微课程:进制的计算与转换
- 格式:pptx
- 大小:1.71 MB
- 文档页数:14
进制之间的转换讲解一、什么是进制进制是一种表示数值的方式,常见的有十进制、二进制、八进制和十六进制。
不同进制的数系统使用的基数不同,分别为10、2、8和16。
二、十进制与二进制的转换1. 十进制转二进制十进制数转换为二进制数的方法是不断除以2,将余数从下往上排列,直到商为0为止。
例如,将十进制数15转换为二进制数的步骤如下:15 ÷ 2 = 7 余 17 ÷ 2 = 3 余 13 ÷ 2 = 1 余 11 ÷2 = 0 余 1将余数从下往上排列,得到二进制数1111。
2. 二进制转十进制二进制数转换为十进制数的方法是将每一位乘以2的对应次幂,然后相加得到结果。
例如,将二进制数1101转换为十进制数的计算如下:(1 × 2^3) + (1 × 2^2) + (0 × 2^1) + (1 × 2^0) = 13三、十进制与八进制的转换1. 十进制转八进制十进制数转换为八进制数的方法是不断除以8,将余数从下往上排列,直到商为0为止。
例如,将十进制数35转换为八进制数的步骤如下:35 ÷ 8 = 4 余 34 ÷ 8 = 0 余 4将余数从下往上排列,得到八进制数43。
2. 八进制转十进制八进制数转换为十进制数的方法是将每一位乘以8的对应次幂,然后相加得到结果。
例如,将八进制数73转换为十进制数的计算如下:(7 × 8^1) + (3 × 8^0) = 59四、十进制与十六进制的转换1. 十进制转十六进制十进制数转换为十六进制数的方法是不断除以16,将余数从下往上排列,直到商为0为止。
在十六进制中,余数为10、11、12、13、14、15分别用A、B、C、D、E、F表示。
例如,将十进制数255转换为十六进制数的步骤如下:255 ÷ 16 = 15 余 F15 ÷ 16 = 0 余 15将余数从下往上排列,得到十六进制数FF。
进制的转换与运算进制是数学中的一个重要概念,是指数的计数体系。
常见的进制有十进制、二进制、八进制和十六进制等。
本文将分析进制的转换以及在计算机科学中的运算应用。
一、进制转换进制之间的转换是数学中基本的运算方式之一。
常见的进制转换包括十进制转二进制、二进制转十进制、十进制转八进制、八进制转十进制、十进制转十六进制和十六进制转十进制等。
下面分别进行详细介绍。
1. 十进制转二进制十进制(Decimal)是人们常用的数字表示方法,而计算机中使用二进制(Binary)进行运算。
十进制转二进制的方法是利用除二取余法,不断将十进制数除以二并记录余数,然后将余数倒序排列即可得到对应的二进制数。
2. 二进制转十进制二进制转十进制的方法是根据每一位的权重值进行计算。
对于一个二进制数,从右向左,每一位的权重值是2的n次方(n从0开始,逐位递增),将每一位与对应的权重值相乘后相加即可得到对应的十进制数。
3. 十进制转八进制八进制(Octal)是一种基数为8的计数系统。
十进制转八进制的方法是将十进制数不断除以8并记录余数,然后将余数倒序排列即可得到对应的八进制数。
4. 八进制转十进制八进制转十进制的方法是根据每一位的权重值进行计算。
对于一个八进制数,从右向左,每一位的权重值是8的n次方(n从0开始,逐位递增),将每一位与对应的权重值相乘后相加即可得到对应的十进制数。
5. 十进制转十六进制十六进制(Hexadecimal)是一种基数为16的计数系统,主要用于计算机科学中。
十进制转十六进制的方法是将十进制数不断除以16并记录余数,然后将余数倒序排列并用A~F表示超过9的数字,即可得到对应的十六进制数。
6. 十六进制转十进制十六进制转十进制的方法与八进制和二进制类似,根据每一位的权重值进行计算,将每一位与对应的权重值相乘后相加即可得到对应的十进制数。
二、进制运算在计算机科学中的应用进制运算在计算机科学中具有广泛的应用,特别是二进制运算。
进制转化公式引言进制转化是数学中非常重要的一部分,它用于在不同的进制间转换数值。
在日常生活和计算机领域,二进制、十进制和十六进制是最常见的进制形式。
本文将详细介绍进制转化公式,并阐述其在实际应用中的重要性。
1. 二进制转十进制1.1 公式二进制转十进制的公式是:十进制数 = an*2^n + an-1*2^(n-1) + ... + a1*2^1 + a0*2^0,其中n是二进制数的位数,an表示二进制数的第n位数字。
1.2 举例例如,将二进制数101011转换为十进制数的计算步骤如下:(1 * 2^5) + (0 * 2^4) + (1 * 2^3) + (0 * 2^2) + (1 * 2^1) +(1 * 2^0) = 32 + 0 + 8 + 0 + 2 + 1 = 432. 十进制转二进制2.1 公式十进制转二进制的公式是:二进制数 = an*2^n + an-1*2^(n-1) + ... + a1*2^1 + a0*2^0,其中,n是二进制数的位数,an表示十进制数除以2^n的整数商,而作为十进制数除以2^n的余数。
2.2 举例例如,将十进制数43转换为二进制数的计算步骤如下:43 ÷ 2 = 21 余 121 ÷ 2 = 10 余 110 ÷ 2 = 5 余 05 ÷ 2 = 2 余 12 ÷ 2 = 1 余 01 ÷2 = 0 余 1将以上结果从下往上排列,得到二进制数101011。
3. 二进制转十六进制3.1 公式二进制转十六进制的公式是:十六进制数 = an*16^n + an-1*16^(n-1) + ... + a1*16^1 + a0*16^0,其中,n是二进制数的位数,an表示二进制数的第n位数字。
3.2 举例例如,将二进制数101011转换为十六进制数的计算步骤如下:(1 * 2^5) + (0 * 2^4) + (1 * 2^3) + (0 * 2^2) + (1 * 2^1) +(1 * 2^0) = 32 + 0 + 8 + 0 + 2 + 1 = 43将十进制数43转换为十六进制数,得到十六进制数2B。