3 门极触发电路
- 格式:ppt
- 大小:462.50 KB
- 文档页数:54
CBB规范可控硅驱动线路(VER: V1.0)拟制:辉时间:2010- 4-15批准:波时间:2010- 4-15文件评优级别:□A优秀□B良好□C一般1 功能介绍本电路为可控硅门极触发电路,SCRDRV为控制信号,当SCRDRV信号为高电平时,光耦PC1导通,CN1两端为高电平,SCRDRV信号为低电平时光耦PC1截止,CN1两端为低电平。
本电路的关键在于电路的输出信号能保证可控硅可靠触发。
2 详细原理图3 器件功能♦限流电阻R1、R2、R3,当SCRDRV信号为高电平时,限制流过光耦PC1的原边电流,以防止PC1因过流而可能损坏;♦光耦PC1,实现电气隔离,同时起信号传输作用;♦开关管Q1, 通过控制Q1的开通与关断控制光耦PC1的导通与截止;♦R6的作用是确保没有输入信号时Q1处于截止,R5的作用是限制基极电流。
♦稳压二极管Z1,电压箝位,防止可控硅门极电压过高;♦R10,R11为限流电阻,限制流过可控硅门极的电流,并起到分压作用。
♦Q2为PNP型晶体管,起放大作用。
♦Q3,Q4为对管,推挽输出,起功率放大作用。
♦LED1为发光二极管,当光耦导通时点亮LED1,光耦截止时熄灭LED1,起指示作用。
4 参数计算♦光耦PC1及R1,R2,R3的选取:流过光耦副边电流为(8V-0.6V-0.3V)/4.7K=1.5mA,选型号为PS2501的光耦,其Ic=50mA,If=80mA,Vfmax=1.2V,CTR的范围为200%-400%。
R1,R2的大小应时SCRDRV信号为高电平时光耦饱和导通, R1和R2选510Ω并联,此时光耦原边电流约为(5-1.2-0.3)/255=13.8mA,R1、R2功率约等于(0.0138/2)2*510=0.02W,选1\10W的电阻,满足降额要求,R3取2K,流过R3电流约为1.2V/2K=0.6mA♦R4,LED1的选取:按发光管通过1mA的电流计算,若Q1的饱和压降为0.5V,LED1的正向压降为1V,则通过LED1的电流为(5V-1V-0.5V)/R4=1mA,计算出的R4=3.5K,实际可以使流过的电流稍微大一点,选2K的电阻。
1 原理及方案1.1原理三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。
变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。
保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。
采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。
1.2方案设计整流电路是电力电子电路中出现最早的一种,它将交流电变为直流电,应用广泛。
当整流负载容量较大,或要求直流电压脉冲较小时,应采用三相整流电路,其交流测由三相电源供电。
三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。
本设计要求整流电路带直流电机负载,希望获得的直流电压脉冲较小,所以用三相全波整流比较合理。
三相桥式全控和三相桥式半控是常见的三相桥式可控全波整流电路。
三相半控桥式整流电路适用于中等容量的整流装置或不要求可逆的电力拖动中,它采用共阴极的三相半波可控整流电路与共阳极接法的三相半波不可控整流电路串联而成,电路兼有可控与不可控两者的特性。
共阳极组的三个整流二极管总是在自然换流点换流,使电流换到阴极点为更低的一相中去。
该电路在使用中需加设续流二极管,以避免可能发生的失控现象,所以电路不具备逆变能力。
虽然三相半控电路相应触发电路较简单,但只能用于整流不能用于逆变,现在很少使用。
本设计选择使用三相桥式全控整流电路。
整流电路的输入部分是变压器,作用是降低或减少晶闸管变流装置对电网和其它用电设备的干扰,将整流电路与电网隔离,并将电网电压值转变为整流所需输入值。
整流部分是六个晶闸管,是由共阴极的三相半波可控整流电路与共阳极接法的三相半波可控整流电路串联而成。
为使整流电路能正常工作,除了要给晶闸管配设可靠的触发电路外,还要有保护电路,以防止各种原因产生的过电压和过电流影响或损坏晶闸管。
可控硅阻容触发电路适用于中容量可控硅的触发可控硅阻容触发电路是一种常用于控制可控硅工作状态的电路。
它由一个电阻和一个电容组成,通过改变电阻和电容的数值以及连接方式,可以实现对可控硅的触发和控制。
本文将对可控硅阻容触发电路的原理、应用和设计进行详细介绍。
可控硅是一种具有单向导通特性的半导体器件,其工作状态是通过控制它的触发电流而实现的。
可控硅有多种触发方式,其中常用的有门极触发、负极触发和阻容触发。
相比较其他触发方式,阻容触发电路具有简单、稳定、成本低等优点,因此在中容量可控硅的触发中被广泛应用。
可控硅阻容触发电路的原理相对简单。
当一个可控硅与电源正极相连时,需要通过触发电流来使可控硅导通。
而阻容触发电路则通过改变电阻和电容的数值以及连接方式,来实现触发电流的控制。
阻容触发电路的基本原理如下:当触发电路中的电容电压低于可控硅的触发电压时,电路处于触发状态;当电容电压高于可控硅的触发电压时,电路处于停止触发状态。
具体来说,阻容触发电路通过调整电阻和电容的数值和连接方式,使电容电压在可控硅所需触发电压附近波动。
具体设计可控硅阻容触发电路时,需要考虑以下几个方面:1.电阻和电容的选择:根据可控硅的规格和参数选择合适的电阻和电容。
电阻和电容的数值决定了电容电压波动的速度和幅度,需根据实际需求进行选择。
2.连接方式:电阻和电容可以采用串联或并联的方式连接,不同的连接方式会影响电路的工作特性。
串联连接可以提高电路的稳定性和减小电容电压波动幅度,而并联连接则有助于提高电路的触发速度。
3.触发电压的控制:通过改变电阻和电容的数值和连接方式,可以实现对触发电压的控制。
通过调整电路中的电阻和电容的数值,可以使电容电压在可控硅所需的触发电压附近波动,从而实现可控硅的触发。
可控硅阻容触发电路在实际应用中有广泛的用途。
其中,常见的应用包括电力电子变换器、交流调压、直流调压、电力系统谐波治理等。
在这些应用中,可控硅阻容触发电路可以实现对可控硅的触发和控制,从而实现对电力电子器件的工作状态的控制和调节。
学号(电力电子技术课程设计)设计说明书三相交流调压器设计与仿真(α=60°)起止日期:年月日至年月日学生姓名班级09电气 2 班成绩指导教师(签字)电子与信息工程系2012 年 6 月15 日天津城市建设学院课程设计任务书2011 —2012学年第2 学期电子与信息工程系电气工程及其自动化专业09电气(2) 班级课程设计名称:电力电子技术课程设计设计题目:三相交流调压器设计与仿真完成期限:自2012 年 6 月10日至2012 年6 月15 日共 1 周指导教师(签字):教研室主任(签字):批准日期:年月日目录1 设计任务及设计目的 (4)1.1 电路设计任务 (4)1.2 电路设计的目的 (4)2.主电路的设计 (5)2.1 主电路的原理分析 (5)2.2 主电路器件的选择 (5)3 仿真电路图 (7)4、建模仿真 (7)5、仿真 (10)6.总结 (10)7.参考文献 (11)三相交流调压器设计与仿真(α=60°)摘要:设计三相交流调压器的电力电子电路并选取合适的器件参数,使用MATLAB 进行建模与仿真,分析波形曲线。
包括电路应用概述,参数选取,模型建立和电路仿真四部分。
关键字:三相交流调压器电阻1 设计任务及设计目的1.1 电路设计任务1 方案设计2 完成主电路的原理分析,各主要元器件的选择3 触发电路的设计4 利用MATLAB仿真软件建模并仿真,获取电压电流波形,依据控制角与负载阻抗角的关系,对结果进行分析1.2 电路设计的目的电力电子技术是我们大三下学期学的一门很重要的专业课,课本上讲了很多电路,比如各种单相可控整流电路,斩波电路,电压型逆变电路,三相整流电路,三相逆变电路,等各种电路,通过对这些电路的学习,让我们知道了如何将交流变为直流,又如何将直流变为交流。
并且通过可控整流调节输出电压的有效值,以达到我们的目的。
而本次三相交流调压电路的设计与仿真,我们需要用晶闸管的触发电路来实现调节输入电压的有效值,然后加到负载上。
课程设计报告题目三相可控整流技术的工程应用学院名称电气信息学院专业班级 xxxxxxxxxxxxxxx学号 xxxxxxxxxx学生姓名 xxxxx指导教师 xxxxxxx2012年1月12日摘要电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路,不仅应用于一般工业,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。
因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用。
关键词:电力电子三相桥式可控电路整流AbstractPower electronics technology has a very wide range of applications in the power system. It is estimated that in developed countries more than 60% of the electrical energy at least through the end-use of electricity, more than once device processing power electronic converters. Power system in the process leading to the modern power electronics technology is one of the key technologies. It is no exaggeration to say that, if you leave power electronics technology, the modernization of the electric power system is unthinkable.Rectifier circuit technology has very wide application in industrial production. Such as voltage variable speed DC power supply, electrolysis and electroplating DC power. The rectifying circuit is the AC power is converted to DC power circuit. Most of the rectifier circuit by the transformer, rectifier circuit, and filters. It has been widely used in the field of DC motor speed control, generator excitation regulator, electrolysis, electroplating.Rectifier circuit, especially the three-phase bridge controlled rectifier circuit is the most important and the most widely used application circuit in the power electronics technology is not only used in general industrial, is also widely used in the transportation, electric power systems, communication systems, energy systems and other fields. Comparative analysis and study of the three-phase bridge controlled rectifier circuit parameters and the different nature of the work load has great practical significance, this is not only an important part of the learning power electronic circuit theory and engineering practice The practical application of predictive and guiding role.Key words:Power electronic Three-phase bridge controlled circuit Rectifier目录摘要 (2)一.设计任务书 (5)二.设计说明 (6)2.1设计目的 (6)2.2作用 (6)2.3技术指标 (6)三.设计方案的选择 (7)3.1三相桥式可控整流电路原理 (7)3.2三相桥式可控整流电路原理图 (7)3.3三相桥式可控整流电路工作波形 (8)3.4总设计框图 (10)四.触发电路的设计 (11)五.保护电路的设计 (12)5.1过电压保护 (12)5.2过电流保护 (13)六.参数的计算 (14)七.器件选择清单 (15)八.三相桥式可控整流电路的工程应用 (16)九.心得体会 (16)参考文献 (17)一.设计任务书院系:xxxxxxxxx年级:xxxxxx专业班级:xxxxxxxxxx二.设计说明2.1设计目的合理运用所学知识,进行电力电子电路和系统设计的能力,理解和掌握常用的电力电子电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。
三相桥式全控整流电路原理及电路图,三相桥式全控整流电路原理及电路图三相整流电路的作用:在电路中,当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。
图所示就是三相半波整流电路原理图。
在这个电路中,三相中的每一相都单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120度叠加,整流输出波形不过0点,并且在一个周期中有三个宽度为120度的整流半波。
因此它的滤波电容器的容量可以比单相半波整流和单相全波整流时的电容量都小。
三相整流电路的工作原理:先看时间段1:此时间段A相电位最高,B相电位最低,因此跨接在A相B相间的二极管D1、D4导电。
电流从A相流出,经D1,负载电阻,D4,回到B相,见图14-1-3中红色箭头指示的路径。
此段时间内其他四个二极管均承受反向电压而截止,因D4导通,B相电压最低,且加到D2、D6的阳极,故D2、D6截止;,因D1导通,A相电压最高,且加到D3、D5的阴极,故D3、D5截止。
其余各段情况如下:时间段2:此时间段A相电位最高,C相电位最低,因此跨接在A相C相间的二极管D1、D6导电。
时间段3:此时间段B相电位最高,C相电位最低,因此跨接在A相C相间的二极管D3、D6导电。
时间段4:此时间段B相电位最高,A相电位最低,因此跨接在B相A相间的二极管D3、D2导电。
时间段5:此时间段C相电位最高,A相电位最低,因此跨接在C相A相间的二极管D5、D2导电。
三相桥式电阻负载整流电路的输出电压波形见图时间段6:此时间段C相电位最高,B相电位最低,因此跨接在C相B相间的二极管D5、D5导电。
时间段7:此时间段又变成A相电位最高,B相电位最低,因此跨接在A相B相间的二极管D1、D4导电。
电路状态不断重复三相半波可控整流电路工作原理:1.电阻性负载三相半波可控整流电路接电阻性负载的接线图如图3所示。
整流变压器原边绕组一般接成三角形,使三次谐波电流能够流通,以保证变压器电势不发生畸变,从而减小谐波。
思考题和习题1. 单相全控桥式整流电路带大电感负载,U2=220V,R d=4Ω,计算α=60︒时,整流输出电压U d、电流平均值I d。
如果负载端并接续流二极管,其U d和I d又为多少?并求流过晶闸管和续流二极管的平均电流和有效值电流,画出这两种情况的电压和电流波形。
解:(1) 因为电路带大电感负载,所以电流连续。
整流输出电压U d = 0.9U2cosα =0.9220cosα⨯⨯= 99V;电流平均值I d = U d/R d = 24.75A;流过晶闸管的平均电流I dVT = 12I d = 12.375A;流过晶闸管的有效电流I VT = 12I d = 17.50A。
(2) 若负载端并接续流二极管,则整流输出电压U d = 0.9U21cos2α+=1cos600.92202+⨯⨯= 148.5V;电流平均值I d = U d/R d = 37.125A;流过晶闸管的平均电流I dVT = 2παπ-I d = 32πππ-I d = 12.375A ;流过晶闸管的有效电流I VT =2παπ-I d = 21.43A ; 流过续流二极管的平均电流I dVDR = απI d = 13I d = 12.375A ;流过续流二极管的有效电流I VDR =απI d = 21.43A 。
2. 单相全控桥式整流电路,U 2=200V ,R d =2Ω,电感L 极大,反电动势E =100V , 当α=45︒时,试求:(1)画出u d 、i d 、i VT1、i 2和u VT1的波形。
(2)计算整流输出电压U d 、电流平均值I d 、晶闸管电流的平均值I dVT 和有效 值I VT 以及变压器二次电流有效值I 2。
(3)按2倍裕量确定晶闸管的额定电流。
解:(1)(2) 整流输出电压U d = 0.9U 2cos α = 127.28V ; 电流平均值 I d =d dU ER -=13.64A ; 晶闸管电流的平均值I dVT = d2I =6.82A ; 晶闸管电流的有效值I VT =d2; 变压器二次电流有效值I 2 = I d = 13.64A 。
一、填空题(29分)1、双向晶闸管的触发方式有:I+ 触发:第一阳极T1接 正 电压,第二阳极T 2接 负 电压;门极G 接正 电压,T2接 负 电压。
I- 触发:第一阳极T1接 正 电压,第二阳极T2接 负 电压;门极G 接 负 电压,T2接 正 电压。
Ⅲ+触发:第一阳极T1接 负电压,第二阳极T2接正 电压;门极G 接正电压,T2接 负 电压。
Ⅲ-触发:第一阳极T1接 负电压,第二阳极T2接 正电压;门极G 接 负电压,T2接 正 电压。
2、由晶闸管构成的逆变器换流方式有 负载 换流和 强迫(脉冲)换流。
3、按逆变后能量馈送去向不同来分类,电力电子元件构成的逆变器可分为 有源 逆变器与 无源 逆变器两大类。
4、有一晶闸管的型号为KK200-9,请说明KK 快速晶闸管 ; 200表示表示 200A ,9表示 900V 。
5、单结晶体管产生的触发脉冲是 尖脉冲 脉冲;主要用于驱动 小 功率的晶闸管;锯齿波同步触发电路产生的脉冲为 强触发脉冲 脉冲;可以触发 大 功率的晶闸管。
6、一个单相全控桥式整流电路,交流电压有效值为220V ,流过晶闸管的大电流有效值为15A ,则这个电路中晶闸管的额定电压可选为V 2202)25.1(倍-;晶闸管的额定电流可选为A 57.115)35.1(倍-。
二、判断题(20分)对打(√),错打(×)1、两个以上晶闸管串联使用,是为了解决自身额定电压偏低,不能胜用电路电压要求,而采取的一种解决方法,但必须采取均压措施。
( √ )2、逆变失败,是因主电路元件出现损坏,触发脉冲丢失,电源缺相,或是逆变角太小造成的。
( √ )3、 变流装置其功率因数的高低与电路负载阻抗的性质,无直接关系。
( √ )4、并联与串联谐振式逆变器属于负载换流方式,无需专门换流关断电路。
( √ )5、触发普通晶闸管的触发脉冲,也能触发可关断晶闸管。
( × )6、三相半波可控整流电路,不需要用大于60º小于120º的宽脉冲触发,也不需要相隔60º的双脉冲触发,只用符合要求的相隔120º的三组脉冲触发就能正常工作。
晶闸管的门极触发电路
图3 锯齿波同步触发电路共包括五个环节,分别为:锯齿波形成环节、脉冲移相环节、脉冲形成及放大环节、强触发脉冲形成环节、双脉冲形成环节。
锯齿波形成环节是通过一个恒流源电路对电容进行恒流充电,从而形成锯齿波同步信号的上升沿,其下降沿是电容通过一小电阻放电而形成的。
锯齿波的宽度由电路参数打算,其频率则与电源电压频率相同。
脉冲移相环节是将锯齿波同步电压、偏移电压及掌握电压进行叠加,其过零点打算触发脉冲的起始时刻。
若偏移电压不变时,转变直流掌握电压可以使脉冲移相。
在这里加入偏移电压的目的,是使掌握电压为零时主电路的整流输出电压为零。
脉冲形成与放大环节的作用与正弦波触发电路基本相同。
强触发脉冲形成环节是通过一个单独的沟通电源整流后,得到50V的直流电压,在触发脉冲的起始时刻该电压通过脉冲变压器加到晶闸管的门极上,从而形成强触发脉冲。
触发电路各点电压波形如图4所示。
图4 双脉冲产生环节是依据三相全控桥式整流电路的特别要求,触发电路输出两个间隔为60°的双脉冲。
产生双脉冲的方法有两种,一种是外双脉冲方法,另一种是内双脉冲方法。
在此触发电路中采纳的是内双脉冲的方法,即每个触发单元一个周期内产生两个间隔为60°的双脉冲,只供应一个桥臂的晶闸管,这种电路虽然比较简单,但输
出功率可以削减。
晶闸管的门极驱动电路和缓冲电路1、晶闸管对触发电路的基本要求①触发信号可以是沟通、直流或脉冲,为了减小门极的损耗,触发信号常采纳脉冲形式。
②触发脉冲应有足够的功率。
触发电压和触发电流应大于晶闸管的门极触发电压和门极触发电流。
③触发脉冲应有足够的宽度和陡度。
触发脉冲的宽度一般应保证晶闸管阳极电流在脉冲消逝前能达到擎住电流,使晶闸管导通,这是最小的允许宽度。
一般触发脉冲前沿陡度大于10V/μs或800mA/μs。
④触发脉冲的移相范围应能满意变换器的要求。
例如,三相半波整流电路,在电阻性负载时,要求移相范围为150°;而三相桥式全控整流电路,电阻负载时移相范围为120°。
2、触发电路的型式触发电路可分为模拟式和数字式两种,阻容移相桥、单结晶体管触发电路、锯齿波移相电路和正弦波移相电路均属于模拟式触发电路;而用数字规律电路乃至于微处理器掌握的移相电路则属于数字式触发电路。
3、爱护电路(1)晶闸管的缓冲电路常采纳在晶闸管的阴阳极并联RC缓冲器,用来防止晶闸管两端过大的du/dt造成晶闸管的误触发,其中电阻R也能减小晶闸管开通时电容C的放电电流。
(2)晶闸管的爱护晶闸管在使用时,因电路中电感的存在而导致换相过程产生Ldi/dt,又因容性的存在或设备自身运行中消失短路、过载等故障,所以其过电压、过电流爱护显得尤为重要。
晶闸管的派生器件双向晶闸管(Triode AC Switch——TRIAC或Bidirectional triode thyristor)是一对反并联联接的一般晶闸管的集成。
有两个主电极T1和T2,一个门极G。
在第I和第III象限有对称的伏安特性。
不用平均值而用有效值来表示其额定电流值。
逆导晶闸管:是将晶闸管和整流管制作在同一管芯上的集成元件。
具有正向压降小、关断时间短、高温特性好、额定结温高等优点。
光控晶闸管:利用肯定波长的光照信号掌握的开关器件。
其结构也是由P1N1P2N2四层构成。
三相晶闸管触发电路作用
三相晶闸管触发电路的主要作用是控制电流和实现开关功能。
通过改变晶闸管电极之间的电压、电流和脉冲信号等参数,触发电路能够在合适的时间点触发晶闸管并导通或截止,从而控制电路中的电流强度,实现对电路的控制和调节。
具体来说,触发电路的设计目标是在控制条件下提供足够大的电流来触发晶闸管的导通,并在必要时撤销触发信号以切断晶闸管。
这样可以根据不同的需求和应用场景来设计和调整参数,以实现最佳的控制效果。
此外,三相晶闸管触发电路在电力电子系统中被广泛应用,如直流调速系统、交流调压系统、逆变器等。
在这些系统中,触发电路通过控制晶闸管的触发信号,能够实现电流的开关和转换,控制功率的输出形式和大小。