高二数学3月月考试题理
- 格式:doc
- 大小:283.50 KB
- 文档页数:7
2021-2022学年内江市球溪高级中学高二下学期3月月考数学(理)试题一、单选题1.下列语句是命题的是( )①三角形的内角和等于180︒;②23>;③2x >;④这座山真险啊! A .①② B .①③ C .②③ D .③④【答案】A【分析】能够判断真假的陈述语句是命题,据此判断即可.【详解】①三角形的内角和等于180︒是命题;②23>是命题;③2x >不能判断真假,故不是命题;④这座山真险啊!不是陈述句,因此不是命题. 故选:A.2.过椭圆225x + 29y =1左焦点F 1引直线l 交椭圆于A 、B 两点,F 2是椭圆的右焦点,则△ABF 2的周长是( ) A .20 B .18 C .10 D .16【答案】A【分析】根据椭圆的定义求得正确选项. 【详解】依题意5a =,根据椭圆的定义可知,三角形2ABF 的周长为420a =. 故选:A3.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x ∈R ,均有210x x ++≥【答案】C【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断. 【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2x -4x +3=0成立,故充分,当2x -4x +3=0成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题p :.存在0x R ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即⌝p 任意x ∈R ,均有210x x ++≥,故正确; 故选:C4.已知命题:p 垂直于同一平面的两直线平行;命题:q 平行于同一平面的两直线平行.则下列命题中正确的是( ) A .()()p q ⌝∧⌝ B .p q ∧ C .()p q ⌝∨ D .p q ∨【答案】D【分析】判断命题p 、q 的真假,利用复合命题的真假可得出合适的选项. 【详解】垂直于同一平面的两直线平行,命题p 为真命题, 平行于同一平面的两直线平行、相交或异面,命题q 为假命题, 所以,()()p q ⌝∧⌝、p q ∧、()p q ⌝∨均为假命题,p q ∨为真命题. 故选:D.5.已知椭圆C :2212516x y +=的左、右焦点为1F ,2F ,上顶点为P ,则( )A .12PF F △为锐角三角形B .12PF F △为钝角三角形C .12PF F △为直角三角形D .P ,1F ,2F 三点构不成三角形【答案】A【分析】根据题意求得1212,,PF PF F F ,要判断12PF F △的形状,只需要看12F PF ∠是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆C :2212516x y +=,得22225,16,9a b c ===,则()()()123,0,3,0,0,4F F P -, 则12125,6PF PF F F ===, 所以1221PF F PF F ∠=∠且为锐角,因为2221212252536140PF PF F F +-=+-=>, 所以12F PF ∠为锐角, 所以12PF F △为锐角三角形. 故选:A.6.已知椭圆2222135x y m n+=和双曲线2222123x y m n -=有公共的焦点,那么双曲线的渐近线方程为 A .15x y = B .15y = C .3x y = D .3y x = 【答案】D【详解】试题分析:∵椭圆和双曲线有公共焦点,∴22223m 5n 2m 3n -=+,整理得22m 8n =,∴双曲线的渐近线方程为y=223n 3132m 28x x ±=±⨯=,故选D .【解析】本题主要考查双曲线、椭圆的标准方程及几何性质.点评:基础题,先根据椭圆方程和双曲线方程分别表示出c ,令二者相等即可求得m 和n 的关系,进而利用双曲线的方程求得双曲线的渐近线方程.7.双曲线221916x y -=的左、右焦点分别为F 1,F 2,点P 在双曲线上,下列结论不正确的是( )A .该双曲线的离心率为53B .该双曲线的渐近线方程为43y x =±C .点P 到两渐近线的距离的乘积为14425D .若PF 1⊥PF 2,则△PF 1F 2的面积为32 【答案】D【分析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a =3,b =4,c =5,22169169144x y -=⨯=, 故离心率e 53=,故A 正确;由双曲线的性质可知,双曲线线221916x y -=的渐近线方程为y =±43x ,故B 正确;设P (x ,y ),则P 到两渐近线的距离之积为22169434316914455252525x y x y x y --+⨯⋅===,故C 正确;若PF 1⊥PF 2,则△PF 1F 2是直角三角形,由勾股定理得2221212||||100PF PF F F +==,由双曲线的定义可得|PF 1|﹣|PF 2|=2a =6(不妨取P 在第一象限),∴2221212()||PF PF PF PF -=+-2|PF 1|⋅|PF 2|=100﹣2|PF 1|⋅|PF 2|,解得|PF 1|⋅|PF 2|=32,可得12121162PF F S PF PF =⨯⨯=,故D 错误. 故选:D8.已知m 是2与8的等比中项,则圆锥曲线221yx m-=的离心率等于( )A 5B 2C 53D 35【答案】C【分析】由等比中项定义求得m ,根据m 的取值确定曲线是椭圆还是双曲线,然后计算离心率.【详解】由已知228m =⨯,4m =±,当4m =-时,方程为2214y x +=,曲线为椭圆, 224,1a b ==,413c -3e =当4m =时,方程为2214y x -=,曲线为双曲线,221,4a b ==,415c =+=为5e = 故选:C .9.已知O 为坐标原点,设F 1,F 2分别是双曲线x 2-y 2=1的左、右焦点,P 为双曲线左支上任意一点,过点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH |=( ) A .1 B .2 C .4 D .12【答案】A【分析】利用几何关系结合双曲线定义,以及中位线性质可得. 【详解】如图所示,延长F 1H 交PF 2于点Q ,由PH 为∠F 1PF 2的平分线及PH ⊥F 1Q ,易知1PHF PHQ ∽,所以|PF 1|=|PQ |.根据双曲线的定义,得|PF 2|-|PF 1|=2,即|PF 2|-|PQ |=2, 从而|QF 2|=2.在△F 1QF 2中,易知OH 为中位线,则|OH |=1. 故选:A.10.已知函数()f x 和()g x 的定义域均为[],a b ,记()f x 的最大值为1M ,()g x 的最大值为2M ,则使得“12M M >”成立的充要条件为( ) A .[]1,x a b ∀∈,[]2,x a b ∀∈,()()12f x g x > B .[]1,x a b ∀∈,[]2,x a b ∃∈,()()12f x g x > C .[]1,x a b ∃∈,[]2,x a b ∀∈,()()12f x g x > D .[],x a b ∀∈,()()f x g x > 【答案】C【分析】先解读选项ABC ,D 选项是12M M >成立的充分不必要条件,再判断得解. 【详解】解:A 选项表述的是()f x 的最小值大于()g x 的最大值; B 选项表述的是()f x 的最小值大于()g x 的最小值;C 选项表述的是()f x 的最大值大于()g x 的最大值成立的充要条件;D 选项是12M M >成立的充分不必要条件. 故选:C11.已知椭圆C :()222210x y a b a b +=>>的短轴长为2,上顶点为A ,左顶点为B ,1F ,2F 分别是C 的左、右焦点,且1F AB 23-P 为C 上的任意一点,则1211PF PF +的取值范围为( )A .[]1,2B .2,3⎡⎣C .2,4⎡⎤⎣⎦D .[]1,4【答案】D【分析】由已知和面积得到2a =,3c 1211PF PF +进行化简,配方求最值. 【详解】由已知的22b =,故1b =.∵1F AB 23-∴()1232a c b --=,∴23a c -=又∵222()()1a c a c a c b -=-+==, ∴2a =,3c =∴()2212121111||112444PF PF a PF PF PF PF PF PF PF PF ++===--+, 又12323PF ≤,∴2211114(2)44PF PF PF ≤-+=--+≤, ∴121114PF PF ≤+≤.∴1211PF PF +的取值范围为[]1,4. 故选:D.【点睛】本题主要考查椭圆的定义、椭圆的几何性质,以及配方求最值的问题. 12.已知O 为坐标原点,A ,B 分别是双曲线22:1169x y C -=的左、右顶点,M 是双曲线C 上不同于A ,B 的动点,直线AM ,BM 分别与y 轴交于点P ,Q ,则OP OQ ⋅=( ) A .16 B .9 C .4D .3【答案】B【分析】设动点0(M x ,0)y ,由双曲线方程可得A ,B 的坐标,求出AM ,BM 所在直线方程,可得P 与Q 的坐标,求得202016·16y OP OQ x =-,再由动点M 在双曲线22:1169x y C -=上,得2200169(16)y x =-,则||||OP OQ ⋅的值可求. 【详解】解:设动点0(M x ,0)y ,由双曲线方程22:1169x y C -=得(4,0)A -,(4,0)B , 则004AM y k x =+,004BM y k x =-,所以直线AM 的方程为00(4)4y y x x =++,直线BM 的方程为00(4)4y y x x =--, 由此得004(0,)4y P x +,004(0,)4y Q x --, 所以200020004416··()4416y y y OP OQ x x x =-=+--. 因为动点M 在双曲线22:1169x y C -=上,所以22001169x y -=,所以2200169(16)y x =-,则22002200169(16)·91616y x OP OQ x x -===--. 故选:B. 二、填空题13.命题“9的平方根是3”是________命题(选填“真”或“假”). 【答案】假【分析】根据9的平方根是3±判断即可.【详解】解:因为9的平方根是3±,所以命题“9的平方根是3”是假命题. 故答案为:假14.经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 . 【答案】22188y x -=【详解】设双曲线的方程为:22x y λ-=,将(1,3)A -代入可得,8λ=-,所以等轴双曲线的方程为:22188y x -=.15.若斜率为k 的直线l 与椭圆22:132x y C +=交于A ,B 两点,且AB 的中点坐标为11,23⎛⎫⎪⎝⎭,则k =___________. 【答案】-1【分析】根据给定条件设出点A ,B 的坐标,再借助“点差法”即可计算得解. 【详解】依题意,线段AB 的中点11,23⎛⎫⎪⎝⎭在椭圆C 内,设()11,A x y ,()22,B x y ,由22112222132132x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得:()()()()12121212032x x x x y y y y -+-++=, 而121221,3x x y y +=+=,于是得1212033x x y y --+=,即12121y y k x x -==--, 所以k =1-. 故答案为:1-16.城市的许多街道是相互垂直或平行的,因此,乘坐出租车往往不能沿直线到达目的地,只能按直角拐弯的方式行走.在平面直角坐标系中,定义()1212,d P Q x x y y =-+-为两点()11,P x y 、()22,Q x y 之间的“出租车距离”.给出下列四个结论:①若点()0,0O ,点()1,2A ,则(),3d O A =;②到点()0,0O 的“出租车距离”不超过1的点的集合所构成的平面图形面积是π;③若点()1,2A ,点B 是圆221x y +=上的动点,则(),d A B 的最大值是32+.其中,所有正确结论的序号是______. 【答案】①③【分析】理解“出租车距离”的定义,根据定义写出有关代数式即可求解. 【详解】对于①,根据定义(),10203d O A =-+-= 故正确; 对于②,根据定义,设目的地为(),A x y , 则(),001d O A x y x y =-+-=+≤…① ,当A 点在第一象限时,①式即为1x y +≤ ,第二象限时为1x y -+≤ , 以此类推得如下图形(阴影部分):其面积为:12222⨯⨯= ,故错误;对于③,设(),B x y ,(),11d A B x y =-+- ,∵B 在圆221x y += 上,∴1,1x y ≤≤ ,(),123d A B x y x y =-+-=-- ,()3,y x d A B =-+- ,为在区域为221x y +=,目标函数为(),3d A B x y =--求最大值的 线性规划问题,, 如下图:显然当直线()3,y x d A B =-+-为圆221x y +=在第三象限的切线时,(),d A B 最大, 为32,故正确; 故答案为:①③. 三、解答题17.(1)求焦点在x 轴上,长轴长为6,焦距为4的椭圆标准方程; (2)求离心率2e =()5,3M -的双曲线标准方程. 【答案】(1)22195x y +=;(2)2211616x y -= 【分析】(1)根据题意直接得出,a c 后求解 (2)待定系数法设双曲线方程,列方程组求解【详解】(1)由题意得3,2a c ==,故2945b =-=,椭圆标准方程为22195x y +=(2)①若双曲线焦点在x 轴上,设其方程为22221x y a b-=,由题意2c a =而222c a b =+故a b =,由222591a b a b⎧-=⎪⎨⎪=⎩解得2216a b ==,故双曲线标准方程为2211616x y -= ②若双曲线焦点在y 轴上,设其方程为22221y xa b-=,同理a b =,此时将()5,3M -代入后方程无解综上,双曲线标准方程为2211616x y -= 18.已知命题p :函数()3log f x x a =-在区间1,99⎛⎫⎪⎝⎭上没有零点;命题q :[]00,2x ∃∈,使得30035x x a -+-<0成立.(1)若p 和q 均为真命题,求实数a 的取值范围;(2)若p 和q 其中有一个是真命题,另外一个是假命题,求实数a 的取值范围. 【答案】(1)()3,+∞;(2)(][],22,3-∞-⋃.【分析】先求出当命题p 为真时,解得2a ≤-或2a ≥;再求出当命题q 为真,解得3a >.(1)先判断命题p ,q 均为真命题,再求出实数a 的取值范围为(3,)+∞;(2)先判断p ,q 一真一假,最后实数a 的取值范围为(,2][2,3]a ∈-∞-. 【详解】(1)函数()f x =3log x a -在区间1,99⎛⎫ ⎪⎝⎭上单调递增,p 为真命题∴()f x =3log x a -在区间1,99⎛⎫⎪⎝⎭上没有零点∴311log 2099f a a ⎛⎫=-=--≥ ⎪⎝⎭或者()39log 920f a a =-=-≤得2a ≤-或2a ≥令()335(02)f x x x a x =-+-≤≤∴()f x '=233x -当()f x '>0时,得12x ≤≤,当()f x '<0时,得0≤x <1∴()f x 最小值为()13f a =- q 为真∴a >3(1)p ,q 均为真命题∴a 的取值范围是()3,+∞ (2)p ,q 一真一假若p 真,q 假,则223a a a ≤-≥⎧⎨≤⎩或,解得a 的范围是(][],22,3-∞-⋃;若p 假,q 真,则223a a -⎧⎨⎩<<>,解得无解; ∴a 的取值范围是(][],22,3-∞-⋃.19.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,一条渐近线方程为20x y -=(1)求双曲线C 的标准方程; (2)已知倾斜角为34π的直线l 与双曲线C 交于,A B 两点,且线段AB 的中点的纵坐标为4,求直线l 的方程.【答案】(1)2214y x -=(2)3y x =-+【分析】(1)由实轴长得到a ,由渐近线斜率得到ba,即可得到方程;(2)由倾斜角得到直线斜率,设直线方程,联立双曲线方程,消去x ,利用韦达定理即可表示线段AB 的中点的纵坐标,解出参数即可.【详解】(1)由题,22a =,由20x y -=得,222by x b a=∴=∴=,,,所以双曲线C 的标准方程为:2214y x -=(2)直线斜率3tan 14k π==-,设直线为y x m =-+,联立得2214y x my x =-+⎧⎪⎨-=⎪⎩得2238440y my m -+-=,设,A B 两点坐标分别为()11x y ,、()22x y ,,线段AB 的中点的纵坐标为4,则1282483my y +==⨯=,3m ∴=∴,直线方程为3y x =-+.20.已知5:21p x ≥+,22:20q x mx m --≤,其中0m >. (1)若p 是q 的充分条件,求实数m 的取值范围;(2)是否存在m ,使得p ⌝是q 的必要条件?若存在,求出m 的值;若不存在,请说明理由.【答案】(1)m 1≥(2)不存在,理由见解析【分析】(1)解不等式,由充分条件的定义得出实数m 的取值范围;(2)由p ⌝是q 的必要条件得出不等关系,结合0m >作出判断.【详解】(1)由521x ≥+得2301x x -≤+,故有3:12p x -<≤. 由2220x mx m --≤得()()20x m x m -+≤,即:2q m x m -≤≤.若p 是q 的充分条件,则p q ⇒成立,即1322m m -≤-⎧⎪⎨≥⎪⎩得m 1≥. (2)因为3:12p x -<≤,所以:1p x ⌝≤-或32x >. 若p ⌝是q 的必要条件,则q p ⇒⌝成立,则21m ≤-或32m ->, 显然这两个不等式均与0m >矛盾,故不存在满足条件的m .21.已知椭圆()2222:10x y C a b a b +=>>的焦距为226. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于不同的两点A ,B ,求AB 的最大值.【答案】(1)2213x y +=; 6.【分析】(1)由题设可得222c =6c a 结合椭圆参数关系求2b ,即可得椭圆C 的方程;(2)设直线l 为y x m =+,联立抛物线整理成一元二次方程的形式,由0∆>求m 的范围,再应用韦达定理及弦长公式求AB 关于m 的表达式,根据二次函数性质求最值即可.【详解】(1)由题设,222c =6c a 2c =3a =2221b a c =-=,所以椭圆C 的方程为22:13x C y +=. (2)设直线l 为y x m =+,联立椭圆C 并整理得:2246330x mx m ++-=,所以2223616(33)48120m m m ∆=-⨯-=->,可得22m -<<,且32A B m x x +=-,23(1)4A B m x x -=, 所以22229|23(1)64|(11)4A B m m x x m AB k ---=-=+⋅(2,2)m ∈-, 故当0m =时,max 6AB =22.已知双曲线C :()222210,0x y a b a b-=>>的渐近线方程为3y x =±,过双曲线C 的右焦点()2,0F 的直线1l 与双曲线C 分别交于左、右两支上的A 、B 两点.(1)求双曲线C 的方程;(2)过原点O 作直线2l ,使得21//l l ,且与双曲线C 分别交于左、右两支上的点M 、N .是否存在定值λ,使得MN MN AB λ⋅=?若存在,请求出λ的值;若不存在,请说明理由.【答案】(1)2213y x -= (2)存在,2λ=【分析】(1)由题意得到3b a =2c =,结合222c a b =+,求得,a b 的值,即可求得双曲线的方程;(2)由MN 与AB 同向,所以2MNAB λ=,设直线1:2l x ty =+,联立方程组,结合韦达定理求得121222129,3131t y y y y t t -+==--,利用弦长公式求得()226131t AB t +=-,根据21//l l ,设2:l x ty =,联立方程组求得()22212131t MN t +=-,进而求得λ的值,得出结论.【详解】(1)解:因为双曲线C :()222210,0x y a b a b-=>>的渐近线方程为3y x =, 所以3b a=3b a =. 又因为右焦点F 的坐标为()2,0,所以2c =,又由222244c a b a =+==,解得1a =,所以3b =所以双曲线C 的方程为2213y x -=. (2)解:存在定值2λ=,使得MN MN AB λ⋅=.因为MN 与AB 同向,所以2MNAB λ=,由题意,可设直线1:2l x ty =+,联立方程组22213x ty y x =+⎧⎪⎨-=⎪⎩,整理得()22311290t y ty -++=, 设()11,A x y ,()22,B x y ,可得121222129,3131t y y y y t t -+==--, 由直线1l 分别交双曲线C 的左、右两支于A 、B 两点,可得()()()222212310Δ12363136100t t t t x x ⎧-≠⎪⎪=--=+>⎨⎪<⎪⎩,即()()()221223103422031t t ty ty t ⎧-≠⎪⎨-+++=<⎪-⎩,可得2310t ->, 所以2121AB t y =+-()22121214t y y y y =++-()2222226112361313131t t t t t t +-⎛⎫+- ⎪---⎝⎭由21//l l ,可设2:l x ty =, 由2233x ty x y =⎧⎨-=⎩,整理得()22313t y -=. 设00(,)M x y ,则()00,N x y --,所以202331y t =-, 则()()()()222222000212111431t MN t y t y t +=+--=+⋅=-,所以22MNAB λ==,故存在定值2λ=,使得MN MN AB λ⋅=.。
2022-2023学年广东省佛山市顺德区重点中学高二(下)月考数学试卷(3月份)及参考答案第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.已知数列{}n a 中,452+-=n n a n ,则数列{}n a 的最小项是()A.第1项B.第3项、第4项C.第4项D.第2项、第3项2.在数列{}n a 中,4211+==+n n a a a ,,若2022=n a ,则=n ()A.508B.507C.506D.5053.等差数列{}n a 的前11项和4411=S ,则=++873a a a ()A.9B.10C.11D.124.在等比数列{}n a 中.已知487531=+=+a a a a ,,则=+++1513119a a a a ()A.11B.6C.3D.185.已知数列{}n a 是递增的等比数列,1+2+3=14,123=64,则公比=()A.12B.1C.2D.46.若数列{}n a 对任意正整数都有1+22+33+…+B =2−1,则22+55=()A.17B.18C.34D.847.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25B.24C.20D.198.已知等差数列{}n a 的前项和为,若7+8>0,7+9<0,则取最大值时的值为()A.8B.5C.6D.7二、多选题(本大题共4小题,共20.0分。
在每小题有多项符合题目要求)9.正项等比数列{}n a的前项和为,已知3=2+101,4=3.下列说法正确的是()A.1=9B.{}是递增数列C.{+118}为等比数列D.{log3}是等比数列10.记为公差不为0的等差数列{}n a的前项和,则()A.3,6−3,9−6成等差数列B.33,66,99成等差数列C.9=26−3D.9=3(6−3)11.已知数列{}n a中,1=2,+1+1=1,∈+,则()A.2022=1B.1+2+3+…+2002=1011C.123…2022==1011D.12+23+34+…+20222023=−101112.如图所示,图1是边长为1的正方形,以正方形的一边为斜边作等腰直角三角形,再以等腰直角三角形的两个直角边为边分别作正方形得到图2,重复以上作图,得到图3,…….记图1中正方形的个数为1,图2中正方形的个数为2,图3中正方形的个数为3,……,图中正方形的个数为,下列说法正确的有()A.5=63B.图5中最小正方形的边长为14C.1+2+3+……+10=2036D.若=255,则图中所有正方形的面积之和为8第II卷(非选择题)三、填空题(本大题共4小题,共24.0分)13.设数列{}n a满足1=2=2+2K1,则3=.14.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百錢.欲令高爵出少,以次漸多,問各幾何?“意思是:“有大夫、不更、簪裹、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,这5个人各出多少钱?“在这个问题中,若大夫出6钱,则上造出的钱数为.15.数列{}n a中,=−12+1−32(≥2,∈∗),且1=1,则数列的通项公式为=.16.已知数列{}n a满足1=1,且+1=++1,则=,数列{1}的前项和=.四、解答题(本大题共6小题,共70.0分。
长兴中学2012学年3月月考高二数学试题卷(理科)一、选择题:(每小题5分,共50分)1. 如果ξ是一个离散型随机变量,则假命题是 ( ) A. ξ取每一个可能值的概率都是非负数 B. ξ取所有可能值的概率之和为1 C. ξ取某几个值的概率等于分别取其中每个值的概率之和D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和2.三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有 ( ) A.6种 B.8种 C.10种 D.16种 3.甲、乙两人独立地对同一目标各射击一次,其命中率分别是0.6和0.5,现已知目标被击中,则它是甲射中的概率是 ( )A .0.6B .115 C .75.0 D .1164. 某一随机变量ξ的概率分布如下表,且2m n + 1.2=,则2n m -的值为 ( )A.-0.2;B.0.2;C.0.1;D.-0.15.乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为 ( )A.23332()55C ⋅B.22332()()53CC.33432()()55CD.33421()()33C 6.已知2()(1,)nnf n i i i n N -=-=-∈集合{}()f n 的元素个数是 ( )A. 2B. 3C.4D.无数个 7.设n a 为()nx +1展开式中2x 项的系数,则1032111a a a +⋅⋅⋅++等于 ( )A .2B .59 C .511 D .18.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b、(0,1)c ∈),已知他投篮一次得分的数学期望为2,则ab 的最大值为 ( ) A .148B .124C .112D .169.若()621x -的展开式中的第二项小于第一项,但不小于第三项,则x 的取值范围是( )A .⎪⎭⎫⎢⎣⎡+∞,51 B .⎪⎭⎫⎝⎛+∞-,121C . ⎥⎦⎤⎝⎛-0,121D .⎪⎭⎫⎢⎣⎡-0,5110.设}10,,2,1{ =A ,若“方程02=--c bx x 满足A c b ∈,,且方程至少有一根A a ∈”,就称该方程为“漂亮方程”。
2023-2024学年重庆市高二下册3月月考数学质量检测试题一、单选题1.已知集合(){}{}21,60A x y ln x B x x x ==+=--≤,则A B = ()A .(]2,3-B .(]1,3-C .(]3,2-D .()1,3-【正确答案】B【分析】首先求出集合A 、B ,再利用集合的交运算即可求解.【详解】(){}{}{}1101A x y ln x x x x x ==+=+>=>-,{}()(){}{}26032023B x x x x x x x x =--≤=-+≤=-≤≤,所以A B ⋂{}(]131,3x x =-<≤=-,故选:B2.为对某组数据进行分析,建立了四种不同的模型进行拟合,现用回归分析原理,计算出四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,则拟合效果最好的回归模型对应的相关指数R 2的值是()A .0.97B .0.86C .0.65D .0.55【正确答案】A【分析】在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,即可求解.【详解】由题意,四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,根据在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,可得拟合效果最好的回归模型对应的相关指数R 2的值是0.97.故选:A .本题考查了用相关指数拟合模型效果的应用问题,其中解答中熟记回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好是解答的关键,属于基础题.3.已知26=22464+--,53=25434+--,71=27414+--,102=210424-+---,依照以上各式的规律,得到一般性的等式为()A .8=24(8)4n n n n -+---B .1(1)5=2(1)4(1)4n n n n +++++-+-C .4=24(1)4n n n n ++-+-D .15=2(1)4(5)4n n n n ++++-+-【正确答案】A【分析】由已知结合归纳推理即可求解【详解】解:从各个等式可以看出,等式右端均为2,左端为两个分式的和,且两个式子的分子之和恒等于8,分母则为相应分子减去4,设其中一个分子为n ,另一个分子必为8-n ,故8=24(8)4n n n n -+---满足;故选:A4.已知命题p :220x x +->,命题q :()(){|lg 23}x f x x =-,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B分别化简命题p 和命题q ,利用必要不充分条件的定义进行判断即可.【详解】命题p :220x x +->等价于1x >或<2x -;命题q :()(){}3{|lg 23}|230|2x f x x x x x x ⎧⎫=-=->=>⎨⎬⎩⎭则p 是q 的必要不充分条件故选:B5.函数22o )l g (1f x x x =-+的零点所在区间是()A .1184⎛⎫⎪⎝⎭,B .1142⎛⎫ ⎪⎝⎭,C .112⎛⎫⎪⎝⎭D .()12,【正确答案】C【分析】利用零点存在性定理即可求解.【详解】2111151log 08484f ⎛⎫=-+=-< ⎪⎝⎭211151log 04242f ⎛⎫=-+=-< ⎪⎝⎭21111log 1022f ⎛⎫=-+=-< ⎪⎝⎭()12110f =-=>()1102f f ⎛⎫⋅< ⎪⎝⎭,221log ()f x x x ∴=-+的零点所在区间是112⎛⎫ ⎪⎝⎭,故选:C6.某产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表,由此得到y 与x 的线性回归方程为6y x a =+$$,由此可得:当广告支出5万元时,随机误差的效应(残差)为x24568y3040605070A .-10B .0C .10D .20【正确答案】C【分析】由已知求得,x y 的值,得到ˆa,求得线性回归方程,令5x =求得y 的值,由此可求解结论.【详解】由题意,根据表格中的数据,可得2456830406050705,5055x y ++++++++====,所以ˆ6506520ay x =-⨯=-⨯=,所以ˆ620y x =+,取5x =,得ˆ652050y=⨯+=,所以随机误差的效应(残差)为605010-=,故选C.本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题.7.设曲线f (x )=ax 2在点(2,4a )处的切线与直线4x -y +4=0垂直,则a =()A .2B .-116C .12D .-1【正确答案】B【分析】由已知结合导数的几何意义即可求解.【详解】f (x )=ax 2,则()2f x ax'=因为在点(2,4a )处的切线与直线4x -y +4=0垂直,所以()1244f a =-'=所以116a =-故选:B8.函数3222xxx y -=+在[]6,6-的图像大致为A .B .C .D .【正确答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x xx x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.9.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.10.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【正确答案】D【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.11.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是()A .(,-∞B .(C .(,-∞D .(0,【正确答案】A先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120xg x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数;1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,()f x 为增函数;()f x 的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A.利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立;(2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.12.若正实数a ,b 满足22ln ln 222+≥+-b a b a ,则()A .124+=+a bB .122-=-a b C .2a b >D .240b a -<【正确答案】B【分析】利用基本不等式可得)222212b a +-≥(当且仅当222b a =时取等号),利用熟知的结论1ln x x -≥(当且仅当1x =时取等号)进行放缩可得到2222ln ln 2b a a b +-≥+,结合已知条件,得到22ln ln 222b a b a +=+-,考虑到各不等式取等号的条件,解得,a b 的值,然后逐一检验即可做出正确判断.【详解】先证明熟知的结论:1ln x x -≥恒成立,且当且仅当1x =时取等号.设()1ln f x x x =--,则()11f x x'=-,在(0,1)上,()0f x '<,()f x 单调递减;在(1,+∞)上,()0f x '>,()f x 单调递增.故()()11100min f x f ==--=,∴()1ln f x x x =-≥恒成立,且当且仅当1x =时取等号.由)22222212lnln ln 2b a a b +-≥=≥+,由已知22ln ln 222b a b a +≤+-,∴22ln ln 222b a b a +=+-,且2221b a ⎧=⎪=,解得12a b ⎧=⎪⎨⎪=⎩,经检验只有B 正确,故选:B.本题关键点在于利用基本不等式和熟知的结论1ln x x -≥恒成立,且当且仅当1x =时取等号进行研究,得到2222ln ln 2b a a b +-≥+,结合已知得到等式,一定要注意基本不等式和1ln x x -≥取等号的条件,才能列出方程组求得,a b 的值.二、填空题13.函数()f x =__________.【正确答案】(0,1)(1,]e ⋃【分析】利用对数、分式、根式的性质列不等式,求x 的范围,即得定义域.【详解】由函数解析式,知:01ln 0220x x x ⎧>⎪-≥⎨⎪-≠⎩,解得0x e <≤且1x ≠.故答案为.(0,1)(1,]e ⋃14.i 是复数单位,若()1243i z i +=+,z 的虚部为__________.【正确答案】1【分析】由复数除法求得z 后可得z ,从而得其虚部.【详解】由已知243(43)(12)4836212(12)(12)5i i i i i i z i i i i ++--+-====-++-,2z i =+,虚部为1.故1.15.已知函数()f x 定义域为R ,满足 ()(2)f x f x =-,且对任意121x x ≤<,均有()()12120x x f x f x ->-,则不等式(21)(3)0f x f x ---≥解集为______.【正确答案】4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭【分析】先求出函数()f x 关于直线1x =对称,函数()f x 在[)1,+∞上单调递增.在(],1-∞上单调递减,再解不等式|211||31|x x --≥--即得解.【详解】因为函数()f x 满足()(2)f x f x =-,所以函数()f x 关于直线1x =对称,因为对任意121x x ≤<,均有()()12120x x f x f x ->-成立,所以函数()f x 在[)1,+∞上单调递增.由对称性可知()f x 在(],1-∞上单调递减.因为()()2130f x f x ---≥,即()()213f x f x -≥-,所以|211||31|x x --≥--,即|22||2|x x -≥-,解得0x ≤或43x ≥.故4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭方法点睛:对于函数问题的求解,通常要先研究函数的奇偶性、对称性、周期性和单调性等,再利用这些性质求解函数的问题.16.已知函数()()()202ln f x a x x x a =+>-有两个极值点1x 、()212x x x <,则()()12f x f x +的取值范围为_________.【正确答案】(),16ln 224-∞-【分析】确定函数()y f x =的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求()()12f x f x +的取值范围.【详解】函数()()22ln f x a x x x =-+的定义域为()0,∞+,()21222212x ax a f x a x x x -+⎛⎫'=-+= ⎪⎝⎭,依题意,方程22220x ax a -+=有两个不等的正根1x 、2x (其中12x x <),则241604a a a ∆=->⇒>,由韦达定理得120x x a +=>,120x x a =>,所以()()()()()22121212122ln 2f x f x a x x x x a x x +=++-+()()()2222121212122ln 222ln 222ln 2a x x x x x x a x x a a a a a a a a a ⎡⎤=++--+=+--=--⎣⎦,令()()22ln 24h a a a a a a =-->,则()2ln 2h a a a '=-,()()2122a h a a a-''=-=,当4a >时,()0h a ''<,则函数()y h a '=在()4,+∞上单调递减,则()()44ln 280h a h '<=-<,所以,函数()y h a =在()4,+∞上单调递减,所以,()()416ln 224h a h <=-.因此,()()12f x f x +的取值范围是(),16ln 224-∞-.故答案为.(),16ln 224-∞-本题考查了函数极值点问题,考查了函数的单调性、最值,将()()12f x f x +的取值范围转化为以a 为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.三、解答题17.已知命题:,p x R ∀∈240++≤mx x m .(1)若p 为真命题,求实数m 的取值范围;(2)命题[]:2,8q x ∃∈,使得2log 1m x ≥,当p q ⌝∧⌝为假命题且q ⌝为真命题时,求实数m 的取值范围.【正确答案】(1)14m ≤-;(2)14m ≤-.(1)由题得0m <且21160∆=-≤m ,解不等式即得m 的取值范围;(2)先转化为[]2,8x ∃∈,21log m x ≥,再求21log x的最小值得m 的范围,因为p q ⌝∧⌝为假命题且q ⌝为真命题,所以p 真q 假,从而得到关于m 的不等式组,解不等式组即得解.【详解】(1)∵2,40x R mx x m ∀∈++≤,0m ∴<且21160∆=-≤m ,解得14m ≤-p ∴为真命题时,14m ≤-.(2)[2,8]∃∈x ,21log m x ≥,又[2,8]x ∈时,211[,1]log 3x ∈,13m ∴≥∵p q ⌝∧⌝为假命题且q ⌝为真命题∴当p真q假,有1413mm⎧≤-⎪⎪⎨⎪<⎪⎩解得14m≤-【点晴】方法点晴:复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.18.2020年12月29日至30日,全国扶贫开发工作会议在北京召开,会议指出经过各方面的共同努力,中国现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,贫困村全部退出,脱贫攻坚目标任务如期全面完成.2021年是“十四五”规划开局之年,是巩固拓展脱贫攻坚成果、实现同乡村振兴有效衔接的起步之年.要按照中共中央国务院新决策新部署,把巩固拓展脱贫攻坚成果摆在头等重要位置来抓,推动脱贫攻坚政策举措和工作体系逐步向乡村振兴平稳过渡,用乡村振兴巩固拓展脱贫攻坚成果,坚决守住脱贫攻坚胜利果实,确保不出现规模性返贫,确保实现同乡村振兴有效衔接,确保乡村振兴有序推进.北方某刚脱贫的贫困地区积极响应,根据本地区土地贫瘠,沙地较多的特点,准备大面积种植一种叫做欧李的奇特的沙漠果树,进行了广泛的宣传.经过一段时间的宣传以后,为了解本地区广大农民对引进这种沙漠水果的理解程度、种植态度及思想观念的转变情况,某机构进行了调查研究,该机构随机在该地区相关人群中抽取了600人做调查,其中45岁及以下的350人中有200人认为这种水果适合本地区,赞成种植,45岁以上的人中赞成种植的占2 5.(1)完成如下的2×2列联表,并回答能否有99.5%的把握认为“赞成种植与年龄有关”?赞成种植不赞成种植合计45岁及以下45岁以上合计(2)为了解45岁以上的人的想法态度,需要在已抽取45岁以上的人中按种植态度(是否赞成种植)采用分层抽样的方法选取5位45岁以上的人做调查,再从选取的5人中随机抽取2人做深度调查,求2人中恰有1人“不赞成种植”的概率.附表:()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.072 2.706 3.841 5.0246.6357.87910.828参考公式为:()()()()()22n ad bc K a b c d a c b d -=++++【正确答案】(1)填表见解析;有99.5%的把握认为“是否赞成种植与年龄有关”;(2)35.【分析】(1)根据题中数据,直接完善列联表,再由公式计算2K ,结合临界值表,即可得出结论;(2)先由题中条件,确定被抽取的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ;用列举法写出总的基本事件,以及满足“恰有1人不赞成种植”的基本事件,基本事件的个数比即为所求概率.【详解】(1)由题意可得2×2列联表:赞成种植不赞成种植合计45岁及以下20015035045岁以上100150250合计30030060022600(200150150100)300300350250K ⨯⨯-⨯=⨯⨯⨯12017.1437.8797=≈>经查表,得()27.8790.005P K >≈,所以有99.5%的把握认为“是否赞成种植与年龄有关”.(2)在45岁以上的人中,赞成种植和不赞成种植的人数比为2:3,所以被抽取到的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ,从被选取到的5人中再从中抽取2人,共有如下抽取方法:(,)a b ,(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,(,)C D ,(,)C E ,(,)D E ,共有10种不同的结果,两人中恰好有1人为“不赞成种植的”包含了(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,共有6种结果.所以所求概率63105P ==.方法点睛:求古典概型的概率的常用方法:(1)古典概型所包含的基本事件个数较少时,可用列举法列举出总的基本事件个数,以及满足条件的基本事件个数,基本事件个数比即为所求概率;(2)古典概型所包含的基本事件个数较多时,可根据排列组合数的计算,求出总的基本事件个数,以及满足条件的基本事件个数,进而求出所求概率.19.已知三次函数32()41f x x ax x =+++(a 为常数).(1)当1a =时,求函数()f x 在2x =处的切线方程;(2)若a<0,讨论函数()f x 在()0,x ∈+∞的单调性.【正确答案】(1)20190x y --=;(2)答案见解析.【分析】(1)对函数求导,由导数的几何意义可得直线的斜率,再由直线的点斜式方程即可得解;(2)对函数求导,结合二次函数的性质,按照0a -≤<、a <-()0f x '>、()0f x '<的解集即可得解.【详解】(1)当1a =时,函数32()41f x x x x =+++,2()324f x x x '=++Q ,(2)20f '∴=即切线的斜率20k =,(2)21f =Q ,∴切线方程为2120(2)y x -=-即20190x y --=;(2)导函数2()324f x x ax '=++的对称轴为03a x =->,①当24480a ∆=-≤即0a -≤<时,()0f x '≥,()f x 在(0,)+∞上单调递增;②当24480a ∆=->即a <-(0)40f '=>,令2()3240f x x ax '=++=,则13a x -=,23a x -=,因为120x x <<,所以当0x <<或x >时,()0f x '>;x <<时,()0f x '<;所以()f x在0,3a ⎛⎫- ⎪ ⎪⎝⎭,,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增;()f x 在33a a a a ⎛---+ ⎪ ⎪⎝⎭上单调递减.本题考查了导数几何意义的应用及利用导数研究函数的单调性,考查了运算求解能力与逻辑推理能力,属于中档题.20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩;(2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【详解】(1)依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.(2)由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()()920092009000W x x x =-++≤-+=,当且仅当10000x x =,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.21.已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【正确答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e x f x x x =+-,()e 21x f x x ='+-,由于()''e 20x f x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)[方法一]【最优解】:分离参数由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----,记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-,令()()21e 102x h x x x x =---≥,则()e 1x h x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102x x x ---恒成立,故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减;因此,()()2max 7e 24g x g -⎡⎤==⎣⎦,综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭.[方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x x f x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e 74244e -+++⇔xx x x ,令()223e 7424()(0)e -+++=≥x x x x h x x ,则()()222313e 2e 92()e -+--=='x x x x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=x x x x ()2(2)2e 9e ⎡⎤--+-⎣⎦x x x x ,所以当29e 0,2⎡⎤-∈⎢⎣⎦x 时,()0,()h x h x <'单调递减;当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增;当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e 1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2x g x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--()()()2112342e 212e 22x x x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x x g x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21x g x x x -=+≤+恒成立,所以12a ≥时,满足题意.综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【正确答案】(1)2cos ([0,])4πρθθ=∈,32sin ([])44ππρθθ=∈,32cos ([,])4πρθθπ=-∈,(2))6π,)3π,2)3π,5)6π.【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围.(2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3πθ=或23πθ=,此时P 的极坐标为3π或2)3π解方程32cos [,])4πθθπ-=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π.此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.设函数()|21||4|f x x x =+--.(1)求不等式()2f x >的解集;(2)求函数()f x 的最小值.【正确答案】(1){7x x ∈<-R 或53x ⎫>⎬⎭;(2)92-.【分析】(1)将绝对值函数化为分段函数,用不同的区间对应的解析式大于2,分别解出不等式求其并集即可.(2)由分段函数求其值域即可得到最小值.【详解】1521()33425(4)x x f x x x x x ⎧⎛⎫--<- ⎪⎪⎝⎭⎪⎪⎛⎫=--≤≤⎨ ⎪⎝⎭⎪⎪+>⎪⎩⑴①由5212x x -->⎧⎪⎨<-⎪⎩解得7<-x ;②332142x x ->⎧⎪⎨-≤≤⎪⎩解得543x <≤;③524x x +>⎧⎨>⎩解得>4x ;综上可知不等式的解集为{|7x x ∈<-R 或53x ⎫>⎬⎭.⑵由(1)知,当12x <-时,()195522f x x =-->-=-;当142x -≤≤时,()33f x x =-,()992f x -≤≤;当>4x 时,()59f x x =+>;综上x ∈R 时,()92f x ≥-,所以min 9()2f x =-故函数()f x 的最小值为92-.。
高二下学期数学3月月考试卷(答案在最后)考试时间:120分钟试卷总分150分一、单项选择题(本大题共8小题,每小题5分,共计40分).1.有5名学生报名参加3项体育比赛,每人限报一项,则不同的报名方法的种数为()A .60B .125C .243D .1202.下列求导运算正确的()A .211()1x x x'+=+B .21(log )ln 2x x '=C .(cos 2)sin 2x x =-'D .(ln )ln 1x x x '=-3.某高中学校学生人数和近视情况分别如图①和图②所示.为了解该学校学生近视形成原因,在近视的学生中按年级用分层抽样的方法抽取部分学生进行问卷调查,已知抽取到的高中一年级的学生36人,则抽取到的高三学生数为()A .32B .45C .64D .904.若二项式(12)n x +的展开式中所有项的系数和为243,则展开式中2x 项的系数为()A .40B .60C .80D .1605.用0,1,2,3,4,5这六个数字组成没有重复数字的三位数,其中偶数共有()A .40个B .42个C .48个D .52个6.已知函数()f x 的定义域为R ,且()21f =,对任意x ∈R ,()()0f x xf x '+<,则不等式()()112x f x ++>的解集是()A .(),1∞-B .(),2∞-C .()1,+∞D .()2,∞+7.(x 2-x +1)5的展开式中x 3的系数为()A .-20B .-24C .-30D .208.设函数21()4ln 2f x x x a x =-+,若函数()y f x =存在两个极值点12,x x ,且不等式1212()()f x f x x x t +≥++恒成立,则t 的取值范围为()A .(]1-∞-,B .(]168ln 2-∞--,C .2e 4e 2⎛⎤-∞- ⎥⎝⎦,D .(]13-∞-,二、多项选择题(本大题共3小题,每小题6分,共18分.漏选得部分分,错选不得分).9.随机抽取6位影迷对电影《长津湖》的评分,得到一组样本数据如下:929395959798,,,,,,则下列关于该样本的说法中正确的有()A .均值为95B .极差为6C .方差为26D .第80百分位数为9710.在以下结论中正确的是().A .433101011C C C +=B .024*******10101010102C C C C C C +++++=C .1091-不能被100整除D .已知9(23)x -=290129(1)(1)(1)a a x a x a x +-+-++- ,则91238931a a a a a -+-++-=-+ 11.下列说法正确的是()A .从含有2件次品和98件正品的100件产品中任取2件,则至少取到1件次品的取法有11299C C ⋅种B .甲乙等6名同学和1名老师站成一排照相,则老师必须站在最中间且甲乙必须站在一起的站法有192种C .将10个“三好生”名额分给4个班级,每班至少1个名额,共有84种分法D .将5个不同的小球放入3个不同的盒子中,每个盒子至少放1个,共有150种放法三.填空题(本大题共3小题,每小题5分,共15分).12.25()()x x y xy ++的展开式中x 3y 3的系数为.13.将,,,,a b c d e 5名实习教师全部分配到某校高二年级的甲、乙、丙3个班级实习,要求每个班至少一名,最多两名,其中a 不去甲班,则不同的分配方案有种(用数字作答).14.若曲线()ex xf x =有三条过点()0,a 的切线,则实数a 的取值范围为.四.解答题(本大题共5小题,共计77分.解答时应写出文字说明,证明过程或演算步骤).15.(13分)已知函数()()212ln R 2f x x ax x a =--∈.(1)当1a =时,求函数()f x 的单调区间和极值;(2)若函数()f x 在区间[)1,+∞上单调递增,求实数a 的取值范围.16.(15分)3名女生和5名男生排成一排.(最终答案化为数字!)(1)如果女生全排在一起,有多少种不同排法?(2)如果女生都不相邻,有多少种排法?(3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不相邻),有多少种排法?(5)其中甲不站左端,乙不站右端,有多少种排法?17.(15分)已知*Nn∈,二项式n .(1)若该二项展开式的第4项与第8项的二项式系数相等,求展开式中2x的系数;(2)若展开式的前三项的系数成等差数列,求展开式中系数最大的项.18.(17分)已知:()201221nn n x a a x a x a x -=+++⋅⋅⋅+(*n ∈N ,n 为常数).(1)求|0|+|1|+|2|+...+||;(2)我们知道二项式(1)n x +的展开式0122(1)n n nn n n n x C C x C x C x +=+++⋅⋅⋅+.若该等式两边对x 求导得:o1+p K1=1232123n n n n n n C C x C x nC x -++⋅⋅⋅+,令x=1,可得1+22+33⋅⋅⋅+B =12n n -⋅.利用此方法解答以下问题:①求12312+3...n a a a na +++;②求2222123123...n a a a n a ++++.19.(17分)已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.高二下学期数学3月月考试卷考试时间:120分钟试卷总分150分一、单项选择题(本大题共8小题,每小题5分,共计40分).20.有5名学生报名参加3项体育比赛,每人限报一项,则不同的报名方法的种数为()A .60B .125C .243D .120【答案】C【分析】根据分步乘法计数原理求得正确答案.【详解】每名学生都有3种选择方法,所以不同的报名方法的种数为53243=.故选:C21.下列求导运算正确的()A .211()1x x x'+=+B .21(log )ln 2x x '=C .(cos 2)sin 2x x =-'D .(ln )ln 1x x x '=-22.某高中学校学生人数和近视情况分别如图①和图②所示.为了解该学校学生近视形成原因,在近视的学生中按年级用分层抽样的方法抽取部分学生进行问卷调查,已知抽取到的高中一年级的学生36人,则抽取到的高三学生数为()A .32B .45C .64D .90【答案】D【分析】根据近视率求出三个年级的近视的人数,结合抽样比例可得答案.【详解】近视的学生中,高一、高二、高三学生数分别为180人,320人,450人,由于抽取到的高一学生36人,则抽取到的近视学生中高三人数为90人.故选:D.23.若二项式(12)n x +的展开式中所有项的系数和为243,则展开式中2x 项的系数为()A .40B .60C .80D .160【答案】A 【分析】根据题意,令1x =可得n ,再由二项式展开式的通项,即可得到结果.【详解】令1x =,可得3243n =,则5n =,所以5(12)x +的展开式的通项为15C 2r r rr T x +=⋅⋅,令2r =,可得222235C 240T x x =⋅=.所以展开式中2x 项的系数为40.故选:A24.用0,1,2,3,4,5这六个数字组成没有重复数字的三位数,其中偶数共有()A .40个B .42个C .48个D .52个【答案】D【分析】分最后一位分别为0,2,4三种情况求解即可.【详解】当最后一位是0时,共有25A 20=种情况;当最后一位是2时,共有144116C C =种情况;当最后一位4时,共有144116C C =种情况,所以共有20161652++=个.故选:D25.已知函数()f x 的定义域为R ,且()21f =,对任意x ∈R ,()()0f x xf x '+<,则不等式()()112x f x ++>的解集是()A .(),1∞-B .(),2∞-C .()1,+∞D .()2,∞+【答案】A【分析】构造函数()()g x xf x =,利用导数法结合条件,得到()g x 在R 上单调递减,利用单调性可得答案.【详解】设()()g x xf x =,则()()()0g x f x xf x =+'<'所以()g x 在R 上单调递减,又()()2222g f ==由()()112x f x ++>,即()()12g x g +>,所以12x +<所以1x <故选:A 26.(x 2-x +1)5的展开式中x 3的系数为()A .-20B .-24C .-30D .20【答案】C【分析】先将(x 2-x +1)5转化为[1+(x 2-x )]5,则展开式的通项公式Tr +1=5rC (x 2-x )r ,r =0,1,2,3,4,5,再求得(x 2-x )r 展开式的通项公式得到5rkrC C (-1)k ·x 2r -k ,r =0,1,2,3,4,5,k =0,1,…,r ,然后令2r -k =3求解.【详解】.[1+(x 2-x )]5展开式的第r +1项Tr +1=5rC (x 2-x )r ,r =0,1,2,3,4,5,Tr +1展开式的第k +1项为5rkr C C ·(x 2)r -k (-x )k =5rkrC C (-1)k ·x 2r -k ,r =0,1,2,3,4,5,k =0,1,…,r ,当2r -k =3,即2{1r k ==或3{3r k ==时是含x 3的项,所以含x 3项的系数为2152C C (-1)+3353C C (-1)3=-20-10=-30.故选:C27.设函数21()4ln 2f x x x a x =-+,若函数()y f x =存在两个极值点12,x x ,且不等式1212()()f x f x x x t +≥++恒成立,则t 的取值范围为()A .(]1-∞-,B .(]168ln 2-∞--,C .2e 4e 2⎛⎤-∞- ⎥⎝⎦,D .(]13-∞-,二、多项选择题(本大题共3小题,每小题6分,共18分.漏选得部分分,错选不得分).28.随机抽取6位影迷对电影《长津湖》的评分,得到一组样本数据如下:929395959798,,,,,,则下列关于该样本的说法中正确的有()A .均值为95B .极差为6C .方差为26D .第80百分位数为9729.在以下结论中正确的是().A .433101011C C C +=B .024*******10101010102C C C C C C +++++=C .1091-不能被100整除D .已知9(23)x -=290129(1)(1)(1)a a x a x a x +-+-++- ,则91238931a a a a a -+-++-=-+30.下列说法正确的是()A .从含有2件次品和98件正品的100件产品中任取2件,则至少取到1件次品的取法有11299C C ⋅种B .甲乙等6名同学和1名老师站成一排照相,则老师必须站在最中间且甲乙必须站在一起的站法有192种C .将10个“三好生”名额分给4个班级,每班至少1个名额,共有84种分法D .将5个不同的小球放入3个不同的盒子中,每个盒子至少放1个,共有150种放法【答案】BCD三.填空题(本大题共3小题,每小题5分,共15分).32.将,,,,a b c d e 5名实习教师分配到某校高二年级的甲、乙、丙3个班级实习,要求每个班至少一名,最多两名,其中a 不去甲班,则不同的分配方案有种(用数字作答)【详解】根据题意,去甲班实习的教师可以是1人或2人.有1人去甲班时,因为a 不去甲班,可从另外4人中选1人去甲班,有14C 种选法,再选2人去乙班,有24C 种选法,剩下2人去丙班,有22C 种方法,这是分3步完成的,故有122442C C C 46124=⨯⨯=种方案;有2人去甲班时,因为a 不去甲班,可从另外4人中选2人去甲班,有24C 种选法,再剩余3人分配到2个班的分法有2232C A 种方法,所以这类办法有222432C C A 63236=⨯⨯=种.故不同的分配方案有:243660+=.33.若曲线()ex x f x =有三条过点()0,a 的切线,则实数a 的取值范围为由图可知,当240e a <<时,函数y 即过点(0,)a 的切线有3条.所以实数四.解答题(本大题共5小题,共计77分.解答时应写出文字说明,证明过程或演算步骤).34.(13分)已知函数()()212ln R 2f x x ax x a =--∈.(1)当1a =时,求函数()f x 的单调区间和极值;(2)若函数()f x 在区间[)1,+∞上单调递增,求实数a 的取值范围.35.(15分)3名女生和5名男生排成一排.(最终答案化为数字!)(1)如果女生全排在一起,有多少种不同排法?(2)如果女生都不相邻,有多少种排法?(3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不相邻),有多少种排法?(5)其中甲不站左端,乙不站右端,有多少种排法?36.(15分)已知*Nn∈,二项式n .(1)若该二项展开式的第4项与第8项的二项式系数相等,求展开式中2x的系数;(2)若展开式的前三项的系数成等差数列,求展开式中系数最大的项.37.(17分)已知:()201221n n n x a a x a x a x -=+++⋅⋅⋅+(*n ∈N ,n 为常数).(1)求|0|+|1|+|2|+...+||;(2)我们知道二项式(1)n x +的展开式0122(1)n n n n n n n x C C x C x C x +=+++⋅⋅⋅+.若该等式两边对x 求导得:o1+p K1=1232123n n n n n n C C x C x nC x -++⋅⋅⋅+,令x=1,可得1+22+33⋅⋅⋅+B =12n n -⋅.利用此方法解答以下问题:①求12312+3...n a a a na +++;②求2222123123...n a a a n a ++++.38.(17分)已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.。
湖北省天门2023-2024学年度高二下学期三月月考数学试题(答案在最后)考试内容:选修一第一章——选修三第六章6.1考试时间:2024年3月31日出题人:审题人:一、单选题(共40分)1.某圆锥的侧面积为16π,其侧面展开图为一个半圆,则该圆锥的底面半径长为()A.2B.4C. D.【答案】C 【解析】【分析】设圆锥的母线长为l ,底面半径为r ,由题意得到2ππr l =求解.【详解】设圆锥的母线长为l ,底面半径为r ,即侧面展开图的半径为l ,侧面展开图的弧长为πl .又圆锥的底面周长为2πr ,所以2ππr l =,即圆锥的母线长2l r =.所以圆锥的侧面积为2π2π16πrl r ==,解得r =故选:C.2.若直线1l :2(1)40x m y +++=与直线2l :320mx y +-=平行,则m 的值为()A.2B.3- C.2或3- D.2-或3-【答案】C 【解析】【分析】依题意可得23(1)0m m ⨯-+=,求出m 的值,再检验即可.【详解】直线1l :2(1)40x m y +++=与直线2l :320mx y +-=平行,则23(1)0m m ⨯-+=,解得3m =-或2m =,当3m =-时,此时直线1l :2240x y -+=与直线2l :3320x y -+-=平行,当2m =时,此时直线1l :2340x y ++=与直线2l :2320x y +-=平行,故3m =-或 2.m =故选:C3.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a ++⋅⋅⋅+=()A.12B.10C.5D.32log 5【答案】B 【解析】【分析】利用等比数列的性质,结合对数的运算法则即可得解.【详解】因为{}n a 是各项均为正数的等比数列,564718a a a a +=,所以564756218a a a a a a +==,即569a a =,则11029569a a a a a a ==== 记3132310log log log S a a a =++⋅⋅⋅+,则3103931log log log S a a a =+⋅+⋅⋅+,两式相加得()()()3110329310132log log log 10log 920S a a a a a a =++⋅⋅⋅+=⨯=,所以10S =,即3132310log log log 10a a a ++⋅⋅⋅+=.故选:B.4.已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为()A.()2,3 B.()3,4 C.(),3-∞ D.()3,+∞【答案】A 【解析】【分析】根据对数真数大于零可构造不等式组求得函数定义域;利用导数可求得函数单调递增区间.【详解】由2040x x ->⎧⎨->⎩得:24x <<,即()f x 的定义域为()2,4;()()()()23112424x f x x x x x -'=-=---- ,∴当()2,3x ∈时,()0f x ¢>;当()3,4x ∈时,()0f x '<;()f x \的单调递增区间为()2,3.故选:A .5.已知函数()2xf x =,则函数()f x 的图象在点()()0,0f 处的切线方程为()A.10x y --=B.10x y -+=C.ln 210x y ⋅--=D.ln 210x y ⋅-+=【答案】D【分析】求出函数()f x 的导数,再利用导数的几何意义求出切线方程.【详解】函数()2xf x =,求导得()2ln 2x fx '=,则(0)ln 2f '=,而(0)1f =,所以所求切线方程为1ln 2(0)y x -=⋅-,即ln 210x y ⋅-+=.故选:D6.在平面直角坐标系xOy 中,点()()1,0,2,3A B -,向量OC mOA nOB =+,且40m n --=.若P 为椭圆2217y x +=上一点,则PC 的最小值为()A.B.C.D.【答案】A 【解析】【分析】根据给定条件,求出点C 的轨迹,再借助三角代换及点到直线距离公式求出最小值.【详解】设点(,)C x y ,由()()1,0,2,3A B -及OC mOA nOB =+,得(,)(2,3)x y m n n =-+,即23x m ny n=-+⎧⎨=⎩,而40m n --=,消去,m n 得:3120x y -+=,设椭圆2217y x +=上的点(cos ),R P θθθ∈,则点P 到直线3120x y -+=的距离d =,其中锐角ϕ由tanϕ=确定,当sin()1θϕ+=时,min d =PC d ≥ ,所以PC 的故选:A【点睛】思路点睛:求出椭圆上的点与其相离的直线上点的距离最小值,可转化为求椭圆上的点到直线距离有最小值解决.7.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为()A.120B.324C.720D.1280【分析】利用分步乘法计数原理计算即可.【详解】第一天可以排5个人中的任意一个,有5种排法;第二天可以排另外4个人中任意一个,有4种排法;第三天同上,有4种排法;第四天同上,有4种排法;第五天同上,有4种排法.根据分步乘法计数原理得所有的排法总数为544441280⨯⨯⨯⨯=.故选:D .8.函数32()(1)f x x a x x b =+--+为R 上的奇函数,过点1,12P ⎛⎫- ⎪⎝⎭作曲线()y f x =的切线,可作切线条数为()A.1B.2C.3D.不确定【答案】A 【解析】【分析】根据奇函数确定3()f x x x =-,求导得到导函数,设出切点,根据切线方程公式计算01x =-,计算切线得到答案.【详解】()3232()(1)(1)f x x a x x b f x x a x x b -=-+-+=-=--++--,故1a =,0b =,3()f x x x =-,2()31x f x '=-,设切点为()00,Mxy ,则2000012()311y f x x x '-=+=-,且30000()f x x x y -==,整理得到()()20001410x x x +-+=,解得01x =-,(1)2f '-=,故切线方程为22y x =+,故选:A二、多选题(共18分)9.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有()A.0d < B.70a > C.{}n S 中5S 最大D.49a a <【分析】利用等差数列性质结合给定条件可得60a >,670a a +<,再逐项分析判断作答.【详解】由()111116111102a a S a +==>,得60a >,又()()112126712602a a S a a +==+<,得,670a a +<,所以60a >,70a <,数列{}n a 是递减数列,其前6项为正,从第7项起均为负数,等差数列{}n a ,公差0d <,A 选项正确;70a <,B 选项错误;前6项和最大,C 选项错误;由40a >,90a <,有4949670a a a a a a -=+=+<,则49a a <,D 选项正确.故选:AD.10.已知函数()()322R x x a a f x x =-++∈的图像为曲线C ,下列说法正确的有()A.R a ∀∈,()f x 都有两个极值点B.R a ∀∈,()f x 都有零点C.R a ∀∈,曲线C 都有对称中心D.R a ∃∈,使得曲线C 有对称轴【答案】ABC 【解析】【分析】根据函数极值的定义、零点的定义,结合函数的对称性的性质逐一判断即可.【详解】A :()()()()3222341311x x x a f x x x x x f x '=-++⇒=-+=--,当1x >时,()()0,f x f x '>单调递增,当113x <<时,()()0,f x f x '<单调递减,当13x <时,()()0,f x f x '>单调递增,因此13x =是函数的极大值点,1x =是函数的极小值点,因此本选项正确;B :当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞,而函数()f x 是连续不断的曲线,所以一定存在0R x ∈,使得()0f x =,因此本选项正确;C :假设曲线C 的对称中心为(),b c ,则有()()()()()()32322222,f b x f b x c b x b x b x a b x b x b x a c ++-=⇒+-+++++---+-+=化简,得()232322b x c a b b b -=---+,因为x ∈R ,所以有322320320227b b c a b b b c a ⎧=⎪-=⎧⎪⇒⎨⎨---+=⎩⎪-=⎪⎩,因此给定a 一个实数,一定存在唯一的一个实数c 与之对应,因此假设成立,所以本选项说法正确;D :由上可知当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞,所以该函数不可能是关于直线对称,因此本选项说法不正确,故选:ABC11.已知正方体1111ABCD A B C D -的棱长为1,下列四个结论中正确的是()A.直线1B C 与直线1AD 所成的角为90B.直线1B C 与平面1ACD 所成角的余弦值为33C.1B D ⊥平面1ACD D.点1B 到平面1ACD 的距离为32【答案】ABC 【解析】【分析】如图建立空间直角坐标系,求出1B C 和1AD uuu r的坐标,由110AD B C ⋅= 可判断A ;证明10AC B D ⋅= ,110AD B D ⋅=,再由线面垂直的判定定理可判断C ;计算11cos ,B D B C 的值可得线面角的正弦值,再求出夹角的余弦值可判断B ;利用向量求出点A 到平面11D B C 的距离可判断D.【详解】如图以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,()0,1,0C ,()10,0,1D ,()11,1,1B ,对于A :()11,0,1B C =-- ,()11,0,1AD =-,因为()()()111100110B C AD ⋅=-⨯-+⨯+-⨯= ,所以11AD B C ⊥ ,即11B C AD ⊥,直线1B C 与直线1AD 所成的角为90 ,故选项A 正确;对于C :因为()1,1,0AC =- ,()11,0,1AD =- ,()11,1,1B D =---,所以11100AC B D ⋅=-+= ,111010AD B D ⋅=+-= ,所以1AC B D ⊥ ,11AD B D ⊥uuur uuu r ,因为1AC AD A =I ,1,AC AD ⊂平面A 1,所以1B D ⊥平面1ACD ,故选项C 正确;对于B :由选项C 知:1B D ⊥平面1ACD ,所以平面1ACD 的一个法向量()11,1,1B D =---,因为()11,0,1B C =-- ,所以111111cos ,B D B C B D B C B D B C⋅=== 即直线1B C 与平面1ACD 所成,所以直线1B C 与平面1ACD33=,故选项B 正确;对于D :因为()11,0,1B C =-- ,平面1ACD 的一个法向量()11,1,1B D =---,所以点1B 到平面1ACD的距离为1113B D B C d B D⋅=== ,故选项D 不正确.故选:ABC.三、填空题(共15分)12.若抛物线22y px =-过点()1,2-,则该抛物线的焦点为________.【答案】()1,0-【解析】【分析】根据题意,代入求得2p =,结合抛物线的几何性质,即可求解.【详解】解:将()1,2-代入抛物线方程22y px =-,可得2p =,即24y x =-,所以抛物线24y x =-的焦点为()1,0-.故答案为:()1,0-.13.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则实数λ的值是_____.【答案】-2【解析】【分析】由已知推得1q ≠,继而结合等比数列的前n 项和的特点及已知即可求解.【详解】等比数列{}n a 中,由122n n S λ+=+可得122n n S λ=+,则11122a S λ==+,若公比1q =,则2211224,02S a λλλ=+==+∴=,则13323S a =≠,故1q ≠,则等比数列的前n 项和()1111111n nn a q a S qa q a a--=⋅--=-,(1q ≠),故令112λ=-,即2λ=-,故答案为:2-14.若e e e e ()cos 22x x x xf x x x ---+=+,则不等式(sin )(cos )0f x f x +>的解集是________.【答案】π3π|2π2π,44x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z 【解析】【分析】根据奇偶性的定义和导数分析可知()f x 在[]1,1-内单调递增,且为奇函数,进而可得sin cos x x >-,利用辅助角公式结合正弦函数运算求解.【详解】取()f x 的定义域为[]1,1-,关于原点对称,且()()()e e e e e e e e ()cos cos sin 2222x x x x x x x xf x x x x x f x -----+-+-=-+-=--=-,所以()f x 为定义在[]1,1-上的奇函数,因为()e e e e e e e e ()cos sin sin cos e e cos 2222x x x x x x x xx x f x x x x x x ------+-+'=-++=+,若[]1,1x ∈-,则e 0,e cos 00,x x x ->>>,可得()()e e cos 0x xf x x -'=+>,可知()f x 在[]1,1-内单调递增,对于不等式(sin )(cos )0f x f x +>,则(sin )(cos )(cos )f x f x f x >-=-,且[][]sin 1,1,cos 1,1x x ∈--∈-,可得sin cos x x >-,整理得πsin cos 04x x x ⎛⎫+=+> ⎪⎝⎭,令π2π2ππ,4k x k k <+<+∈Z ,解得π3π2π2π,44k x k k -<<+∈Z ,所以不等式(sin )(cos )0f x f x +>的解集是π3π|2π2π,44x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z .故答案为:π3π|2π2π,44x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z .四、解答题(共77分)15.已知函数()ln 1f x x ax =++.(1)当1a =-时,求()f x 的最大值.(2)讨论函数()f x 的单调性.【答案】(1)0(2)答案见解析【解析】【分析】(1)利用导数求解函数最值即可.(2)含参讨论函数单调性即可.【小问1详解】当1a =-时,()ln 1f x x x =-+,由0x >,所以()111x f x x x-=-=',当01x <<时,()0f x '>,所以函数()f x 在()0,1上单调递增;当1x >时,()0f x '<,所以函数()f x 在()1,∞+上单调递减;故()()max 1ln1110f x f ==-+=;【小问2详解】定义域为(0,)+∞,()1f x a x'=+,当0a ≥时,()10f x a x+'=>,()f x 在(0,)+∞上递增;当a<0时,令()10f x a x +'=>,解得10,x a ⎛⎫∈- ⎪⎝⎭,令()10f x a x +'=<,解得1,x a ∞⎛⎫∈-+ ⎪⎝⎭.于是()f x 在10,a ⎛⎫-⎪⎝⎭上单调递增;在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.16.如图,在底面为菱形的直四棱柱1111ABCD A B C D -中,12π,23BAD AA AB ∠===,,,E F G 分别是111,,BB CC DD 的中点.(1)求证:1A E GC ∥;(2)求平面1A EF 与平面ABCD 所成夹角的大小.【答案】(1)证明见解析(2)π6【解析】【分析】(1)建立空间直角坐标系,利用向量的坐标运算即可求解,(2)根据法向量的夹角即可求解.【小问1详解】取BC 中点H ,连接AH因为底面ABCD 为菱形,2π3BAD ∠=,所以AH AD ⊥以A 为原点,1,,AH AD AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()()()10,0,2,3,1,1,0,2,1A E G -,()()3,1,0,3,1,1C F ))13,1,1,3,1,1A E GC =--=-- 1A E GC∴ ∥1A E GC∴∥【小问2详解】设平面1A EF 的法向量为(),,n x y z =又()0,2,0EF = 所以100n A E n EF ⎧⋅=⎪⎨⋅=⎪⎩ 即3020y z y --==⎪⎩取1x =,则0,3y z ==(3n = ()10,0,2AA = 为平面ABCD 的法向量,设平面1A EF 与平面ABCD 的夹角为θ,则11233cos 222AA n AA nθ⋅===⨯ π6θ∴=∴平面1A EF 与平面ABCD 的夹角为π617.已知数列{}n a 的前n 项和n S 满足()1122n n S n +=-+.(1)求{}n a 的通项公式;(2)求数列12·1n n a n ++⎧⎫⎨⎬+⎩⎭的前n 项和n T .【答案】(1)2nn a n =⨯(2)()2124n n T n +=+⨯-【解析】【分析】(1)由已知结合数列的和与项的递推关系即可求解;(2)先求数列121n n a n ++⎧⎫⎨⎬+⎩⎭的通项公式,然后利用错位相减求和即可求解.【小问1详解】当1n =时,112a S ==,当2n ≥时,由()1122n n S n +=-+,得()1222n n S n -=-+,则()()1112222n n n n n n a S S n n n +-=-=---=⨯,因为11212a ==⨯,所以2n n a n =⨯;【小问2详解】由(1)可知,()112·221n n n a n n +++=+⨯+,则()234132425222n n T n +=⨯+⨯+⨯+⋯++⨯,则()3452232425222n n T n +=⨯+⨯+⨯+⋯++⨯,则()234123222222n n n T n ++-=⨯+++⋯+-+⨯()()12812122212n n n -+-=+-+⨯-()22122822n n n ++=+--+⨯()2412n n +=-+⨯,所以()2124n n T n +=+⨯-.18.在平面直角坐标系xOy 中,已知椭圆2222:1x y C a b +=(0a b >>过点(2,1)P,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A 、B 两点,求PAB 的面积的最大值.【答案】(1)22182x y +=(2)2【解析】【分析】(1)利用222c e a =,可得22234a b a -=,再将点P 坐标代入方程,解方程组求得,a b 从而可得椭圆的方程;(2)设直线l 的方程为1,2y x m =+,代入椭圆方程中整理得222240x mx m ++-=,借助根的判别式可得||2m <,结合根与系数的关系可得AB ==直线的距离公式可求出点P 到直线的距离d ,再利用三角形面积公式1||2PAB S d AB =⋅ 和基本不等式进行求解,即可解决问题.【小问1详解】因为22222234c a b e a a -===,所以224a b =,①因为椭圆C 过点(2,1)P ,所以22411a b +=,②由①②解得228,2a b ==,所以椭圆的方程为22182x y +=.【小问2详解】设直线l 的方程为()()11221,,,,2y x m A x y B x y =+,联立2212182y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得222240x mx m ++-=,所以212122,24x x m x x m +=-=-,又直线l 与椭圆相交,所以2248160m m =-+> ,解得||2m <,则AB ==P 到直线l的距离d ==,所以221142222PAB m m S d AB +-=⋅==≤= ,当且仅当22m =,即m =时,PAB 的面积取得最大值为2.19.已知函数()2e e x x f x a x =-+,其中0a >.(1)当1a =时,求函数()f x 在0x =处的切线方程;(2)讨论函数()f x 的极值点的个数;(3)若对任意的0a >,关于x 的方程()f x m =仅有一个实数根,求实数m 的取值范围.【答案】(1)20x y -=(2)见解析(3)3ln 2,2⎡⎫-++∞⎪⎢⎣⎭【解析】【分析】(1)求导得斜率,再利用点斜式求直线方程;(2)求导,讨论判别式与0的关系得单调性即可求解极值点个数;(3)构造新函数()2ee x x g x a x m =-+-,判单调性,得到()()120,ln 2,ln 2,x x ∞∈∈+,结合()10g x <或()20g x >即可求解.【小问1详解】当1a =时,()()22e e ,2e e 1x x x x f x x f x '=-+=-+,()02f '=,()00f =,所以函数()f x 在0x =处的切线方程为()020y x -=-,即20x y -=.【小问2详解】()22e e 1x x f x a '=-+,令()0,e x f x t ='=,得2210at t -+=,则18a ∆=-.当18a ≥时,0∆≤,此时()0f x '≥,故函数()f x 在(),∞∞-+上单调递增,没有极值点;当108a <<时,0∆>,令()0f x '=,则1e 4x a =,则1211ln ln 44x x a a-+==,则当()1,x x ∞∈-时,()0f x '>,当()12,x x x ∈时,()0f x '<,当()2,x x ∞∈+时,()0f x '>,则()f x 在()()12,,,x x ∞∞-+单调递增,在()12,x x 单调递减,此时函数()f x 有两个极值点.综上所述,当18a ≥时,函数()f x 没有极值点;当108a <<时,函数()f x 有两个极值点.【小问3详解】依题意,2e e x x a x m -+=,记()2e e x x g x a x m =-+-,()()g x f x '='.(i )由(2)知当18a ≥时,()0g x '≥,则函数()g x 在(),∞∞-+上单调递增;可知当x →-∞时,()g x ∞→-,当x →+∞时,()g x ∞→+,故当18a ≥时,函数()g x 恰有一个零点,方程()f x m =仅有一个实数根,此时R m ∈.(ii )当108a <<时,()g x 在()1,x ∞-上单调递增,在()12,x x 上单调递减,在()2,x ∞+单调递增,()()112222122e e 12e e 10x x x x g x a g x a ''=-+==-+=,则121222e 1e 12e 2ex x x x a --==,所以()()1112111e 1ee 22x x x g x g x a x m x m ==-+-=-+--极大值,()()2222222e 1e e 22x x x g x g x a x m x m ==-+-=-+--极小值,因为当(),x g x ∞∞→-→-,当(),x g x ∞∞→+→+,故只需()10g x <或()20g x >,令()e 122x h x x =-+-,则()e 12xh x '=-+,故当(),ln 2x ∞∈-时,()0h x '>,当()ln 2,x ∞∈+时,()0h x '<,则()h x 在(),ln 2∞-单调递增,在()ln 2,∞+单调递减;又121ln ln ln4x x a -===又108a <<,故()0,1,则()()120,ln 2,ln 2,x x ∞∈∈+,所以()()12331,ln 2,,ln 222h x h x ∞⎛⎫⎛⎫∈--+∈--+ ⎪ ⎪⎝⎭⎝⎭,故3ln 22m ≥-+.综上所述,实数m 的取值范围为3ln 2,2∞⎡⎫-++⎪⎢⎣⎭.【点睛】关键点点睛:本题考查函数极值点及零点个数问题,解决问题关键是利用第二问单调性解决第三问零点问题,并利用构造函数法求函数值域。
2023-2024学年山西省晋中市平遥县高二下册3月月考数学试题一、单选题1.为响应国家“节约粮食”的号召,某同学决定在某食堂提供的2种主食、3种素菜、2种大荤、4种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有()A .48种B .36种C .24种D .12种【正确答案】B利用分步计数原理,分3步即可求出【详解】解:由题意可知,分三步完成:第一步,从2种主食中任选一种有2种选法;第二步,从3种素菜中任选一种有3种选法;第三步,从6种荤菜中任选一种有6种选法,根据分步计数原理,共有23636⨯⨯=不同的选取方法,故选:B2.设等差数列{}n a 的前n 项和为n S ,若532a a =,则95S S =()A .910B .1518C .95D .185【正确答案】D【分析】根据等差数列的前n 项和21(21)n n S n a -=-,将95S S 转化为5a 和3a 的算式即可得到所求.【详解】解:依题意,数列{}n a 为等差数列,所以19951553992552a a S a a a S a +⨯⨯==+⨯⨯,又因为532a a =,所以955399182555S a S a ⨯===⨯,故选D.等差数列的性质,等差数列的前n 项和,考查分析解决问题的能力和运算能力,属于基础题.3.北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断,这是一次中国文化与奥林匹克精神的完美结合,是一次现代设计理念的传承与突破.为了宣传2022年北京冬奥会和冬残奥会,某学校决定派小明和小李等5名志愿者将两个吉祥物安装在学校的体育广场,若小明和小李必须安装同一个吉祥物,且每个吉祥物都至少由两名志愿者安装,则不同的安装方案种数为()A .8B .10C .12D .14【正确答案】A【分析】分为三人组中包含小明和小李和不包含小明和小李两类,分别计算方案种数即可得结果.【详解】由题意可知应将志愿者分为三人组和两人组,当三人组中包含小明和小李时,安装方案有12326C A =种;当三人组中不包含小明和小李时,安装方案有222A =种,共计有628+=种,故选:A.4.设F 为抛物线C :24y x =的焦点,点M 在C 上,点N 在准线l 上且MN 平行于x 轴,若NF MN =,则MF =()A .3B .1C .3D .4【正确答案】D【分析】由抛物线方程可知焦点坐标及准线方程,设准线l 与x 轴交点为E ,画出图象,由抛物线定义及NF MN =可知MNF 是正三角形,结合平行关系可判断60EFN ∠=︒,利用直角三角形性质即可求解.【详解】由题可知,2p =,抛物线焦点F 为()1,0,准线l 为=1x -,设准线l 与x 轴的交点为E ,如图所示,由题知MN l ⊥,由抛物线的定义可知MN MF =,因为NF MN =,所以MNF 是正三角形,则在Rt NEF 中,因为MN EF ∥,所以60EFN MNF ∠=∠=︒,所以224MF NF EF p ====.故选:D5.三棱锥A BCD -中,AC ⊥平面BCD ,BD CD ⊥.若3AB =,1BD =,则该三棱锥体积的最大值为()A .2B .43C .1D .23【正确答案】D【分析】先利用线面垂直的判定定理与性质定理依次证得BD ⊥平面ACD 、BD AD ⊥与AC CD ⊥,从而利用基本不等式求得2ACDS≤,进而得到23A BCDB ACD V V --=≤,由此得解.【详解】因为AC ⊥平面BCD ,BD ⊂平面BCD ,所以AC BD ⊥,又BD CD ⊥,AC CD C = ,,AC CD ⊂平面ACD ,所以BD ⊥平面ACD ,因为AD ⊂平面ACD ,所以BD AD ⊥,在Rt △ABD 中,3AB =,1BD =,则AD ==,因为AC ⊥平面BCD ,CD ⊂平面BCD ,所以AC CD ⊥,在Rt ACD △中,不妨设(),0,0AC a CD b a b ==>>,则由222AC CD AD +=得228a b +=,所以()221111222244ACDSAC CD ab ab a b =⋅==⨯≤+=,当且仅当a b =且228a b +=,即2a b ==时,等号成立,所以11221333A BCDB ACD ACDV V SBD --==⋅≤⨯⨯=,所以该三棱锥体积的最大值为23.故选:D..6.()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -项的系数为160,则=a ()A .2B .4C .2-D .-【正确答案】C先求得()61ay +展开式中3y 的系数,可得()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数,从而得答案.【详解】二项式()61ay +展开式的通项为()6166C 1C rr rr r r r T ay a y -+=⨯=,令3r =可得二项式()61ay +展开式中3y 的系数为336C a ,∴()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数为()3361C 160a -=,可得38a =-,解得2a =-,故选:C .7.甲、乙、丙、丁、戊5名党员参加“党史知识竞赛”,决出第一名到第五名的名次(无并列名次),已知甲排第三,乙不是第一,丙不是第五.据此推测5人的名次排列情况共有()种A .5B .8C .14D .21【正确答案】C【分析】按乙排第五和不是第五分类讨论.【详解】乙排在第五的情况有:33A ,乙不在第五的方法有112222C C A ,共有3112322214A C C A +=,故选:C .关键点点睛:本题考查排列组合的综合应用,解题关键是确定完成事件的方法:是先分类还是先分步:分类后每一类再分步.然后结合计数原理求解.8.设函数()f x ,()g x 在R 上的导函数存在,且()()f x g x ''<,则当(),x a b ∈时()A .()()f x g x <B .()()f xg x >C .()()()()f x g a g x f a +<+D .()()()()f xg b g x f b +<+【正确答案】C【分析】对于AB ,利用特殊函数法,举反例即可排除;对于CD ,构造函数()()()h x f x g x =-,利用导数与函数单调性的关系证得()h x 在R 上单调递减,从而得以判断.【详解】对于AB ,不妨设()2f x x =-,()1g x =,则()2f x '=-,()0g x '=,满足题意,若()1,x a b =-∈,则()()21f x g x =>=,故A 错误,若()0,x a b =∈,则()()01f x g x =<=,故B 错误;对于CD ,因为()f x ,()g x 在R 上的导函数存在,且()()f x g x ''<,令()()()h x f x g x =-,则()()()0h x f x g x ''-'=<,所以()h x 在R 上单调递减,因为(),x a b ∈,即a x b <<,所以()()()h b h x h a <<,由()()h x h a <得()()()()f x g x f a g a -<-,则()()()()f x g a g x f a +<+,故C 正确;由()()h b h x <得()()()()f b g b f x g x -<-,则()()()()f x g b g x f b +>+,故D 错误.故选:C.二、多选题9.有3位男生和3位女生,要在某风景点前站成一排照合影,则下列说法正确的是()A .共有66A 种不同的排法B .男生不在两端共有2424A A 种排法C .男生甲、乙相邻共有2525A A 种排法D .三位女生不相邻共有3333A A 种排法【正确答案】AC【分析】根据给定条件,利用无限制条件的排列判断A ;利用有位置条件的排列判断B ;利用相邻、不相邻问题的排列判断C ,D 作答.【详解】有3位男生和3位女生,要在某风景点前站成一排照合影,共有66A 种不同的排法,A 正确;男生不在两端,从3位女生中取2人站两端,再排余下4人,共有2434A A 种排法,B 不正确;男生甲、乙相邻,视甲乙为1人与其余4人全排列,再排甲乙,共有2525A A 种排法,C 正确;三位女生不相邻,先排3位男生,再在2个间隙及两端4个位置中插入3位女生,共有3334A A种排法,D 不正确.故选:AC 10.()20232202301220231ax a a x a x a x +=++++ ,若16069a =-,则下列结论正确的有()A .3a =B .202301220232a a a a ++++=- C .202312220231333a a a +++=- D .()20231ax +的展开式中第1012项的系数最大【正确答案】BC【分析】利用二项式展开式的通项公式求解含x 项的系数,从而求解a ,即可判断选项A ,赋值法即可求解系数和问题,从而判断选项B 、C ,利用展开式系数符合规律判断选项D 【详解】对于A ,112023C 20236069a a a =⋅==-,可得3a =-,故A 错误;对于B ,因为()2023201213x a a x a x -=++20232023a x ++ ,令1x =,则()202320230122023132a a a a ++++=-=- ,故B 正确;对于C ,令0x =,则01a =,令13x =,则2023202312002202311313333a a a a a ⎛⎫+++=-⨯-=-=- ⎪⎝⎭ ,故C 正确;对于D ,由展开式知,20n a >,210n a -<,故第1012项的系数10110a <,不会是展开式中系数最大的项,故D 错误.故选:BC11.对于三次函数()()320ax bx d a f x cx =+++≠,给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若函数()()3211R 32f x x x x b b =-++∈,则()A .()f x 一定有两个极值点B .函数()y f x =在R 上单调递增C .过点()0,b 可以作曲线()y f x =的2条切线D .当712b =时,123202220222023202320232023f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【正确答案】BCD【分析】对()f x 求导,得出()0f x ¢>,没有极值点,可判断A ,B ;由导数的几何意义求过点()0,b 的切线方程条数可判断C ;求出三次函数()f x 的对称中心,由于函数的对称中心为1,12⎛⎫⎪⎝⎭,可得()()12f x f x +-=,由倒序相加法求出所给的式子的值,可判断D.【详解】由题意知()21f x x x '=-+,1430∆=-=-<,()0f x ¢>恒成立,所以()f x 在R 上单调递增,没有极值点,A 错误,B 正确;设切点为3211,32m m m m b ⎛⎫-++ ⎪⎝⎭,则()21k f m m m '==-+,切线方程为()()32211132y m m m b m m x m ⎛⎫--++=-+- ⎪⎝⎭,代入点()0,b 得32321132m m m m m m -+-=-+-,即322132m m =,解得0m =或34m =,所以切线方程为y x b =+或1316y x b =+,C 正确;易知()21f x x ''=-,令()0f x ''=,则12x =.当712b =时,102f ⎛⎫= ⎪⎝⎭'',112f ⎛⎫= ⎪⎝⎭,所以点1,12⎛⎫⎪⎝⎭是()f x 的对称中心,所以有11222f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,即()()12f x f x +-=.令123202320232023S f f f f ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20222023⎛⎫ ⎪⎝⎭,又20222021202012023202320232023S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以12022220232023S f f ⎡⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22021202212022240442023202320232023f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++=⨯= ⎪ ⎪⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ,所以2022S =,D 正确.故选:BCD.12.已知椭圆C :22143x y +=的左、右焦点分别为1F ,2F ,上顶点为B ,直线l :()0y kx k =≠与椭圆C 交于M ,N 两点,12F MF ∠的角平分线与x 轴相交于点E ,与y 轴相交于点()0,G m ,则()A .四边形12MF NF 的周长为8B .1114MF NF +的最小值为9C .直线BM ,BN 的斜率之积为34-D .当12m =-时,12:2:1F E F E =【正确答案】AC【分析】对A 选项,由椭圆的定义知,四边形12MF NF 的周长为4a 即可求解;对B 选项,由直线()0y kx k =≠与椭圆相交的对称性知:12NF MF =,11121414MF NF MF MF ∴+=+,借助基本不等式可得1114MF NF +的最小值;对C 选项,设()11,M x y ,则()11,N x y --,由点()11,M x y 在椭圆上,即可化得BM BN k k ⋅的值;对D 选项,设出()()11,0t E t -<<,由条件推出()121MF t =+,()221MF t =-,又在椭圆C 中,由其第二定义1MF e =得()1112212MF x t =+=+,从而得到M ,E ,G 三点坐标,再根据其三点共线,化简求解即可.【详解】对A 选项,由椭圆的定义知,四边形12MF NF 的周长为2248a a a +==,A 正确;对B 选项,1112141414MF NF MF MF +=+=()21121212414191444MF MF MF MF MF MF MF MF ⎛⎫⎛⎫++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,当且仅当1248,33MF MF ==时等号成立,故B 错误;对C 选项,设()11,M x y ,则()11,N x y --,又(B,所以211121113BM BNy y y k k x x x --⋅=⋅=-.因为点()11,M x y 在椭圆上,所以2211143x y +=,即()222111441333y x y ⎛⎫=-=- ⎪⎝⎭,所以2121334BM BNy k k x -⋅==-,C 正确;对D 选项,设()()11,0t E t -<<,则12F E F E 1211MF t t MF +==-,124MF MF +=所以()121MF t =+,()221MF t =-,在椭圆C :22143x y +=中,由其第二定义1MF e d =(d 指的是椭圆上的点到相应的准线的距离)得221111()()22M a a MF de x e x e x c c ==+⋅=+⋅=+,12MF ∴=+()11212x t =+,所以14x t =,故()14,M t y ,(),0E t ,10,2⎛⎫- ⎪⎝⎭G ,因为三点共线,所以1123y t t =,解得132y =,则29164143t +=,解得14t =±,当14t =时,1211541314F E F E +==-,当14t =-时,1211341514F E F E -==+,故D 错误.故选:AC方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习加以强化.三、填空题....道上有编号1,2,.3,....10的十盏路灯,为节省用电又能看清路面,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,满足条件的关灯方法有__________种.【正确答案】20【分析】采用插空法即可求解.【详解】10只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之间的6个空挡中放入3只熄灭的灯,有36C 20=种方法,故答案为.2014.我国古代《九章算术》将底面为矩形的棱台称为刍童.若一刍童为正棱台,其上、下底1,则该刍童的外接球的表面积为______.【正确答案】20π【分析】根据题意,作出图形,设该刍童外接球的球心为O ,半径为R ,分两种情况讨论,分别根据条件列出方程组,即可求出外接球半径,代入球的表面积公式计算即可求解.【详解】设该刍童外接球的球心为O ,半径为R ,上底面中心为1O ,下底面中心为2O ,则由题意,121O O =,22AO =,111A O =,1R OA OA ==.如图,当O 在12O O 的延长线上时,设2OO h =,则在2AOO 中,22R 4h =+①,在11A OO 中,()22R 11h =++②,联立①②得1h =,2R 5=,所以刍童外接球的表面积为20π,同理,当O 在线段12O O 上时,设1OO h =,则有22R 1h =+,()22R 14h =-+,解得2h =,不满足题意,舍去.综上所述,该刍童外接球的表面积为20π.故20π.15.两名学生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是170.”若每个参加面试的人被招聘的可能性相同,则根据这位负责人的话,可以推断出参加面试的人数为______.【正确答案】21【分析】利用古典概型的概率公式求解.【详解】设参加面试的人数为n ,依题意有()()()()2122362C C 61C 12170n nn n n n n n --===---,即()()242020210n n n n --=+-=,解得21n =或20n -(舍去).16.南宋数学家杨辉善于把已知形状、大小的几何图形的求面积、体积的连续量问题转化为求离散量的垛积问题,在他的专著《详解九章算法·商功》中给出了著名的三角垛公式()()()()()1112123123126n n n n ++++++⋅⋅⋅++++⋅⋅⋅+=++,则数列{}22n n +的前n 项和为____________.【正确答案】()()1121226n n n n ++++-【分析】由三角垛公式可知数列()12n n +⎧⎫⎨⎬⎩⎭的前n 项和为()()1126n n n ++,根据()212222n n n n n n ++=⨯-+,采用分组求和法,结合等差、等比求和公式可求得结果.【详解】()11232n n n ++++⋅⋅⋅+=,∴数列()12n n +⎧⎫⎨⎩⎭的前n 项和为()()1126n n n ++,()212222n n n n n n ++=⨯-+ ,∴数列{}22n n +的前n 项和()()()1211223212222222n n n n S n +⎛⎫⨯⨯=⨯++⋅⋅⋅+-++⋅⋅⋅++++⋅⋅⋅+ ⎪⎝⎭()()()()()()121211211122232126n n n n n n n n n n +-+++=++-+=+--.故答案为.()()1121226n n n n ++++-关键点点睛:本题考查数列中的分组求和法的应用,解题关键是能够将所求数列的通项进行变型,从而与已知的三角垛公式联系起来,利用所给的三角垛公式来进行求和.四、解答题17.现有一些小球和盒子,完成下面的问题.(1)4个不同的小球放入编号为1,2,3,4的4个盒子中(允许有空盒子),一共有多少种不同的放法?(2)4个不同的小球放入编号为1,2,3,4的4个盒子中,恰有1个空盒的放法共有多少种?【正确答案】(1)256;【分析】(1)根据题意分析将4个不同的小球放入编号为1,2,3,4的4个盒子中,每个小球有4种放法,由分步计数原理计算即可得出答案;(2)根据题意,分两步进行,①将4个小球分为3组,②在4个盒子中任选3个,放入三组小球,根据分步计数原理计算即可得出答案;【详解】(1)4个不同的小球放入编号为1,2,3,4的4个盒子中,每个小球有4种放法,则4个小球有4444256⨯⨯⨯=种不同的放法;(2)①将4个小球分为3组,有24C 6=种分组方法,②在4个盒子中任选3个,放入三组小球,有3343C A 24=种情况,则624144⨯=种不同的放法.18.如图,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,AB AD =,60BAD ∠=︒.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V ;(2)设点F 在线段AP 上,4,4PA PF PC CE ==,求二面角F CD P --的余弦值.【正确答案】【分析】(1)利用平面几何的知识推得AC BD ⊥,进而得到BD =与4AC EC =,从而利用柱体与锥体的体积公式求得12,V V 关于,EC PC 的表达式,由此得解;(2)根据题意建立空间直角坐标系,设1CE = ,结合(1)中结论与(2)中所给条件得到所需向量的坐标表示,从而求得平面FCD 与平面PCD 的法向量n 与m ,由此利用空间向量夹角余弦的坐标表示即可得解.【详解】(1)因为ABD ∠与ACD ∠是底面圆弧AD 所对的圆周角,所以ABD ACD ∠=∠,因为AB AD =,所以在等腰ABD △中,ABD ADE ∠=∠,所以ADE ACD ∠=∠,因为AC 是圆柱的底面直径,所以90ADC ∠=︒,则90CAD ACD ∠+∠=︒,所以90CAD ADE ∠+∠=︒,则90AED ∠=︒,即AC BD ⊥,所以在等腰ABD △,BE DE =,AC 平分BAD ∠,则1302CAD BAD ∠=∠=︒,所以60ADE ∠=︒,则30∠=︒CDE ,故在Rt CED 中,2CD EC =,DE ,则2BD DE ==,在Rt ACD △中,24AC CD EC ==,因为PC 是圆柱的母线,所以PC ⊥面ABCD ,所以()22211ππ24π2V AC CP EC PC EC PC ⎛⎫=⋅⋅=⋅⋅=⋅⋅ ⎪⎝⎭,2211143263V AC BD PC EC PC EC PC =⨯⋅⋅=⨯⨯⋅=⋅,所以12V V =.(2)以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C xyz -,不妨设1CE = ,则44AC EC ==,DE =44PC CE ==,则()()()()0,0,0,4,0,0,1,,0,0,4C A D P ,所以()CD = ,()0,0,4CP = ,()4,0,4PA =- ,因为4PA PF =,所以()11,0,14PF PA ==- ,则()()01,0,1(1,0,3,0,4)CF CP PF ==+=-+ ,设平面FCD 的法向量(,,)n x y z = ,则00n CF n CD ⎧⋅=⎪⎨⋅=⎪⎩,即300x z x +=⎧⎪⎨=⎪⎩,令3x =-,则1y z ==,故(n =- ,设平面PCD 的法向量(,,)m p q r = ,则00m CP m CD ⎧⋅=⎪⎨⋅=⎪⎩,即400r p =⎧⎪⎨=⎪⎩,令3p =-,则0q r ==,故(m =- ,设二面角F CD P --的平面角为θ,易知π02θ<<,所以cos cos ,13||||n m n m n m θ⋅====⋅ ,因此二面角F CD P --19.记数列{}n a 的前n 项和为n T ,且111,(2)n n a a T n -==≥.(1)求数列{}n a 的通项公式;(2)设m 为整数,且对任意*n ∈N ,1212nn m a a a ≥+++ ,求m 的最小值.【正确答案】(1)21,1,2, 2.n n n a n -=⎧=⎨≥⎩(2)7【分析】(1)由数列n a 与n T 的关系可得()122n n a a n +=≥,再结合等比数列的通项可得解;(2)利用错位相减法求出1212nn a a a +++ ,结合范围即可得解.【详解】(1)因为111,(2)n n a a T n -==≥,所以211a a ==,当2n ≥时,112n n n n n a T T a a +-+===,故()222222n n n a a n --==⋅≥,且11a =不满足上式,故数列{}n a 的通项公式为21,1,2, 2.n n n a n -=⎧=⎨≥⎩(2)设1212n nn S a a a =+++ ,则11S =,当2n ≥时,102122322n n S n --=+⋅++⋅+⋅ ,故112112232222n n S n ---=+⋅+⋅+⋅+ ,于是()122115222222n n n S n ----=++++-⋅ ()121121252212n n n -----=+-⋅-.整理可得27(2)2n n S n -=-+,所以7n S <,又54968S =>,所以符合题设条件的m 的最小值为7.20.已知双曲线2222:1(0,0)x y C a b a b-=>>过点A ,且焦距为10.(1)求C 的方程;(2)已知点3),B D -,E 为线段AB 上一点,且直线DE 交C 于G ,H 两点.证明:||||||||GD HD GE HE =.【正确答案】(1)221169x y -=(2)证明见解析【分析】(1)根据题意列方程组求出,a b ,即可得出C 的方程;(2)根据,,,D E H G 四点共线,要证||||||||GD HD GE HE =即证HE GE G H D D ⋅=⋅,设出直线:DE y x =-,()()1122,,,G x y H x y,)E t ,联立直线方程与椭圆方程得出1212,x x x x +,将其代入G G HE E DH D ⋅-⋅ ,计算结果为零,即证出.【详解】(1)由题意可得2232910a b-==,故4,3a b ==,所以C 的方程为221169x y -=.(2)设)E t ,()()1122,,,G x y H x y ,当x =2321169y -=,解得3=±y ,则||3t <, 双曲线的渐近线方程为34y x =±,故当直线DE 与渐近线平行时,此时和双曲线仅有一个交点,此时直线DE方程为(34y x =±-,令x =y =||t ≠则直线:DE y x =-.由221169y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩得()222292161440t x x t -+--=,所以212229x x t +=-,21221614429t x x t +=-.()()()()11221122,,,G HE GE DH x y x t x D y t y x y ⋅-⋅=--⋅----⋅-)()121212122232x x y y x x t y y =+-+-++()2221212243244t x x t x x t ⎛⎛⎫=+-++++ ⎪⎝⎭⎝()()()222222248943244322929t t t t t t t +++=-++--0=.所以HE GE G H D D ⋅=⋅ ,所以cos0cos0HE G G E D DH = 即||||||||GD HD GE HE =.关键点睛:本题第二问不能直接计算长度,否则计算量过大,而是转化为证明向量数量积之间的关系,采取设)E t ,从而得到直线DE 方程,再使用经典的联立法,得到韦达定理式,然后证明0HE GE G D D H ⋅-⋅= 即可.21.设()()21031x Q x x ax b -=-++,其中()Q x 是关于x 的多项式,a ,b ∈R .(1)求a ,b 的值;(2)若28ax b +=,求103x -除以81的余数.【正确答案】(1)10a =,12b =-;(2)28.【分析】(1)利用二项式定理及已知即求;(2)由题可知x 的值,然后利用二项式定理可求.【详解】(1)由已知等式,得()()()1021131x Q x x ax b -+-=-++⎡⎤⎣⎦,∴()()()()10920189101010101010C 1C 1C 1C 1C 3x x x x -+-+⋅⋅⋅+-+-+-()()21Q x x ax b =-++,∴()()()()()8722018101010C 1C 1C 110121x x x x Q x x ax b ⎡⎤-+-+⋅⋅⋅+-+-=-++⎣⎦,∴1012x ax b -=+,∴10a =,12b =-.(2)∵28ax b +=,即101228x -=,∴4x =,∴103x -1043=-()10313=+-0101991010101010C 3C 3C 3C 3=⨯+⨯+⋅⋅⋅+⨯+-()406156441010103C 3C 3C 4035328=⨯⨯+⨯+⋅⋅⋅++⨯+⨯+()0615610101081C 3C 3C 4528=⨯⨯+⨯+⋅⋅⋅+++,∴所求的余数为28.22.已知函数()()1e 6x f x k x ⎡⎤=--⎣⎦(其中e 为自然对数的底数).(1)若1k =,求函数()f x 的单调区间;(2)若12k ≤≤,求证:[]0,x k ∀∈,()2f x x <.【正确答案】(1)单调递增区间为[)0,∞+,单调递减区间为(),0∞-;(2)见解析.【分析】(1)求导,当()0f x '≥时,0x ≥,当()0f x '<时,0x <,即可解决;(2)由()211e 60x x x k ⎡⎤---<⎣⎦令新函数()21()1e 6x g x x x k=---,求导,由()()1e 6k g k k k =---,再令新函数()()()1e 6k h k g k k k ==---,证明()0h k <在12k ≤≤上恒成立,即可得证.【详解】(1)由题知()()1e 6x f x k x ⎡⎤=--⎣⎦,所以()()e 1e e x x x f x k x kx '⎡⎤=+-=⎣⎦,当1k =时,()e x f x x '=,当()0f x '≥时,0x ≥,当()0f x '<时,0x <,所以()f x 的单调递增区间为[)0,∞+,单调递减区间为(),0∞-,(2)由题知12k ≤≤,[]0,x k ∀∈,()2f x x <,所以()21e 60x k x x ⎡⎤---<⎣⎦,因为12k ≤≤,所以()211e 60x x x k ⎡⎤---<⎣⎦令()21()1e 6x g x x x k=---即证()21()1e 60x g x x x k =---<在[]0,x k ∈上恒成立,因为22()e (e )x x g x x x x k k'=-=-当()0g x '=时,2ln x k=,当()0g x '≥时,2lnx k ≥,即()g x 在2ln ,k k ⎡⎤⎢⎥⎣⎦上单调递增,当()0g x '≤时,2ln x k ≤,即()g x 在20,ln k ⎡⎤⎢⎥⎣⎦上单调递减,因为(0)70g =-<,()()1e 6k g k k k =---,令()()()1e 6k h k g k k k ==---,所以()e 1k h k k '=-,因为12k ≤≤,所以()e 10k h k k '=->,所以()h k 在[]1,2上单调递增,所以2max ()(2)e 80h k h ==-<,所以()0g k <恒成立,因为(0)0,()0g g k <<,所以()21()1e 60x g x x x k =---<在[]0,x k ∈上恒成立,即得证.。
2023-2024学年宁夏回族自治区石嘴山市高二下册3月月考数学(理)模拟试题一、单选题1.设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x '=的图象可能为A .B .C .D.【正确答案】D【分析】通过原函数的单调性可确定导函数的正负,结合图象即可选出答案.【详解】由函数()f x 的图象可知,当(0,)x ∈+∞时,()f x 单调递减,所以(0,)x ∈+∞时,()0f x '<,符合条件的只有D 选项,故选D.本题主要考查了函数的单调性与导函数的符号之间的对应关系,属于中档题.2.211e x dx x ⎛⎫+= ⎪⎝⎭⎰()A .2e ln 2-B .2e e ln 2--C .2e e ln 2++D .2e e ln 2-+【正确答案】D【分析】根据定积分的运算法则进行求解即可.【详解】()()()2222111e e ln e ln 2e ln1e e ln 2x x dx x x ⎛⎫+=+=+-+=-+ ⎪⎝⎭⎰.故选:D.3.已知随机变量X 的概率分布为()()()1,2,3,41aP X n n n n ===+,其中a 是常数,则1522P X ⎛⎫<<= ⎪⎝⎭()A .12B .23C .13D .56【正确答案】D【分析】根据概率和为1,求得参数a ,再求()()1,2P X P X ==,则问题得解.【详解】因为()()()()12341261220a a a a P X P X P X P X =+=+=+==+++=,解得54a =.故()()555128246P X P X =+==+=.故选:D本题考查根据分布列求参数值,属基础题.4.把标号为1,2,3,4的四个小球分别放入标号为1,2,3,4的四个盒子,每个盒子只放一个小球,则1号球和2号球都不放入1号盒子的方法共有()A .18种B .12种C .9种D .6种【正确答案】B【分析】先确定1号盒子的选择情况,再确定剩下盒子的选择情况,进而根据分布计数原理求得答案.【详解】由于1号盒子不能放1号和2号球,则1号盒子有3号球、4号球2种方法,则剩下3个盒子各放一个球有33A 种方法,一共有332=12A ⨯种方法.故选:B.5.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为0.4,在第二个路口遇到红灯的概率为0.5,在两个路口连续遇到红灯的概率是0.2.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是A .0.2B .0.3C .0.4D .0.5【正确答案】D根据条件概率,即可求得在第一个路口遇到红灯,在第二个路口也遇到红灯的概率.【详解】记“小明在第一个路口遇到红灯”为事件A ,“小明在第二个路口遇到红灯”为事件B “小明在第一个路口遇到了红灯,在第二个路口也遇到红灯”为事件C 则()0.4P A =,()0.5P B =,()0.2P AB =()0.2(|)0.5()0.4P AB P B A P A ===故选D.本题考查了条件概率的简单应用,属于基础题.6.若4m A =183m C ,则m 等于()A .9B .8C .7D .6【正确答案】D【详解】由A =m (m -1)(m -2)(m -3)=18·,得m -3=3,m =6.7.函数()ln 25y x x =+的导数为()A .()ln 2525x x x+-+B .()ln 25225x x x +++C .()2ln 25x x +D .25x x +【正确答案】B【分析】根据复合函数的求导法则以及导数的乘法运算法则求解出原函数的导数.【详解】解析:因为()()()()ln 25ln 25y x x x x '''=⋅++⋅+,所以()()1ln 252525y x x x x ''=++⋅⋅++,所以()2ln 2525x y x x '=+++,故选:B.8.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是().A .420B .180C .64D .25【正确答案】B【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论.【详解】由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种,A ,D 同色,D 有1种涂法,C 有3种涂法,有54360⨯⨯=种,共有180种不同的涂色方案.故选:B .本题考查计数原理的应用,解题关键是分步和分类的方法选取,属于中等题.9.若点P 是曲线2ln y x x =-上任意一点,则点P 到直线:40l x y +-=距离的最小值为()A.2BC.D.【正确答案】C【分析】由题知过点P 作曲线2ln y x x =-的切线,当切线与直线:40l x y +-=平行时,点P 到直线:40l x y +-=距离的最小,再根据导数的几何意义求解即可.【详解】解:过点P 作曲线2ln y x x =-的切线,当切线与直线:40l x y +-=平行时,点P 到直线:40l x y +-=距离的最小.设切点为000(,)(0)P x y x >,12'=-y x x,所以,切线斜率为0012k x x =-,由题知00121x x -=-得01x =或0 12x =-(舍),所以,(1,1)P -,此时点P 到直线:40l x y +-=距离d ==.故选:C10.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【正确答案】A【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.11.如图,已知电路中有5个开关,开关5S 闭合的概率为13,其它开关闭合的概率都是12,且是相互独立的,则灯亮的概率为()A .78B .1516C .2324D .45【正确答案】A【分析】设开关i S 闭合为事件i A ,{1,2,3,4,5}i ∈,由所设事件表示事件灯不亮,利用概率乘法公式求其概率,再利用对立事件概率公式求事件灯亮的概率.【详解】设开关i S 闭合为事件i A ,{1,2,3,4,5}i ∈,则事件灯不亮可表示为12345A A A A A ⋅⋅⋅⋅,由已知12341()()()()2P A P A P A P A ====,51()3P A =,∴1234511121()(1)42238P A A A A A ⋅⋅⋅⋅=-⨯⨯⨯=,∴事件灯亮的概率78P =,故选:A.12.某制药公司生产某种胶囊,其中胶囊中间部分为圆柱,且圆柱高为l ,左右两端均为半球形,其半径为r ,若其表面积为S ,则胶囊的体积V 取最大值时r =()A 4S πB 2S πC SπD 6S π【正确答案】A【分析】由圆柱和球的表面积公式将l 用r 和S 表示出来,再代入圆柱体积和球体积公式,表示出胶囊的体积V ,利用求导求出V 的最大值及此时r 的值.【详解】依题意,224422S r r rl S l rππππ-+=⇒=,故32342()323Sr V r r r l r πππ=+=-2()22S V r r π'=-,当4Sr π=()0V r '=,V 取最大值.故选:A二、填空题13.由曲线1x =-,0x =,e x y =以及x 轴所围成的面积为______.【正确答案】11e-【分析】根据定积分的几何意义即可求解区域面积.【详解】曲线1x =-,0x =,e x y =以及x 轴所围成的面积可表示:x 在()1,0-上的定积分,被积函数为e x y =,所以0001111e ee e 1ex xdx ---==-=-⎰.故答案为.11e-14.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知E (X )=3,则D (X )等于________.【正确答案】65【详解】分析:由题意知,X ~B (5,3m+3),由EX=5×3m+3=3,知X ~B (5,35),由此能求出D (X ).详解:由题意知,X ~B (5,3m+3),∴EX=5×3m+3=3,解得m=2,∴X ~B (5,35),∴D (X )=5×35×(1-35)=65.点晴:二项分布X ~B (n ,p )则EX=np .DX=np(1-p)15.已知在()()22nx y x y -+的展开式中含有24x y 项,则求24x y 的系数是______.【正确答案】70-【分析】由二项式定理展开项的特点即性质求解即可.【详解】()2nx y +展开式的通项为:()1C 2C 2n rr r r n rn r r r n n T x y x y ---+=⋅=⨯⋅⋅则()()22nx y x y -+的展开式含11C 22C 2C 22C 2r n r n r r r n r n r r r n r n r r r n rn r r n n n n x x y y x y x y x y -----+---+⨯⋅⋅-⨯⋅⋅=⨯⋅⋅-⨯⋅⋅,若其展开式中含有24x y 项,则1246n +=+=,故5n =,所以24x y 的系数为413255C 22C 2108070⨯-⨯=-=-.故答案为.70-16.若函数()()232e xf x mx x x =+-+在R 上单调递增,则实数m 的取值范围是______.【正确答案】[e,)+∞【分析】求出函数的导数,结合题意可知()()21e 0xf x m x x '=+--≥在R 上恒成立,即()21e x m x x -≤--在R 上恒成立,从而构造函数,将问题转化为求函数的最值问题即可.【详解】因为函数()()232e xf x mx x x =+-+在R 上单调递增,故()()21e 0xf x m x x '=+--≥在R 上恒成立,即()21e xm x x -≤--在R 上恒成立,设()2()1e x g x x x =--,则()2()2e xg x x x '=+-,当<2x -或1x >时,()0g x '>,当2<<1x -时,()0g x '<,由220x x +-=,得121122x x ==,当x <x ()0g x >x <()0g x <,作出函数()2()1e xg x x x =--的大致图象如图:故1x =为函数极小值点,此时函数也取得最小值,最小值为(1)e g =-,故e,e m m -≤-∴≥,经验证,当e m =时,()()21e 0xf x m x x '=+--≥在R 上恒成立,仅在1x =时取等号,适合题意,故实数m 的取值范围是[e,)+∞,故[e,)+∞三、解答题17.现有6本不同的书,如果满足下列要求,分别求分法种数.(1)分成三组,一组3本,一组2本,一组1本;(2)分给三个人,一人3本,一人2本,一人1本;(3)平均分成三个组每组两本.【正确答案】(1)60;(2)360;(3)15.【分析】(1)根据题意,由分步计数原理直接计算可得答案;(2)根据题意,先将6本书分为1、2、3的三组,再将分好的三组分给3人,由分步计数原理计算可得答案;(3)根据题意,由平均分组公式计算可得答案.【详解】(1)根据题意,第一组3本有36C 种分法,第二组2本有23C 种分法,第三组1本有1种分法,所以共有3263C C 160⨯=种分法.(2)根据题意,先将6本书分为1、2、3的三组,有3263C C 160⨯=种分法,再将分好的三组分给3人,有33A =6种情况,所以共有606360⨯=种分法.(3)根据题意,将6本书平均分为3组,有22264233C C C A =15种不同的分法.18.某学校组织一项益智游戏,要求参加该益智游戏的同学从8道题目中随机抽取3道回答,至少答对2道可以晋级.已知甲同学能答对其中的5道题.(1)设甲同学答对题目的数量为X ,求X 的分布列,(2)求甲同学能晋级的概率.【正确答案】(1)分布列见解析(2)57【分析】(1)由题意可知甲同学答对题目的数量X 的可能取值为0,1,2,3,分别求出相应的概率,从而可求出X 的分布列,(2)甲同学能晋级的概率(2)(3)P P X P X ==+=,从而可求得结果【详解】(1)由题意可知甲同学答对题目的数量X 的可能取值为0,1,2,3,则33381(0)56C P X C ===,12533815(1)56C C P X C ===,21533815(2)28C C P X C ===,35385(3)28C P X C ===,所以X 的分布列为X0123P15615561528528(2)由题意可得甲同学能晋级的概率为1555(2)(3)28287P P X P X ==+==+=19.已知(2n x +展开式中第3项和第7项的二项式系数相等(1)求展开式中含2x 的项的系数;(2)系数最大的项是第几项?【正确答案】(1)1120;(2)第3项或第4项.【分析】(1)利用二项式系数的性质求出n 值,再求出二项展开式的通项即可求出指定项的系数;(2)利用(1)的信息根据系数最大列出不等式组即可作答.【详解】(1)依题意,26n n C C =,由组合数的性质得8n =,于是得8(2x展开式的通项88213888(2)2,,8rrr r rr r T C x C x r N r --+-=∈⋅⋅=≤,由3822r -=得4r =,则8844167012120C -⋅=⋅=,所以展开式中含2x 的项的系数为1120;(2)令Tr +1项的系数最大,由(1)得89188871882222r r rr r r rr C CC C-----+⎧⋅≥⋅⎨⋅≥⋅⎩,即8!8!2(8)!!(9)!(1)!8!8!2(8)!!(7)!(1)!r r r r r r r r ⎧≥⋅⎪---⎪⎨⎪⋅≥⎪--+⎩,整理得1292181r rr r ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,解得23r ≤≤,而,8r N r ∈≤,从而得2r =或3r =,所以展开式中系数最大项是第3项或第4项.20.已知函数()()221ln f x ax a x x =+--.(1)当12a =时,求函数()f x 的单调区间和极值;(2)讨论函数()f x 单调性.【正确答案】(1)()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;函数()f x 的极小值()1f 12=,无极大值(2)答案见解析【分析】(1)利用导数与函数的单调性、极值的关系求解,注意函数的定义域,即可得到答案;(2)利用导数与函数的单调性的关系求解,注意对a 的取值范围进行分类讨论,求解即可.【详解】(1)当12a =时,()21ln ,02f x x x x =->,则()()()111x x f x x x x+-'=-=,当01x <<时,()0f x '<,则()f x 单调递减,当1x >时,()0f x '>,则()f x 单调递增,所以()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当1x =时,函数()f x 取得极小值()1f 12=,无极大值.(2)()()221ln ,0f x ax a x x x =+-->,则()22(21)1(1)(21)ax a x x ax f x x x+--+-='=,当0a ≤时,()0f x '<,则()f x 单调递减;当0a >时,当102x a <<时,()0f x '<,则函数()f x 单调递减,当12x a>时,()0f x '>,则函数()f x 单调递增.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;当0a >时,()f x 在10,2a ⎛⎫ ⎪⎝⎭上单调递减,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递增.21.2022年卡塔尔世界杯是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行、也是继2002年韩日世界杯之后时隔二十年第二次在亚洲举行的世界杯足球赛,除此之外,卡塔尔世界杯还是首次在北半球冬季举行、第二次世界大战后首次由从未进过世界杯的国家举办的世界杯足球赛.小胡、小陈两位同学参加学校组织的世界杯知识答题拿积分比赛游戏,规则如下:小胡同学先答2道题,至少答对一道题后,小陈同学才存机会答题,同样也是两次答题机会,每答对一道题获得5积分,答错不得分.小胡同学每道题答对的概率均为34,小陈同学每道题答对的概率均为23,每道题是否答对互不影响.(1)求小陈同学有机会答题的概率;(2)记X 为小胡和小陈同学一共拿到的积分,求X 的分布列和数学期望.【正确答案】(1)1516(2)分布列见解析,55()4E X =【分析】(1)利用对立事件及独立事件的概率乘法公式计算即可;(2)先求出变量取值的概率,然后列出随机变量的分布列,利用期望公式求解即可【详解】(1)记“小陈同学有机会答题”为事件A ,所以()()331511114416P A P A ⎛⎫⎛⎫=-=--⨯-= ⎪ ⎪⎝⎭⎝⎭,所以小陈同学有机会答题的概率是1516.(2)X 的所有可能取值为0,5,10,15,20,所以()3310114416P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,()21233215C 1144324P X ⎛⎫⎛⎫⎛⎫==⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2211223322321110C 1C 1144334348P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯⨯-+⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()221122332322515C 1C 144343312P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()2232120434P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,所以X 的分布列为:X05101520P 116124114851214所以11115155()051015201624481244E X =⨯+⨯+⨯+⨯+⨯=.22.已知函数()x f x e ax =-有两个零点1x ,()212x x x <.(1)求实数a 的取值范围;(2)证明.21122x x x -<-【正确答案】(1)(),e +∞;(2)证明见解析.【分析】(1)求导,对参数分类讨论,通过导数研究函数的零点情况,求得参数取值范围;(2)方法一:由题意得1212x x e ax e ax ⎧=⎨=⎩,令210t x x =->,两式相除得11t t x e =-,欲证21122x x x -<-,即证()212t e t t-<-,即证2222t t t e ++<,记()()2220t t t h t t e ++=>,通过导数研究函数的最值情况,即可证得不等式;方法二:令211x t x =>,代入化简得1ln 1t x t =-,2ln 1t t x t =-,将不等式转化为()21ln 2ln t t t -<-,即证()2ln 2ln 220t t t +-+<.记()()()2ln 2ln 221g t t t t t =+-+>,通过求导,并对导数中的部分函数求导研究原函数的最值情况,证得不等式.【详解】(1)解:()f x 的定义域为R ,()'x f x e a =-.①当0a ≤时,()'0x f x e >≥,所以()f x 在R 上单调递增,故()f x 至多有一个零点,不符合题意;②当0a >时,令()'0f x <,得ln x a <;令()'0f x >,得ln x a >,故()f x 在(),ln a -∞上单调递减,在()1,na +∞上单调递增,所以()()()min ln ln 1ln f x f a a a a a a ==-=-(i )若0a e <≤,则()()min 1ln 0f x a a =-≥,故()f x 至多有一个零点,不符合题意;(ii )若a e >,则ln 1a >,()()min 1ln 0f x a a =-<,由(i )知0x e ex -≥,∴ln ln ln 0a e e a a a -=-≥,∴2ln ln 0a a a e a ->-,()()22ln 2ln 2ln 0f a a a a a a a =-=->.又∵()010f =>,0ln 2ln a a <<,故()f x 存在两个零点,分别在()0,ln a ,()ln ,2ln a a 内.综上,实数a 的取值范围为(),e +∞.(2)证明:方法1:由题意得1212x x e ax e ax ⎧=⎨=⎩,令210t x x =->,两式相除得212111x x t x x t e e x x -+===,变形得11t t x e =-.欲证21122x x x -<-,即证()212t e t t-<-,即证2222t t t e ++<.记()()2220t t t h t t e ++=>,()()()2222'220t t t t t e t t e t h t e e+-++==-<,故()h t 在()0,∞+上单调递减,从而()()02h t h <=,即2222t t t e ++<,所以21122x x x -<-得证.方法2:由题意得:1212x x e ax e ax ⎧=⎨=⎩由(1)可知1x ,20x >,令211x t x =>,则21x tx =,则1111x tx e ax e atx ⎧=⎨=⎩,两式相除得()11t x e t -=,1ln 1t x t =-,2ln 1t t x t =-,欲证21122x x x -<-,即证()21ln 2ln t t t -<-,即证()2ln 2ln 220t t t +-+<.记()()()2ln 2ln 221g t t t t t =+-+>,()()2ln 112'2ln 2t t g t t t t t-+=⋅+-=,令()()ln 11h t t t t =-+>,()11'10t h t t t-=-=<,故()h t 在()1,+∞上单调递减,则()()10h t h <=,即()'0g t <,∴()g t 在()1,+∞上单调递减,从面()()10g t g <=,∴()2ln 2ln 220t t +-+<得证,即21122x x x -<-得证.方法点睛:通过导数研究函数零点问题,带参需要分类讨论;对于双变量问题,一般选择另一个变量对双变量进行代换,如本题中令210t x x =->或211x t x =>,然后构造新函数,通过导数研究函数的最值情况.。
新高二数学上学期第三次月考试题理(含解析)高二数学(理科)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.1.“直线与平面内无数条直线都垂直”是“直线与平面垂直”的()条件A. 充要B. 充分非必要C. 必要非充分D. 既非充分又非必要【答案】C【解析】试题分析:由“直线与平面内无数条直线都垂直”不能得到“直线与平面垂直”,反之,由“直线与平面垂直”可得到“直线与平面内无数条直线都垂直”,所以“直线与平面内无数条直线都垂直”是“直线与平面垂直”的必要非充分条件考点:充分条件与必要条件2.2.若命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,则实数a 的取值范围为()A. 1≤a≤3B. -1≤a≤3C. -3≤a≤3D. -1≤a≤1【答案】B【解析】由命题“,使”是假命题,得无解,即恒成立,则,解得;故选B.3. 如图程序框图输出的结果为A. B. C. D.【答案】A【解析】试题分析:故选A.考点:循环结构,裂项求和4.4.设函数在定义域内可导,的图象如图,则导函数的图象可能为()【答案】D【解析】试题分析:由f(x)的图象判断出f(x)在区间(-∞,0)上递增;在(0,+∞)上先增再减再增,∴在区间(-∞,0)上f′(x)>0,在(0,+∞)上先有f′(x)>0再有f′(x)<0再有f′(x)>0考点:函数的单调性与导数的关系5.5.有下列四个命题:①“若,则互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若,则方程有实根”的逆否命题;④“若,则”的逆否命题.其中真命题是()A. ①②B. ②③C. ①③D. ③④【答案】C【解析】“若,则互为倒数”的逆命题“若互为倒数,则”是真命题,即①正确;“相似三角形的周长相等”的否命题“两三角形不相似,则三角形的周长不相等”是假命题,即②错误;若,则,即方程有实根,即“若,则方程有实根”是真命题,其逆否命题为真命题,即③正确;若,则,即“若,则”及其逆否命题都为假命题,即④错误;故选C.6.6.如右图在一个二面角的棱上有两个点,,线段分别在这个二面角的两个面内,并且都垂直于棱,,则这个二面角的度数为( )A. 30°B. 60°C. 90°D. 120°【答案】B【解析】过点作且,连接,则,即为二面角的平面角,由题意,得,由余弦定理,得,则,即这个二面角的度数为;故选B.7.7.如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则a1、a2的大小关系是()A. a1=a2B. a1>a2C. a2>a1D. 无法确定【答案】C【解析】由茎叶图,得甲、乙两名选手得分的平均数分别为,,即;故选C.8.8.曲线上的点到直线的最短距离是()A. B. C. D. 0【答案】B【解析】试题分析:∵曲线y=ln(2x-1),∴y′=,分析知直线2x-y+8=0与曲线y=ln(2x-1)相切的点到直线2x-y+8=0的距离最短,y′═=2,解得x=1,把x=1代入y=ln(2x-1),∴y=0,∴点(1,0)到直线2x-y+8=0的距离最短,∴d=,故答案为B..考点:利用导数研究曲线上某点切线方程;两条平行直线间的距离..9.9.如图,圆C内切于扇形,,若在扇形内任取一点,则该点在圆C内的概率为()A. B. C. D.【答案】D【解析】设圆的半径为,连接并延长交于点,作,因为圆内切于扇形,且,所以,由几何概型的概率公式,得在扇形内任取一点,则该点在圆内的概率为;故选D.10.10.如图所示,在三棱柱ABC—A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1的夹角是()A. 45°B. 60°C. 90°D. 120°【答案】B【解析】11.11.若是双曲线的右焦点,过作双曲线一条渐近线的垂线与两条渐近线交于两点,为坐标原点,的面积为,则该双曲线的离心率()A. B. C. D.【答案】A【解析】因为,所以,设,则,所以,设过点作渐近线的垂线,分别交于点,则,所以,即,则该双曲线的离心率为;故选A.点睛:解决本题的关键是正确作出图形确定的形状(尤其是顶点的位置:是在第二象限,还是在第四象限,如判断错误,将大大增加运算量,且劳而无功),而往往是学生容易忽视的条件.12.12.已知函数,若存在唯一的零点,且,则的取值范围是()A. B. C. D.【答案】C【解析】显然,0不是的零点,令,则,则函数存在唯一零点,且等价于函数和的图象有唯一交点,且交点在轴右侧,因为,所以函数在单调递增,在上单调递减,当时,取得极大值2,又因为函数为奇函数,所以函数的图象所图所示,由图象,得函数和的图象有唯一交点,且交点在轴右侧,则,即函数存在唯一零点,且,则;故选C.点睛:本题利用分离参数法将含参数的函数的零点问题转化为两个函数和的图象交点问题,这是处理含参数问题的常见方法,也较好地避免了分类讨论,减小了计算量.二、填空题(每小题5分,共20分,把正确的答案写在题中横线上.)13.13.已知点P到点的距离比它到直线的距离大1,则点P满足的方程___【答案】【解析】试题分析::∵动点P到点(3,0)的距离比它到直线x=-2的距离大1,∴将直线x=-2向左平移1个单位,得到直线x=-3,可得点P到点(3,0)的距离等于它到直线x=-3的距离.因此,点P的轨迹是以(3,0)为焦点、x=-3为准线的抛物线,设抛物线的方程为(p>0),可得,得2p=12∴抛物线的方程为,即为点P的轨迹方程考点:抛物线的标准方程14.14.若函数在区间上单调递增,则实数的取值范围是___【答案】(-1,0]【解析】,令,得,即函数的单调递增区间为,又因为函数在区间上单调递增,所以,解得;故填.点睛:已知函数在所给区间上单调递增,求有关参数的取值范围,往往采用以下两种方法:①求出函数的单调递增区间,通过所给区间是该函数的单调递增区间的子集进行求解;②将问题转化为在所给区间上恒成立进行求解.15.15.从集合中任意取出两个不同的数记作,则方程表示焦点在轴上的双曲线的概率是______.【答案】【解析】从集合中任意取出两个不同的数记作,共有个基本事件,其中满足方程表示焦点在轴上的双曲线,即的基本事件有3个,由古典概型的概率公式,得方程表示焦点在轴上的双曲线的概率是;故填.16.16.设,若函数,有大于零的极值点,则的取值范围是__.【答案】【解析】令,则,所以,,所以,所以。
重庆市万州区2016-2017学年高二数学3月月考试题理
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)
一、选择题。
(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.复数z=(2+i)i在复平面内的对应点在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.若f(x)=sinα﹣cosx,则f′(α)等于()
A.cosα B.sinα+cosα C.sinα D.2sinα
3.下列推理是归纳推理的是()
A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则P点的轨迹为椭圆
B.由a1=1,a n=3n﹣1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式
C.由圆x2+y2=r2的面积πr2,猜想出椭圆+=1的面积S=πab
D.以上均不正确
f处的切线斜率为()
4的图象在(0,(0))
A.2 D.2-
5.曲线y=x3﹣x+2上的任意一点P处切线的斜率的取值范围是()
A.[,+∞)B.(,+∞)C.(﹣,+∞)D.[﹣,+∞)
6.已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是()
A. B.
C.D.
7.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)可能为()
A. B.C. D.
8.已知函数f(x)=x2﹣2cosx,则f(0),f(﹣),f()的大小关系是()
A.f(0)<f(﹣)<f()B.f(﹣)<f(0)<f()
C.f()<f(﹣)<f(0)D.f(0)<f()<f(﹣)
9.若函数f(x)=x2+2x+alnx在(0,1)上单调递减,则实数a的取值范围是()
A.a≥0 B.a≤0 C.a≥﹣4 D.a≤﹣4
10.曲线y=e x,y=e﹣x和直线x=1围成的图形面积是()
A.e+e﹣1﹣2 B.e+e﹣1C.e﹣e﹣1﹣2 D.e﹣e﹣1
11.已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()
A.[0,)B.C.D.
12.点P是曲线y=x2﹣1nx上任意一点,则点P到直线y=x﹣2的距离的最小值是()
A.1 B.C.2 D.2
第Ⅱ卷(非选择题共90分)
二、填空题。
(本大题共4小题,每小题5分,共20分.)
13.已知复数z满足(3+i)z=4﹣2i,则复数z= 。
14. = .
15.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体P﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为r,四面体P ﹣ABC的体积为V,则r= .
16.若函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I 上是“弱增函数”.已知函数h(x)=x2﹣(b﹣1)x+b在(0,1]上是“弱增函数”,则实数b的值为.
三、解答题:(解答应写出文字说明,证明过程或演算步骤,本大题共6小题,共70分.)17.(本题满分10分)已知复数z=(m2﹣8m+15)+(m2﹣9m+18)i在复平面内表示的点为A,实数m 取什么值时.
(Ⅰ)z为纯虚数?
(Ⅱ)A位于第三象限?
18.(本小题满分12分)已知函数f(x)=x3﹣12x
(1)求函数f(x)的极值;
(2)当x∈[﹣3,3]时,求f(x)的最值.
19.(本小题满分12分)设函数f(x)=2x3+3ax2+3bx+8在x=1及x=2时取得极值.
(1)求a,b的值;
(2)求曲线f(x)在x=0处的切线方程.
20.已知函数f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax﹣1,求实数a的取值范围.
21.(本小题满分12分)
已知函数f(x)=x++lnx(α∈R)
(1)求函数f(x)的单调区间与极值点;
(2)若对∀α∈[,2e2],函数f(x)满足对∀∈[1,e]都有f(x)<m成立,求实数m的取值范围(其中e是自然对数的底数).
22.(本小题满分12分)已知函数
(1)求f(x)的单调区间;
(2)求证:对任意的正数a与b,恒有.
数学试卷(理工类)答案
一、
1.B.2.C.3.B.4.C.5.D.6.B
7.D.8.A.9.D.10.A.11.D.12.B.
二、13.1﹣i 14. 15. 16.1.
三、17.(本题满分10分)
解:(I)当m满足,即m=5时,z为纯虚数.
(II)当m满足,即3<m<5时,z在复平面内表示的点A位于第三象限.
18.(本小题满分12分)解:(1),
令=0,
解得x=2,x=﹣2,
x ,f′(x ),f (x )的变化如下表:
∴f (x )极大值为f (﹣2
)=16,f (x )极小值为f (2)=﹣16; (2)由(1)知,f (﹣2)=16,f (2)=﹣16, 又f (﹣3)=9,f (3)=﹣9
∴f (x )最大值为f (﹣2)=16,f (x )最小值为f (2)=﹣16. 19.(本小题满分12分)解:(1)∵函数f (x )=2x 3
+3ax 2
+3bx+8c , ∴f′(x )
=6x 2
+6ax+3b ,
∵函数f (x
)在x=1及x=2取得极值,∴f′(1)
=0,f′(2
)=0.
即
,
解得a=
﹣3,b=4;
(2)由(1)得f (x )=2x 3
﹣9x
2
+12x+8,f′(x )=6x 2
﹣18x+12,
∴f
(0)=0,f′(0)=12.∴切线的斜率k=12.切点为(0,8) 由直线方程的点斜式得切线方程为:y ﹣8=12x ,即12x ﹣y+8=0. 20.(本小题满分12分)
解:(Ⅰ)f (x )的定义域为(0,+∞),f (x )的导数f'(x )=1+lnx . 令f'(x )>0,解得;令f'(x )<0,解得.
从而f (x )在单调递减,在
单调递增.
所以,当
时,f (x )取得最小值
.
(Ⅱ)依题意,得f (x )≥ax ﹣1在[1,+∞)上恒成立, 即不等式对于x ∈[1,+∞)恒成立.
令,
则
.
当x >1时,
因为,
故g(x)是[1,+∞)上的增函数,
所以g(x)的最小值是g(1)=1,
从而a的取值范围是(﹣∞,1].
21.(本小题满分12分)
解:(1)f′(x)=1﹣=,
①a≤0时,f′(x)≥0,∴函数f(x)在(0,+∞)上单调递增,
此时函数f(x)无极值点;
②a>0,令f′(x)=0,解得,
当0<x<x1时,f′(x)<0,
∴f(x)在(0,x1)上单调递减;
当x>x1时,f′(x)>0,
∴f(x)在(x1,+∞)上单调递增;
即f(x)在上单调递减,在上单调递增,
此时函数f(x)仅有极小值点x1=.
(2)函数f(x)满足:∀a∈[,2e2],
函数f(x)满足对∀x∈[l,e]都有f(x)<m成立,⇔f(x)max<m.
由(1)知::∀a∈[,2e2],f(x)在上单调递减,在上单调递增,
∴,即,
对∀a∈[,2e2],f(x)<m成立恒成立,
∴
又1+2e2>3e+1,
故实数m的取值范围是(1+2e2,+∞).
22.(本小题满分12分)解:(1)∵函数
∴,
由f′(x)>0⇒x>0;由f′(x)<0⇒﹣1<x<0;
∴f(x)的单调增区间(0,+∞),单调减区间(﹣1,0)
(2)所证不等式等价为
而,设t=x+1,则,
由(1)结论可得,F(t)在(0,1)单调递减,在(1,+∞)单调递增,由此F(t)min=F(1)=0,
所以F(t)≥F(1)=0即,
记代入得:
得证.。