必须染红色,请问:有多少种不同的染色方案?【高斯导引P76】11。
如图一个圆环被分成8部分,先将每一部分染上红,黄,蓝三种颜色之一,要求相邻两部分颜色不同,共有多少种不同染色方案?12. 如图,用4种不同的颜色将图中的圆圈分别涂色,要求有线段连接的两个相邻的圆圈必须涂不同的颜色,共有几种涂法?(不许旋转翻转)13 给一个正四面体的4个面染色,每个面只允许用一种颜色,且4个面的颜色互不相同,现有5种颜色可选,共有多少种不同的染色方案?14. 用4种颜色为一个正方体的6个面染色,要求每个面只能用1种颜色,且乡邻面的颜色必须不同,如果将正方体经过反转后颜色相同视为同一种,那么共有多少种不同的染色方案?17.用红,黄,蓝三种颜色对右图进行染色,要求相邻两块颜色不同,共有多少种不同的染色方案? 【简明读本P191】1。
二十染色问题(1)年级班姓名得分( 编者按 : 由于内容本身的限制 , 本讲不设填空题 )1.某影院有 31 排, 每排 29 个座位 . 某天放映了两场电影 , 每个座位上都坐了一个观众 . 如果要求每个观众在看第二场电影时必须跟他 ( 前、后、左、右 ) 相邻的某一观众交换座位 , 这样能办到吗为什么2.如图是一所房子的示意图 , 图中数字表示房间号码 , 每间房子都与隔壁的房间相通 . 问能否从 1 号房间开始 , 不重复的走遍所有房间又回到 1 号房间1234567893.在一个正方形的果园里 , 种有 63 棵果树、加上右下角的一间小屋 , 整齐地排列成八行八列 ( 见图 ( a)). 守园人从小屋出发经过每一棵树 , 不重复也不遗漏( 不许斜走 ), 最后又回到小屋 , 行吗如果有 80 棵果树 , 连小屋在内排成九行九列( 图( b)) 呢(a)(b)4.一个 8 8 国际象棋 ( 下图 ) 去掉对角上两格后 , 是否可以用 31 个 2 1 的“骨牌” ( 形如)把象棋盘上的62个小格完全盖住5.如果在中国象棋盘上放了多于45 只马 , 求证 : 至少有两只马可以“互吃”.6. 空间 6 个点 , 任三点不共线 , 对以它们为顶点的线段随意涂以红色或蓝色 , 是否必有两个同色三角形7.如图 , 把正方体分割成 27 个相等的小正方体 , 在中心的那个小正方体中有一只甲虫 , 甲虫能从每个小正方体走到与这个正方体相邻的 6 个小正方体中的任一个中去 . 如果要求甲虫能走到每个小正方体一次 , 那么甲虫能走遍所有的正方体吗8.中国象棋的马走“日”字 , 车走横线或竖线 , 下图是半张中国象棋盘 , 试回答下面的问题 :A B一只马从起点出发 , 跳了 n 步又回到起点 . 证明 : n 一定是偶数 .9.中国象棋的马走“日”字 , 车走横线或竖线 , 下图是半张中国象棋盘 , 试回答下面的问题 :A B一只马能否跳遍这半张棋盘, 每一点都不重复 , 最后一步跳回起点10.中国象棋的马走“日”字 , 车走横线或竖线 , 下图是半张中国象棋盘 , 试回答下面的问题 :A B证明 : 一只马不可能从位置 B 出发 , 跳遍半张棋盘而每个点都只经过一次 ( 不要求最后一步跳回起点 ).11.中国象棋的马走“日”字 , 车走横线或竖线 , 下图是半张中国象棋盘 , 试回答下面的问题 :A B一只马能否从位置 B 出发 , 用 6 步跳到位置 A 为什么12.中国象棋的马走“日”字 , 车走横线或竖线 , 下图是半张中国象棋盘 , 试回答下面的问题 :A B一只车从位置 A 出发 , 在这半张棋盘上走 , 每步走一格 , 走了若干步后到了位置 B. 证明 : 至少有一个格点没被走过或被走了不止一次 .8 的国际象棋棋盘能不能被剪成 7 个 2 2 的正方形和 9 个 4 1 的长方形如果可以 , 请给出一种剪法 ; 如果不行 , 请说明理由 .14.( 表 1) 是由数字 0,1 交替构成的 ,( 表 2) 是由 ( 表 1) 中任选、、三种形式组成的图形 , 并在每个小方格全部加 1 或减 1, 如此反复多次进行形成的 , 试问 ( 表 2) 中的 A格上的数字是多少并说明理由 .1010101001010101101010100101010010101010010101011010101001010101表1111111111111111111111111111111111 1 1 1 1 1 A 11 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11表2———————————————答案——————————————————————1.把影院的座位画成黑白相的矩形.(29 31), 共有 899 个小方格 . 不妨假定四角黑格 , 共有黑格 450 个, 白格 449 个.要求看第二影 , 每位众必跟他相的某一众交位置 , 即要求每一黑白格必互 , 因黑白格的数不相等 , 因此是不可能的 .2.将号奇数的房染成黑色 , 号偶数的房染成白色 . 从 1 号房出 , 只能按黑白黑白⋯⋯的次序,当走遍九个房在黑色房中 , 个房不与 1 号房相 , 故不能不重复地走遍所有房又回到 1 号房 .3.(a) 行, 走法如所示 .(a)(b) 不行 , 将小屋染成黑色 , 果染成黑白相的色 ,(b) 中有 41 个黑色的 ,40 个白色的 . 从小屋出 , 按黑白黑白⋯⋯的次序,当走遍 80 棵后 , 到达的的色是黑色 , 与小屋不相 , 故不可能最后回到小屋 .4.不能 . 原因是每一个 2 1 的矩形骨牌一定恰好盖住一个黑格和一个白格,31 个的骨牌恰好盖住 31 个黑格和 31 个白格 .但是国象棋棋上角两格的色是相同的 , 把它去掉后剩下的是 30 个白格 ,32 个黑格 , 或 32 个白格 ,30 个黑格 , 因此不能盖住 .5.中国象棋棋盘上有 90 个交叉点 , 把棋盘分成 10 个小部分 , 每部分有33=9 个交叉点 , 由抽屉原则知 , 至少有一个小部分内含有 6 只马 .将这一小部分的 9 个交叉点分别涂上黑色及白色 . 总有两只马在不同颜色交叉点上 , 故一定有两只马“互吃”.6.设这六个点为 A、 B、 C、 D、 E、 F. 我们先证明存在一个同色的三角形 :考虑由 A 点引出的五条线段 AB、AC、AD、AE、AF,其中必有三条被染成了相同的颜色 , 不妨设 AB、AC、AD三条同为红色 . 再考虑三角形 BCD的三边 : 若其中有一条为红色 , 则存在一个红色三角形 ; 若这三条都不是红色 , 则三角形 BCD为蓝色三角形 .BCAD下面再来证明有两个同色三角形, 不妨设三角形 ABC的三边同为红色 .(1)若三角形 DEF也是红色三角形 , 则存在两个同色三角形 .(2)若三角形 DEF中有一条边为蓝色 ( 不妨设 DE), 下面考虑 DA、DB、 DC三条线段,其中必有两条同色 .①若其中有两条是红色的 , 如 DA、DB是红色的 , 则三角形 DAB为第二个同色三角形 ( 图 1).D AE B C( 图 1)②若其中有两条是蓝色的 , 设 DA、DB为蓝色 ( 图 2). 此时在 EA、EB两条线段中 , 若有一条为蓝色 , 则存在一个蓝色三角形 ; 若两条都是红色的 , 则三角形 EAB 为红色三角形 .综上所述 , 一定有两个同色三角形 .7.甲虫不能走遍所有的立方体 .我们将大正方体如图分割成 27 个小正方体 , 涂上黑白相间的两种颜色 , 使得中心的小正方体染成白色 , 再使两个相邻的小正方体染上不同的颜色 . 显然在 27 个小正文体中 ,14 个是黑的 ,13 个是白的 . 甲虫从中间的白色正方体出发 , 每走一步 , 小正方体就改变一种颜色 . 故它走 27 步, 应该经过 14 个白色的小正方体 ,13 个黑色的小正方体 . 因此在 27 步中至少有一个白色的小正方体 , 甲虫进去过两次 . 故若要求甲虫到每个小正方体只去一次 , 甲虫就不能走遍所有的小正方体 .8.将棋上的各点按黑白相的方式染上黑白二色 .由“ 步”的行走 , 当“ ”从黑点出 , 下一步只能跳到白点 , 以后依次是黑、白、黑、白⋯⋯要回到原出点 ( 黑点 ), 它必跳偶数步 .9.不能 . 半象棋共有 45 个格点 , 从起点出跳遍半棋 , 起点与最后一步同色 . 故不可能从最后一步跳回起点 .10.与 B 点同色的点 ( 白点 ) 有 22 个, 异色的点 ( 黑色 ) 有 23 个. 从 B 点出 , 跳了 42 步 , 已跳遍了所有的白色 , 剩下两个黑点 , 但是不能跳两个黑点 .11.不能 . 因 A、B 两点异色 , 从 B 到 A 所跳的步数是一个奇数 .12.“ ”每走一步 , 所在的格点就会改一次色 . 因 A、B 两点异色 , 故从 A 到B“ ”走的步数是一个奇数 . 但半棋共有 45 个格点 , 不重复地走遍半棋要 44 步,但44 是一个偶数 .13.如 8 8 的棋染色 , 每一个 4 1 的方形能盖住 2 白 2 黑小方格 , 而每一个 2 2 的正方形能盖住 1 白 3 黑或 1 黑 3 白小方格 , 那么 7 个 22的正方形盖住的黑色小方格数是一个奇数, 但中黑格数32 是一个偶数 . 故种剪法是不存在的 .+1+1-1-1+1+1+1+1+1-1-1+1+1+1+1+1-1-1-1-1 -1+1 +1-1-1-1-1 -1+1 +1-1 -114.如下所示 , 将表 (1) 黑白相地染色 .表(1)本题条件允许如图所示的 6 个操作 , 这 6 个操作无论实行在那个位置上 , 白格中的数字之和减去黑格中的数字之和总是一个常数 , 所以表 1 中白格中数字之和与黑格中数字之和的差即 32, 等于表 2 中白格中数字之和与黑格中数字之和的差即(31+A)-32, 于是 (31+A)-32=32, 故 A=33.二十染色问题(2)年级班姓名得分1.下图是一套房子的平面图 , 图中的方格代表房间 , 每个房间都有通向任何一个邻室的门 . 有人想从某个房间开始 , 依次不重复地走遍每一个房间 , 他的想法能实现吗2.展览会有 36 个展室 ( 如图 ), 每两相邻展室之间均有门相通 . 能不能从入口进去 , 不重复地参观完全部展室后 , 从出口出来呢3.图中的 16 个点表示 16 个城市 , 两个点之间的连线表示这两个城市有公路相通 . 问能否找到一条不重复地走遍这 16 座城市的路线4.下图是由 4 个小方格组成的“ L”形硬纸片 , 用若干个这种纸片无重叠地拼成一个 4 n 的长方形 , 试证明 : n 一定是偶数 .5.中国象棋盘上最多能放几只马互不相“吃” ( “马”走“日”字 , 另不考虑“别马腿”的情况 ).6.能否用一个田字和 15 个 4 1 矩形覆盖 8 8 棋盘7. 能否用 1 个田字和 15 个 T 字纸片 , 拼成一个 88 的正方形棋盘8.在 8 8 棋盘上 , 马能否从左下角的方格出发 , 不重地走遍棋盘 , 最后回到起点若能请找出一条路 , 若不能 , 请说明理由 .9. 下面三个图形都是从 4 4 的正方形分别剪去两个 1 1 的小方格得到的 , 问可否把它们分别剪成 1 2 的七个小矩形(1)(2)(3)10.把三行七列的 21 个小格组成的矩形染色 , 每个小格染上红、蓝两种色中的一种 . 求证 : 总可以找到 4 个同色小方格 , 处于某个矩形的 4 个角上 ( 如图 ) 1红红红红2个科学家互相通信 , 在他们的通信中共讨论 3 个问题 , 而任意两个科学家之间仅讨论 1 个问题 . 证明 : 至少有 3个科学家 , 他们彼此通信讨论的是同一个问题 .12. 用一批 1 2 4 的长方体木块 , 能不能把一个容积为 6 6 6 的正方体木箱充塞填满说明理由 .13.在平面上有一个 27 27 的方格棋盘 , 在棋盘的正中间摆好 81 枚棋子 , 它们被罢成一个 9 9 的正方形 . 按下面的规则进行游戏 : 每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子 , 放进紧挨着这枚棋子的空格中 , 并把越过的这格棋子取出来 . 问: 是否存在一种走法 , 使棋盘上最后恰好剩下一枚棋子12 的超极棋盘上 , 一匹超级马每步跳至 3 4 矩形的另一角 ( 如图 ). 问能否从任一点出发遍历每一格恰一次 , 再回到出发点 ( 这种情况又称马有“回路”)OO———————————————答案——————————————————————1.不能 . 对房间染色 , 使最下面的两个房间染成黑色 , 与黑色相邻的房染成白色 , 则图中有 7 个黑色房间和 5 个白色房间 . 如果要想不重复地走过每一个房间 ,黑色与白色房间数应该相等. 故题中的想法是不能实现的.2.不能 . 对展室进行染色, 使相邻两房间分别是黑色和白色的 . 此时入口处展室的颜色与出口处展室的颜色是相同的 , 而不重复参观完 36 个展室 , 入口与出口展室的颜色应该不相同 .3.不能 . 对这 16 个城市进行黑白相间的染色 , 一种颜色有 9 个, 另一种颜色有7 个. 而要不重复地走遍这 16 个城市 , 黑色与白色的个数应该相等 .4.如图 , 对 4 n 长方形的各列分别染上黑色和白色 . 任一 L 形纸片所占的方格只有两类 : 第一类占 3 黑 1 白, 第二类占 3 白 1 黑.n个设第一类有 a 个, 第二类有 b 个, 因为涂有两种颜色的方格数相等, 故有3b+a=3a+b, 即a=b, 也就是说第一类与第二类相等, 因此各种颜色的方格数都是4 的倍数 , 总数是 8 的倍数 , 从而 n 是偶然 .5.将棋盘黑白相间染色 , 由“马”的走法可知 , 放在黑点上的“马” , 只能吃放在某些白点上的马 . 整个棋盘上黑、白点的个数均为45, 故可在45 个黑点放上马 , 它们是不能互吃的 .6.如图的方式对棋盘染色 . 那么一个田字形盖住 1 个或 3 个白格 , 而一个4 1 的矩形盖住 2 个白格 . 这样一来一个田字和 15 个 4 1 的矩形能盖住的白格数是一个奇数 , 但上图中的白格数是一个偶数 , 因此一个田字形和 15 个 4 1 的矩形不能复盖 8 8 的棋盘 .7.将棋盘里黑白相间涂色 . 一个田字形盖住 2 个白格 , 一个 T 字形盖住 3 个或 1 个白格 . 故 1 个田字和 15 个 T 字盖住的白格数是一个奇数 , 但棋盘上的白格数是一个偶数 . 因此一个田字形和 15 个 T 字形不能盖住 8 8 的棋盘 .8.将棋盘黑白相间地染色后 , 马的走法是从一种颜色的格子跳到另一种颜色. 棋盘上有 32 个白格与 32 个黑格 , 故马可能跳遍整个棋盘 . 图中给出了一种走法 .564158355039603347445540593451384257464936533261454843543162375220530632211161329642141714251061922782312151287183269249. 先对 4 4 的棋盘黑白相间的涂色 ( 如图 ), 这道题的实际问题是问7 个1 2 矩形能否分别复盖剪去 A、B;剪去 A、C;剪去 A、D的三个棋盘 . 若 7 个 12矩形可以复盖剪残的棋盘 , 因为每个 1 2 矩形均可盖住一个白格和一个黑格, 所以棋的白格与黑格数目相等 . 都是 7 个. 而剪去 A 格和 C 格的棋 (2) 有 5 个白格 8 个黑格 , 剪去 A、D 的棋 (3) 有 5 个白格 8 个黑格 , 因此两个剪的棋均不能被 7 个1 2 矩形复盖 , 也就不能剪成 7 个 1 2 的矩形 .ABCD棋 (1) 可以被 7 个 1 2 的矩形所复盖 . 下面出一种剪法 :A11277B26543654310.在第一行的 7 格中必有 4 格同色 , 不妨 4 格位于前 4 个位置 , 且均色 .然后考前 4 列构成的 3 4 矩形 . 若第二行和第 3 行中出 2 个或 2 个以上的色格子 . 行的两个色格子与第一行的色格子就成一个 4 角同色格子的矩形 .若不然 , 第 2、3 行中都至少有 3 个格在前 4 列中 , 不妨第 2 行前 3 格色 , 然第三行中的前 3 格中至少有 2 个格,故在二、三行的前 4 列中必存在四角都是色的矩形 .11.将 17 个科学家用 17 个点代表 , 两点之的段表示两个科学家之的 . 用三种色些段染色 , 表示三个 , 于是就成 :17 个点之的所有段用三种色染色, 必有同色三角形 .从任意一点 , 不妨从 A 向其他 16 点 A1, A2 , ⋯ A16共可成 16 条段 , 用三种色染色 , 由抽原可知 , 必有 6 条段同色 . 6 条段 AA1, AA2 , ⋯AA6且同色 .考 A1, A2, A3, A4, A5, A6六点之的 , 若有一条色 ,( 如 A1A2色 ) ,则三角形 AA1 A2为红色的同色三角形 .A1A2A3AA4A5A6若这六点之间的连线中 , 没有一条是红色的 , 则它们之间只能涂两种颜色 . 考虑从 A1引出的五条线段 A1A2 A1A3 A1A4 A1A5 A1A6, 由抽屉原理知 , 其中必有三条是同色的 . 不妨设这三条为 A1A2 A1 A3 A1A4, 且同为蓝色 . 若三角形 A2A3A4的三边中有一条为蓝色的 , 则有一个蓝色的三角形存在 ; 若三角形 A2A3 A4三边都不是蓝色的 , 则它的三边是同为第三色的同色三角形 . A2A3A1A412. 把正方体木箱分成27 个小正方体 , 每个小正方体的体积为 2 2 2=8.将这些正方体如右图黑白相间染上色. 显然黑色 2 2 2 的正方体有 14 个, 白色2 2 2 小正方体有 13 个 . 每一个这样的正方体相当于8 个 1 1 1 的小正方体 .将 1 2 4 的长方体放入木箱 , 无论怎么放 , 每个长方体木块盖住8个边长为1 的单位正方体 , 其中有 4 个黑色的 ,4 个白色的 . 木箱共含 6 6 6=216个单位正方体 ,26 个长方体木块共盖住 8 26=208个单位正方体 , 其中黑白各占 104 个 , 余下216-208=8 个单位正方体是黑色的 . 但是第 27 个 1 2 4 长方体木块不管怎样放 , 也无法盖住这 8 个黑色单位正方体 .13.如图 , 将整个棋盘的每一格都分别染上红、白、黑三种颜色 , 这种染色方式将棋盘分成了三个部分 . 按照游戏规则 , 每走一步 , 有两种颜色方格中的棋子数分别减少了 1 个, 而第三种颜色的棋子数增加了一个 . 这表明每走一步 , 每个部分的棋子的奇偶性要发生改变 .因为一开始时 ,81 枚棋子摆成一个 9 9 的正方形 , 显然三个部分的棋子数是相同的 , 从而每走一步 , 三部分中的棋子数的奇偶性是相同的 . 如果走了若干步以后, 棋盘上恰好剩下一枚棋子 , 则两部分上的棋子数为偶数 , 而另一部分上的棋子数为奇数 . 这种结果是不可能出现的 .14.用两种方法对超级棋盘染色 .首先 , 将棋盘黑白相间染色 , 则马每跳一步 , 它所在的方格就要改变一次颜色.不妨设第奇数步跳入白格.其次 , 将棋盘的第 3,4,5 及 8,9,10 这六行染成黑色 , 其余六行染成白色 . 在此种染色方式下 , 马从白格一定跳入黑格 . 又因黑白格总数相同 , 马要遍历每一格恰一次又回到出发点 , 因此 , 马从黑格只能跳入白格而不能跳入黑格 . 不妨设马第奇数步跳入白格 .但是对于一种满足要求跳法 , 在两种染色方式下第奇数步跳入的格子的全体是不同的 , 这显然是不可能的 , 故题目要求的跳法是不存在的 .。
模块一:染色问题【巩固】 右图是某一湖泊的平面图,图中所有曲线都是湖岸.(1)如果P 点在岸上,那么A 点是在岸上还是在水中?(2)某人过此湖泊,他下水时脱鞋,上岸时穿鞋.如果他从A 点出发走到某 点B ,他穿鞋与脱鞋的总次数是奇数,那么B 点是在岸上还是在水中?为 什么?一、染色问题这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法.染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案.这类问题不需要太多的数学知识,但技巧性,逻辑性较强,要注意学会几种典型的染色问题.二、操作问题例题11第十一讲染色与操作问题六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫做它的邻座.如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?【巩固】某班有45名同学按9行5列坐好.老师想让每位同学都坐到他的邻座(前后左右)上去,问这能否办到?【巩固】有一次车展共6×6=36个展室,如右图,每个展室与相邻的展室都有门相通,入口和出口如图所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?例题44例题33例题22右图是某一套房子的平面图,共12个房间,每相邻两房间都有门相通.请问:你能从某个房间出发,不重复地走完每个房间吗?在一个正方形的果园里,种有63棵果树,加上右下角的一间小屋,整齐地排列成八行八列,如图(1).守园人从小屋出发经过每一棵树,不重复也不遗漏(不许斜走),最后又回到小屋,行吗?如果有80棵果树,如图(2),连小屋排成九行九列呢?右图是半张中国象棋盘,棋盘上已放有一只马. 众所周知,马是走“日”字的. 请问:这只马能否不重复地走遍这半张棋盘上的每一个点,然后回到出发点?【巩固】下图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?【巩固】下面的三个图形都是从4×4的正方形纸片上剪去两个1×1的小方格后得到的. 问:能否把它们分 别剪成1×2的七个小矩形?【巩固】能否用9个所示的卡片拼成一个6×6的棋盘?【巩固】9个1×4的长方形不能拼成一个6×6的正方形,请你说明理由!例题66例题55右图是由14个大小相同的方格组成的图形. 试问能不能剪裁成7个由相邻两方格组成的长方形? 用11个和5个能否盖住8×8的大正方形?【巩固】用若干个2×2和3×3的小正方形不能拼成一个11×11的大正方形,请你说明理由!模块二:操作问题例题1010例题99例题88例题77【巩固】对于表(1),每次使其中的任意两个数减去或加上同一个数,能否经过若干次后(各次减去或加上的数可以不同),变为表(2)?为什么?右图是一个圆盘,中心轴固定在黑板上.开始时,圆盘上每个数字所对应的黑板处均写着0.然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上.问:经过若干次后,黑板上的四个数是否可能都是999?有7个苹果要平均分给12个小朋友,园长要求每个苹果最多分成5份.应该怎样分?有一位老人,他有三个儿子和十七匹马.他在临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分.”老人去世后,三兄弟看到了遗嘱.遗嘱上写着:“我把十七匹马全都留给我的三个儿子.长子得12,次子得13,给幼子19.不许流血,不许杀马.你们必须遵从父亲的遗愿!”请你帮助他们分分马吧!【巩固】甲、乙、丙、丁分29头羊. 甲、乙、丙、丁分别得1111,,,25610,应如何分?【巩固】9个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)?【巩固】 大桶能装5千克油,小桶能装4千克油,你能用这两只桶量出6千克油吗?怎么量?【巩固】 有一个小朋友叫小满,他学会了韩信分油的方法,心里很是得意. 一天,他遇到了两位农妇. 两位农妇有两个各装满了10升奶的罐子,还有一个5升和一个4升的小桶,她们请求小满就用这些容器将罐子中的奶给两个小桶中各倒入2升奶.小满按照韩信分油的方法,略加变通,就将奶分好了!你说说具体的做法!例题1313例题1212例题11118个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)据说有一天,韩信骑马走在路上,看见两个人正在路边为分油发愁.这两个人有一只容量10斤的篓子,里面装满了油;还有一只空的罐和一只空的葫芦,罐可装7斤油,葫芦可装3斤油.要把这10斤油平分,每人5斤. 但是谁也没有带秤,只能拿手头的三个容器倒来倒去.应该怎样分呢?有大,中,小3个瓶子,最多分别可以装入水1000克,700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动使得中瓶和小瓶上标出100克水的刻度线,问最少要倒几次水老师在黑板上画了9个点,要求同学们用一笔画出一条通过这9个点的折线(只许拐三个弯儿).你能办到吗?例题1717例题1616例题1515例题1414练习11一只电动老鼠从左下图的A 点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转。
四年级数学奥数题知识点《染色问题》专项训练及答案题型
归纳
题型:染色问题难度:
如图,把A、B、C、D、M这五个部分用5种不同的颜色染色,且相邻的部分不能使用同一种颜色,有的颜色也可以不用,不相邻的部分可以使用同一种颜色,那么这幅图一共有多少种不同的染色方法?
【答案解析】
如果5种颜色全部使用,那么共有5_4_3_2_1=120种染色方法。
如果只使用4种颜色,可以是B和D同色,也可以是A和C同色,那么共有
5_4_3_2_2=240种染色方法。
如果只使用3种颜色,那么有B和D同色并且A和C同色,共有5_4_3=60种染色方法。
120+240+60=420,所以这幅图一共有420种不同的染色方法。
题型:染色问题难度:
如图,9条小线段组成了4个小三角形,现在将每条线段分别染上红、黄、蓝三种颜色之一,使得每个三角形三条边的颜色互不相同,那么共有多少种不同的染色方式?
【答案解析】
任选一个小三角形的一条边,当这条边的颜色确定时,这个小三角形的染色方法有2种,同时每种方法都会确定与其相邻的小三角形的一条边的颜色。
24_3=48,所以共有48种不同的染色方式。
奥数题小学四年级数学《染色问题》专项训练及答案
奥数题小学四年级数学《染色问题》专项训练及
答案
题型:染色问题难度:★★
如图,把A、B、C、D、M这五个部分用5种不同的颜色染色,且相邻的部分不能使用同一种颜色,有的颜色也可以不用,不相邻的部分可以使用同一种颜色,那么这幅图一共有多少种不同的染色方法?
题型:染色问题难度:★★
如图,9条小线段组成了4个小三角形,现在将每条线段分别染上红、黄、蓝三种颜色之一,使得每个三角形三条边的颜色互不相同,那么共有多少种不同的染色方式?
请在下页参考答案
【答案解析】
如果5种颜色全部使用,那么共有5×4×3×2×1=120种染色方法。
如果只使用4种颜色,可以是B和D同色,也可以是A和C 同色,那么共有5×4×3×2×2=240种染色方法。
如果只使用3种颜色,那么有B和D同色并且A和C同色,共有5×4×3=60种染色方法。
120+240+60=420,所以这幅图一共有420种不同的染色方法。
【答案解析】。
六年级奥数题及答案-有多少种不同染色方法?
如图,地图上有A,B,C,D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?
解答:为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:
第一步:给A染色,有5种颜色可选。
第二步:给B染色,由于B不能A与同色,所以B有4种颜色可选。
第三步:给C染色,由于C不能与A、B同色,所以C有3种颜色可选。
第四步:给D染色,由于D不能与B、C同色,但可以与A同色,所以D有3种颜色可选。
根据分步计数的乘法原理,用5种颜色给地图染色共有种5*4*3*3=180不同的染色方法。