第四节自动调频方法和自动发电控制
- 格式:ppt
- 大小:979.00 KB
- 文档页数:43
自动发电控制简述关于自动发电控制(AGC)的简述摘要:现代电网已发展成为在电力市场机制的基础上多控制区域的互联系统,自动发电控制(AGC)作为互联电网实现功率和频率控制的主要手段,其控制效果直接影响着电网品质。
因此,跨大区互联电网通过什么样的标准对其控制质量进行评价,电网AGC采用什么样的控制方法是近年来调度自动化关注的一个热点问题。
本论文紧紧围绕这一具有重要现实意义的课题展开了研究和讨论,首先介绍了自动发电控制的背景、基本原理与控制过程,然后介绍了评价AGC控制性能的标准以及电力市场背景下的AGC模型,并对其涉及的理论与模型进行了比较研究。
关键词:自动发电控制,性能标准,电力市场,负荷频率控制,互联电网第一章绪论当前,电能早成为日常生活中不可或缺的能源,国民经济的各个部门、人民的物质和文化生活都离不开电。
电能生产的最大特点在于电能不能大量储存,电能的生产、输送、分配和使用可以说是在同一时刻完成的。
在任何时刻,电力系统中电源发出的功率都等于该时刻电力系统负荷和电能输送、分配过程中所消耗的功率之和。
同时电力系统中的过渡过程非常迅速,由于电力系统中的电和磁是相互联系在一起的,任何一处发生的电磁变化过程,都会以光速传播而影响整个电力系统,因此电力系统故障的发生和发展以及运行方式改变所用的时间都是十分短暂的,这就要求系统具有进行快速控制和快速排除故障的能力,否则将危及整个电力系统的安全稳定运行。
电力系统的上述特点以及电力工业在国民经济中的地位和作用,对电力系统控制提出了很高的要求。
电力系统运行的根本目的是在保证电能质量符合标准的条件下,持续不断地供给用户所需要的功率负荷,维持电力系统的功率平衡,保证系统运行的经济性。
电力系统频率是电能的两大重要质量指标之一。
电力系统频率偏离额定值过多,对电能用户和电力系统的设备运行都将带来不利的影响。
我国规定,正常运行时电力系统的频率应当保持在50?0.2Hz范围之内。
第一章简介水电厂自动发电控制(AGC)是指按预定条件和要求,以迅速、经济的方式自动控制水电厂有功功率来满足需要的技术。
它是在水轮发电机组自动控制的基础上,实现全电厂自动化一种方式。
根据水库上游来水量或电力系统的要求,考虑电厂及机组的运行限制条件,在保证电厂安全运行的前提下,以经济运行为原则,确定电厂机组运行台数、运行机组的组合和机组间的负荷分配。
在完成这些功能时,要避免由于电力系统负荷短时波动而导致机组的频繁起、停。
水电厂自动电压控制(A VC)是指按预定条件和要求自动控制水电厂母线电压或全电厂无功功率的技术。
在保证机组安全运行的条件下,为系统提供可充分利用的无功功率,减少电厂的功率损耗。
采用AGC/A VC可以满足电力系统对安全发电的要求和机组安全运行的要求,同时根据实际需要满足运行人员的一些特殊要求,并且对全厂有功、系统频率、母线电压的变化及一些非常情况作出迅速反应,直接执行或提示,使机组运行在优化工况,并对机组启停做出合理安排。
第二章AGC、A VC原理2.1 AGC原理2.1.1 AGC的依据自动发电控制的依据一般有:①上游来水量,它适用于无调节水库的径流电厂,使电厂最大限度地利用上游来水量,以不弃水或少弃水为原则,尽量保持电厂在较高水头运行。
②给定的发电负荷曲线或实时给定的电厂总有功功率。
这是在电力系统统一调度下,电厂参加电力系统的有功功率和频率的调节,完成上级调度下达的计划性或随机性的发电任务。
③维护电力系统频率在一定水平下运行。
根据电力系统的频率瞬时偏差或频率念头的积分值,确定电厂的总出力,直接参加电力的调频任务。
④综合因素。
诸如按给定功率和电力系统频率偏差,按电力系统对功率的要求和下游用水量的需要等。
2.1.2 AGC设置的全厂有功功率P AGC=P ACT+K f△f-P AGCAGC分配的有功P AGC可以根据系统频率偏差来设定(调频方式)也可以按照有功设定曲线值/有功给定值来设定(功率控制方式)P AGC=P SET+P AGC其中,P ACT:全厂实发总有功P SET:全厂有功设定值K f:系统调频系数(可分为第一调频厂系数,第二调频厂系数和紧急调频系数)△f:频率偏差P AGC:不参加AGC机组的实发有功之和2.1.3 AGC负荷分配原则①与容量成比例原则这是较为简单的一种负荷分配原则,在水轮机组的某些特性曲线不全或不够精确的前提下,采用该原则比较合理。
自动发电控制(AGC)的基本理论自动发电控(Automatic Generation Control)简称AGC ,作为现代电网控制的一项基本功能,它是通过控制发电机有功出力来跟踪电力系统的负荷变化,从而维持频率等于额定值,同时满足互联电力系统间按计划要求交换功率的一种控制技术。
它的投入将提高电网频率质量,提高经济效益和管理水平。
自动发电控制有四个基本目标:(1)使全系统的发电出力和负荷功率相匹配;(2)将电力系统的频率偏差调节到零,保持系统频率为额定值;(3)控制区域问联络线交换功率与计划值相等,实现各区域内有功功率的平衡;(4)在区域内各发电厂间进行负荷的经济分配。
上述第一个目标与所有发电机的调速器有关,即与频率的一次调整有关。
第二和第三个目标与频率的二次调整有关,也称为负荷频率控制LFC(LoadFrequency Control)。
通常所说的AGC 是指前三项目标,包括第四项目标时,往往称为AGC 但DC(经济调度控制,即Economic Dispatching Control),但也有把EDC 功能包括在AGC 功能之中的。
负荷频率控制通过对区域控制偏差(ACE)调整到正常区域或零来实现系统频率和网间的联络线交换功率的调整。
ACE 表达式如下:()()()[]S A T S A S A T T K f f B P P ACE -+---=10 (1.1) 试中:A P ,S P 分别表示实际、预定联络线线功率;A T 、S T 分别表示实际电钟时间和标准时间;A f 、S f 分别表示实际、预定系统频率;B 表示系统频率偏差系数;T K 表示电钟偏差系数。
联络线频率偏差控制方式,TBC(Tie Line Bias Control),ACE 按上式形成;定频控制方式,。
CFC(Constant FrequencyControl),ACE 不含(S A P P -);定净交换功率控制方式CNIC(Constant Net Interchange Control),ACE 不含(S A f f -)。
电力系统自动调频方法
电力系统自动调频是指通过控制发电机的发电频率,使其与负荷需求保持平衡的方法。
常见的电力系统自动调频方法包括以下几种:
1. 频率响应机制:根据系统频率变化情况,自动调整发电机的发电频率。
当系统频率下降时,调频机构会自动增加发电机输出功率,以保持频率稳定。
当系统频率升高时,调频机构会自动减少发电机输出功率。
2. 负荷跟随机制:根据系统负荷需求的变化情况,自动调整发电机的发电频率。
当负荷需求增加时,调频机构会自动增加发电机输出功率,以满足负荷需求。
当负荷需求减少时,调频机构会自动减少发电机输出功率。
3. 频率和功率协调机制:综合考虑系统频率和负荷需求的变化情况,自动调整发电机的发电频率和输出功率。
通过使用预测模型和优化算法,调频机构可以实时计算出最优的发电机输出功率,以实现系统频率稳定和负荷需求满足的双重目标。
通过这些自动调频方法,电力系统可以实现频率的稳定和负荷需求的平衡,提高系统的可靠性和稳定性。
同时,这些方法还可以减少系统频率的波动,降低供电误差,提高电网的能效和经济性。
第四章 电力系统频率和有功功率控制第一节 电力系统频率和有功功率调整的必要性一、 电力系统频率与有功功率的关系 频率、电压是电网电能质量的二大指标。
频率变化原因:负荷变动导致有功功率的不平衡。
变化过程:负荷变化→发电机转速变化→频率变化→负荷的调节效应→新频率下达到平衡。
消除偏移:原动机输入功率大小随负荷变动而改变。
结论:① 电网仅一个频率;② 电网可在偏离额定频率下稳定运行;(0.2Hz ) ③ 频率调整依靠有功进行调整;④ 维持电网频率,调速器调整原动机输入,跟踪负荷变化。
⑤ 转速与频率关系:60pn f二、 电网频率对电能用户及电力系统的影响 对用户影响:① 异步机:转速变化影响产品质量;电机输出功率变化影响输出功率大小。
② 电子测量设备:影响测量精度。
③照明、电热负荷:影响小。
对电网影响:①汽轮机叶片:振动、裂纹,影响寿命。
②火电厂:低于48Hz→辅助电机(送风、给水、循环、磨煤等)出力下降→锅炉、汽轮机出力下降→有功出力下降→频率进一步下降→恶性循环(频率雪崩)。
③电网电压:频率下降→异步机、变压器励磁电流增大,无功损耗增大。
发电机励磁电压下降→系统电压下降→有可能导致系统电压雪崩(大面积停电)。
④核电厂:频率下降→冷却介质泵跳开→反应堆停运。
第二节同步发电机调速器基本原理一、机械液压调速器(离心式调速器)原理简介组成: 测速环节、执行放大环节、转速给定装置①测速环节:主轴带动的齿轮传动机构和离心飞摆。
转速n上升→ A点上移(升高);转速n下降→A点下移(降低);②执行放大环节:错油门+油动机。
稳定状态:错油门活塞堵死油动机活塞二个油管路,油动机上下油压相等,调节汽阀开度不变。
F上升→上管进油→活塞向下→汽阀开度减小→转速下降;F下降→下管进油→活塞向上→汽阀开度增大→转速上升;放大作用:小力量作用于F点,通过高压油作用,在活塞出生较大作用力。
③转速给定装置:同步器。
控制电机的正转、反转,使D点上下移动。
自动发电控制的基本原理及应用 (3)第一章自动发电控制(AGC)在电力系统中的作用 (3)第一节自动发电控制(AGC)发展概况 (3)第二节自动发电控制(AGC)与电力系统优质运行 (5)第三节自动发电控制(AGC)与电力系统经济运行 (12)第四节自动发电控制(AGC)与电力系统安全稳定运行 (13)第五节自动发电控制(AGC)与电力市场运营 (14)第二章电力系统自动发电控制(AGC)概述 (16)第一节电力系统的负荷变化和频率波动 (16)第二节电力系统频率控制的基本概念 (20)第三节电力系统自动发电控制(AGC)系统构成概述 (24)第三章自动发电控制的基本原理 (29)第一节频率的一次调节 (29)第二节电力系统频率的二次调节 (42)第三节电力系统频率的三次调节 (60)第二篇电力系统自动发电控制系统 (68)第四章电力系统的自动发电控制系统 (68)第一节调度端自动发电控制系统概述 (68)第二节自动发电控制系统(AGC) (69)第五章自动发电控制的信息传输系统 (74)第一节自动发电控制信息传输规范 (74)第二节自动发电控制方式及其信息传输系统要求 (78)第三节信息传输时间延迟对自动发电控制的影响 (82)第六章水电厂自动发电控制系统 (84)第一节水电厂的自动发电控制系统概述 (84)第二节水电机组的调节能力 (85)第三节水电厂自动控制系统 (88)第四节水电厂机组的优化运行 (111)第五节水电厂全厂负荷控制策略 (115)第六节水电厂AGC控制对一次设备的影响 (116)第七节现代化水电站综合自动化 (116)第八节抽水蓄能电站负荷控制方式 (119)第九节梯级电站负荷控制方式 (122)第七章火电厂AGC控制系统 (126)第一节火电机组的负荷调节能力 (126)第二节火电厂协调控制系统 (134)第三节燃煤机组AGC性能提高及存在的问题 (145)第四节火电厂全厂负荷优化控制系统 (148)第五节燃汽轮机的AGC控制系统 (150)第三篇电力系统自动发电控制的实施 (151)第八章电力系统自动发电控制的控制策略与规划 (151)第一节电力系统自动发电控制的控制策略 (151)第二节电力系统自动发电控制实施规划概述 (155)第九章电力系统自动发电控制系统的实例 (160)第一节调度端自动发电控制系统 (161)第二节厂站自动发电控制系统 (176)第三节信息传输系统 (179)第十章自动发电控制系统调试 (181)第一节AGC调试工作流程 (181)第二节AGC调试项目 (182)第三节机组现场调试方案实例 (183)第四节AGC各级调试的试验报告实例 (194)第十一章自动发电控制系统性能评价和控制策略 (205)第一节AGC性能评价标准与参数的确定 (205)第二节互联电网AGC的控制策略 (208)第三节发电性能评价 (219)第四节AGC性能的统计分析 (225)第十二章电力市场辅助服务和AGC调节 (228)第一节电力市场辅助服务概述 (228)第二节调节服务、负荷跟踪服务需求的确定 (238)第三节调节服务、负荷跟踪服务的获取和调用 (243)第四节服务提供者技术条件的认证、服务性能评价 (248)第五节调节服务和负荷跟踪服务的成本、定价、交易结算 (252)自动发电控制的基本原理及应用第一章自动发电控制(AGC)在电力系统中的作用第一节自动发电控制(AGC)发展概况一、国外电力系统对自动发电控制(AGC)的研究与应用电力系统自动发电控制(AGC)原先称为“电力系统频率与有功功率的自动控制”,对这项技术的研究可以追溯到几十年前,但它的发展和应用还是在电力系统扩大以后,尤其是二十世纪五十年代以来,随着战后经济的发展,电力系统的容量不断增长,各工业发达国家的电力系统通过研究和试验,相继实现了频率与有功功率的自动控制。