matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数
- 格式:doc
- 大小:89.50 KB
- 文档页数:4
关于matlab 中噪声功率谱密度与方差之间的关系的理解1. 连续时间系统高斯白噪声的定义为:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。
故对于连续时间系统,理想的高斯白噪声的功率谱密度是一个常数,设为n0,而带宽是无限宽的,其功率为:0*n ∞=∞ (1) 在n0不是为无穷小的情况下,理想的噪声功率Pn 是无限大的。
而实际当中,噪声带宽是有限宽的,只需要在我们所关心的频带范围内,噪声功率谱密度是个常数,则我们可认为其是高斯白噪声。
设噪声单边功率谱密度为0n ,低通带宽为W ,则其噪声功率为:0*2n n P W = (2)如图1.1所示:W 频率/HZ图1.1我们知道,高斯白噪声的分布为2~(0,)X N σ,则其功率为:222()()()()n P E x D x E x D x σ==+== (3)故对于低通系统有:20/2n W σ= (4) 而对于带通系统,如图1.2所示,有: 200*2*2n n P W n W σ=== (5)W -W 频率/HZ2. 离散时间系统对于离散时间系统而言,带宽受到抽样速率fs 的限制。
设WGN 一秒内抽取的一组数据样本为:12[],,....fs x n x x x =22([])0;([])([])E x n D x n E x n σ===2.1理论分析由于时间为单个的离散点,故理想功率为0;但有下列定义:对于序列[]x n 的能量E 定义为序列各抽样值的平方和,则数据样本的能量为: 2221()*[()]*s f s s E x n f E x n f σ===∑(6)将功率定义为序列能量除以序列的时间,即2*s b E P f T σ== (7)式中,Tb 为序列时间,此处等于1S 。
2.2另一种理解而实际当中,抽样点是一个时间段,认为1/s s T f =时间内的幅值就等于此抽样时刻的幅值,则噪声能量为:22***t s s s E E T f T σσ===(6)则噪声功率为: 222221234222{[]*[]*[]*[]*......[]*}*[]*[]n s s s s S s s sP E n n T n n T n n T n n T n n T f E N T E N σ=++++===高斯白噪声经过抽样之后,其带宽如下所示:W -W 频率/HZ -fs fs Fs+W -Fs-W 故抽样之后功率谱密度仍然为常数,设此时的功率谱密度为n0,其带宽为fs/2,故其功率为:20*2n fs p n σ== (6) 3. 结论故在连续系统跟离散系统中,噪声功率谱密度与方差的实际关系可以认为是相同的。
matlab高斯噪声函数(原创版)目录1.Matlab 中生成高斯噪声的方法2.高斯噪声的特点和应用3.椒盐噪声与高斯噪声的区别4.如何在 Matlab 中生成椒盐噪声和高斯白噪声5.滤波器在噪声抑制中的应用正文在 Matlab 中,生成高斯噪声常用的函数是 randn。
该函数可以生成服从正态分布的随机数。
其使用方法为:y = randn(m,n),其中 m 和 n 分别为矩阵的大小。
生成的随机数矩阵 y 中,每个元素都服从均值为 0、方差为 1 的高斯分布。
高斯噪声的特点是其噪声幅度随机,且在图像中的位置固定。
这种噪声在图像处理中很常见,例如在图像传输过程中,信号可能受到高斯噪声的影响。
因此,研究如何生成和处理高斯噪声对于图像处理具有重要意义。
椒盐噪声是一种特殊的高斯噪声,其特点是在图像中的某些位置上噪声幅度较大,形成“椒盐”状。
椒盐噪声与高斯噪声的主要区别在于噪声的幅度分布,椒盐噪声的噪声幅度分布不是正态分布,而是具有较高的峰值和较低的谷值。
在 Matlab 中,可以通过 imnoise 函数生成椒盐噪声。
例如,使用imnoise(I, "salt", m, v) 可以生成椒盐噪声,其中 I 为要添加噪声的图像,m 和 v 分别表示噪声的强度和方差。
除了椒盐噪声,Matlab 中也可以生成高斯白噪声。
高斯白噪声是在频域上呈高斯分布的噪声,其能量分布均匀。
在 Matlab 中,可以使用awgn 函数生成高斯白噪声。
例如,使用 awgn(x, snr) 可以生成高斯白噪声,其中 x 为信号,snr 为信噪比。
在实际应用中,噪声抑制滤波器可以用于去除图像中的噪声。
常见的噪声抑制滤波器包括均值滤波器、中值滤波器和边界保持类滤波器。
均值滤波器的原理是在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。
将模板中的全体像素的均值来替代原来的像素值。
中值滤波器则通过取图像中每个像素邻域的中值来实现噪声抑制。
高斯白噪声的概率密度函数,功率谱密度函数高斯白噪声(Gaussian White Noise,GWN)是一种随机过程,它应用于计算机领域中处理非常复杂的信号。
这种信号通常具有随机性和动态变化,GWN具有立即响应的特性,可以应用于提取信号的特征,其中包括概率密度函数和功率谱密度函数。
一、概率密度函数
概率密度函数是用来衡量不同随机变量在给定时间的概率的函数。
概率密度函数描述了每一个表示映射过程中的值分布,这样用户就可以确定可能发生的预期结果。
高斯白噪声概率密度函数具有一定的高斯分布,平均值为0,特征值为1,累积概率密度函数以1/2为期望值。
其形式为:
f(x)= 1/√2π * exp(-x2)
其中f(x)为取值的概率,exp(-x2)为高斯函数。
二、功率谱密度函数
功率谱密度函数(PSD)是一种用来表示随机信号功率谱图的函数。
它是指在空间频率域中,将特定时间间隔内的幅度值转换为频率域上对应的功率谱值。
高斯白噪声的功率谱密度函数具有一定形式,可以定义零平均值,即每个取值的功率均相等,其形式如下:
F(f)=(1/2)2/π
其中f为信号的频率,F(f)为功率谱密度的值。
综上,高斯白噪声概率密度函数和功率谱密度函数分别有不同的形式,分别由具有一定的概率分布和频率值密度构成,各取不同的期望值。
这种信号模式可以用于提取信号的特征,从而可以更好地理解特定的
操作规则。
由此可以看出,GWN在探索信号特征中具有很强的实用性,同时也可以用于开发新技术,以实现更高效率的数据处理。
高斯白噪声matlab摘要:1.高斯白噪声的定义和特性2.MATLAB 中生成高斯白噪声的方法3.高斯白噪声在各个领域的应用正文:1.高斯白噪声的定义和特性高斯白噪声(Gaussian White Noise)是一种在各个频率上具有相同能量分布的随机信号,它是信号处理领域中常见的一种噪声模型。
高斯白噪声具有以下特性:- 它的概率密度函数服从正态分布(高斯分布),即均值为0,方差为常数σ的正态分布。
- 在各个频率上的能量分布是均匀的,即具有平坦的功率谱。
- 高斯白噪声是各态历经(ergodic)的,这意味着在一个长时间内,信号的任何一段样本都是可能出现的。
2.MATLAB 中生成高斯白噪声的方法在MATLAB 中,可以使用内置函数`wgn`来生成高斯白噪声。
以下是一个简单的示例:```matlab% 指定信号的长度= 1000;% 生成高斯白噪声oise = wgn(n, 1);% 显示噪声信号figure;plot(noise);title("高斯白噪声示例");```其中,`wgn`函数的第一个参数`n`表示信号的长度,第二个参数`1`表示信号的均值为1。
需要注意的是,`wgn`函数生成的高斯白噪声是在均值为0,标准差为1 的条件下生成的,因此在实际应用中,可能需要根据需要对信号进行缩放。
3.高斯白噪声在各个领域的应用高斯白噪声在许多领域都有广泛的应用,包括通信、信号处理、图像处理等。
例如,在通信系统中,高斯白噪声常常被用作信道噪声的模型,以研究信道对信号传输性能的影响;在图像处理中,高斯白噪声可以作为随机噪声加入到图像中,以生成具有自然随机纹理的效果。
matlab产生高斯白噪声产生一个长度为L、均值为零、功率为N的复数高斯白噪声用这种方法:1,X = sqrt(N/2) * ( randn(1,L) + j * randn(1,L) );根据随机过程理论,功率包含直流功率和交流功率,方差就是交流功率,这里均值为零,也就是总功率等于方差所以保证X的方差为N就行了。
2,X = wgn( L,1,N,'linear','complex');产生长为L的复高斯白噪声,均值为0,功率为N(线性)MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。
WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。
1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。
y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state) 重置RANDN的状态。
在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p的单位。
POWERTYPE可以是'dBW', 'dBm'或'linear'。
线性强度(linear power)以瓦特(Watt)为单位。
y = wgn(…,OUTPUTTYPE) 指定输出类型。
OUTPUTTYPE可以是'real'或'complex'。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x中加入高斯白噪声。
信噪比SNR以dB为单位。
x的强度假定为0dBW。
如果x是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。
MATLAB 环境下的正弦信号及高斯白噪声仿真程序说明一、信号的产生及时域观察1、设定正选信号的频率为10HZ ,抽样频率为100HZ ;2、设定N(0,0.25)高斯白噪声,及噪声功率为0.25W ;3、最后将噪声叠加到正弦信号上,观察其三者时域波形。
二、信号频谱及白噪声功率谱的求解与观察1、对原正弦信号直接进行FFT ,得出其频谱;2、求白噪声的自相关函数,随机序列自相关函数的无偏估计公式为:1^01()()()N m xx n r m x n x n m N m --==+-∑ 01m N ≤≤- ^^()()xx xx r m r m =- 01m N <<-对所求自相关函数进行FFT 变换,求的白噪声的功率谱函数。
源程序:1.产生正弦信号fs=100;fc=10;x=(0:1/fs:2);n=201;y1=sin(2*pi*fc*x); %原正弦信号,频率为10a=0;b=0.5; %均值为a ,方差为b^2subplot(2,2,1);plot(x,y1,'r');title('y=sin(20pi*x)');ylabel('y');xlabel('x/20pi');grid;2.产生高斯白噪声y2=a+b*randn(1,n); %高斯白噪声subplot(2,2,2);plot(x,y2,'r');title('N(0,0.25)的高斯白噪声');ylabel('y');xlabel('x/20pi');grid;3.复合信号y=y1+y2; %加入噪声之后的信号subplot(2,2,3);plot(x,y,'r');title('混合信号');ylabel('y');xlabel('x/20pi');grid;4.复合信号功率谱密度%求复合信号的自相关函数m=50;i=-0.49:1/fs:0.49;for j=1:mR(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j);%无偏自相关函数的估计Rx(49+j)=R(j);Rx(51-j)=R(j);endFy2=fft(Rx); %傅里叶变换得出复合信号功率谱函数Fy21=fftshift(Fy2); %功率谱校正f=(0:98)*fs/99-fs/2;subplot(2,2,4);plot(f,abs(Fy21),'r');axis([-50 50 -0.5 1]);title('复合信号功率谱函数图');ylabel('F(Rx)');xlabel('w');grid;。
通信系统建模与仿真实验一、高斯白噪声的matlab 实现要求:样本点:100 1000标准差:0.2 2 10均值: 0 0.2白噪声如果噪声的功率谱密度在所有的频率上均为一常数,即)/(),(,)(0Hz W f n f P n +∞<<-∞=式中:0n 为常数,责成该噪声为白噪声,用)(t n 表示。
高斯白噪声的matlab实现1.样本点为1000、均值为0、标准差为0.2时,高斯白噪声分布为下图所示:程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (0.2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i));endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft));plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (10) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (0.2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (10) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (0.2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (10) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (0.2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (10) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)。
现代通信原理作业一班313级理工部学号:133320085208036 班级:姓名:张英伟完成:利用matlab均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦产生正弦波信号、?波信号上,绘出波形。
绘出波分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,?形。
一、白噪声区别及产生方法1、定义:均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。
高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。
2、matlab仿真函数:rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:z2=a+(b-(a))*rand(m,n)............(公式1)randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生2)。
利用公式:,1 均值为0、方差为1的正态分布白噪声,即N(0z1=a+b*randn(1,n).................(公式2)2 2)。
,b,方差为可以产生均值为ab 高斯白噪声,即N(a二、自相关函数与功率谱密度之间的关系1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。
2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
3、维纳-辛钦定理:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。
幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。
(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)二、源代码及仿真结果1、正弦波x=(0:0.01:2); %采样频率100Hzy1=sin(10*pi*x); %产生频率5Hz的sin函数plot(x,y1,'b');正弦波2、高斯白噪声+2)()高斯白噪声0.1Nz1=0.1*randn(1,201); %产生方差(0,b=0.01/0.1/1plot(x,z1,'b');叠加高斯白噪声的正弦波%y2=y1+z1;plot(x,y2,'b');正弦波、均匀白噪声3+z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声plot(x,z2,'b');y3=y1+z2; %叠加均匀白噪声的正弦波plot(x,y3,'b');4、高斯白噪声序列自相关函数及功率谱密度z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计plot(lags,r1);f1=fft(r1);f2=fftshift(f1); %频谱校正l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);plot(l1,y4);5、均匀白噪声序列自相关函数及功率谱密度z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声%自相关函数的估计[r2,lags]=xcorr(z2);plot(lags,r2);f3=fft(r2);f4=fftshift(f3); %频谱校正l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴y5=abs(f4);plot(l2,y5);。
自己编写算法功率谱密度三种matlab实现方法功率谱密度的三种matlab实现方法一:实验目的:(1)掌握三种算法的概念、应用及特点;(2)了解谱估计在信号分析中的作用;(3)能够利用burg法对信号作谱估计,对信号的特点加以分析。
二;实验内容:(1)简单说明三种方法的原理。
(2)用三种方法编写程序,在matlab中实现。
(3)将计算结果表示成图形的形式,给出三种情况的功率谱图。
(4)比较三种方法的特性。
(5)写出自己的心得体会。
三:实验原理:1.周期图法:周期图法又称直接法。
它是从随机信号x(n)中截取N长的一段,把它视为能量有限x(n)真实功率谱的估计的抽样.认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段来估计该随机序列的功率谱。
这当然必然带来误差。
由于对采用DFT,就默认在时域是周期的,以及在频域是周期的。
这种方法把随机序列样本x(n)看成是截得一段的周期延拓,这也就是周期图法这个名字的来历。
2.相关法(间接法):这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。
这种方法的具体步骤是:第一步:从无限长随机序列x(n)中截取长度N的有限长序列列第二步:由N长序列求(2M-1)点的自相关函数序列。
(2-1)这里,m=-(M-1)…,-1,0,1…,M-1,MN,是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。
,M-1的傅里叶变换,另一半也就知道了。
第三步:由相关函数的傅式变换求功率谱。
即以上过程中经历了两次截断,一次是将x(n)截成N长,称为加数据窗,一次是将x(n)截成(2M-1)长,称为加延迟窗。
因此所得的功率谱仅是近似值,也叫谱估计,式中的代表估值。
一般取M<<N,因为只有当M较小时,序列傅式变换的点数才较小,功率谱的计算量才不至于大到难以实现,而且谱估计质量也较好。
因此,在FFT问世之前,相关法是最常用的谱估计方法。
三:Burg法:AR模型功率谱估计又称为自回归模型,它是一个全极点的模型,要利用AR模型进行功率谱估计须通过levinson_dubin递推算法由Yule-Walker方程求得AR的参数:σ2,α1α2…αp。
如何在Matlab中进行信号频谱分析一、引言信号频谱分析是一种重要的信号处理技术,它可以帮助我们理解信号的频率特性和频谱分布。
在Matlab中,有多种方法可以用来进行信号频谱分析,本文将介绍其中几种常用的方法。
二、时域分析1. 快速傅里叶变换(FFT)快速傅里叶变换(FFT)是最常用的频谱分析工具之一。
在Matlab中,可以使用fft函数对信号进行FFT分析。
首先,将信号数据传入fft函数,然后对结果进行处理,得到信号的频谱图。
通过分析频谱图,我们可以了解信号的频率成分和频谱分布。
2. 窗函数窗函数可以帮助我们减小信号分析过程中的泄漏效应。
在Matlab中,可以使用hamming、hanning等函数生成窗函数。
通过将窗函数乘以信号数据,可以减小频谱中的泄漏效应,得到更准确的频谱图。
三、频域分析1. 功率谱密度(PSD)估计功率谱密度(PSD)估计是一种常见的频域分析方法,用来估计信号在不同频率上的功率分布。
在Matlab中,可以使用pwelch函数进行PSD估计。
pwelch函数需要输入信号数据和采样频率,然后输出信号的功率谱密度图。
2. 自相关函数自相关函数可以帮助我们了解信号的周期性。
在Matlab中,可以使用xcorr函数计算信号的自相关函数。
xcorr函数需要输入信号数据,然后输出信号的自相关函数图。
四、频谱图绘制与分析在进行信号频谱分析后,我们需要将分析结果进行可视化。
在Matlab中,可以使用plot函数绘制频谱图。
通过观察频谱图,我们可以进一步分析信号的频率成分和频谱特性。
可以注意以下几点:1. 频谱图的横轴表示频率,纵轴表示幅度。
通过观察频谱图的峰值位置和幅度大小,可以了解信号中频率成分的分布情况。
2. 根据信号的特点,选择合适的分析方法和参数。
不同的信号可能需要采用不同的分析方法和参数,才能得到准确的频谱分布。
五、实例分析为了更好地理解如何在Matlab中进行信号频谱分析,以下是一个简单的实例分析。
现代通信原理作业一
姓名:张英伟学号:133320085208036 班级:13级理工部3班
利用matlab完成:
●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦
波信号上,绘出波形。
●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波
形。
一、白噪声区别及产生方法
1、定义:
均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。
高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。
2、matlab仿真函数:
rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:
z2=a+(b-(a))*rand(m,n)............(公式1)
randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。
利用公式:
z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。
二、自相关函数与功率谱密度之间的关系
1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。
2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
3、维纳-辛钦定理:
由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。
幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。
(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)
二、源代码及仿真结果
1、正弦波
x=(0:0.01:2); %采样频率100Hz
y1=sin(10*pi*x); %产生频率5Hz的sin函数
plot(x,y1,'b');
2、高斯白噪声+正弦波
z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');
y2=y1+z1; %叠加高斯白噪声的正弦波
plot(x,y2,'b');
3、均匀白噪声+正弦波
z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声 plot(x,z2,'b');
y3=y1+z2; %叠加均匀白噪声的正弦波
plot(x,y3,'b');
4、高斯白噪声序列自相关函数及功率谱密度
z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计
plot(lags,r1);
f1=fft(r1);
f2=fftshift(f1); %频谱校正
l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);
plot(l1,y4);
5、均匀白噪声序列自相关函数及功率谱密度
z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声
[r2,lags]=xcorr(z2); %自相关函数的估计
plot(lags,r2);
f3=fft(r2);
f4=fftshift(f3); %频谱校正
l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴 y5=abs(f4);
plot(l2,y5);
如有侵权请联系告知删除,感谢你们的配合!。