弹性力学第一章绪论
- 格式:ppt
- 大小:8.76 MB
- 文档页数:48
弹性力学总结第一章绪论一、弹性力学的内容:弹性力学的研究对象、内容和范围。
二、弹性力学的基本量1、外力(1)体力(2)面力2、内力——应力3、应变4、位移以上基本量要求掌握其定义、表达式、分量的符号、正负号规定、量纲。
三、弹性力学中的基本假定1、连续性2、完全弹性3、均匀性4、各向同性以上是对材料性质的假定,凡符合以上四个假定的物体,称为理想弹性体。
5、小变形假定(对物体的变形状态所作的假定)要求掌握各假定的内容和意义(在建立弹性力学基本方程时的作用)。
习题举例:1、弹性力学,是固体力学的一个分支,它的任务是研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的(),从而解决各类工程中所提出的强度、刚度和稳定问题。
A.应力、应变和位移;B.弯矩、扭矩和剪力;C.内力、挠度和变形;D.弯矩、应力和挠度。
2、在弹性力学中,作用于物体的外力分为()。
A.体力和应力;B.应力和面力;C.体力和面力;D.应力和应变。
3、重力和惯性力为(C )。
A .应力;B .面力;C .体力;D .应变。
4、分布在物体体积内的力称为( C )。
A .应力;B .面力;C .体力;D .应变。
5、物体在体内某一点所受体力的集度的表达式及体力分量的量纲为( A )。
A .0lim V F f V∆→∆=∆,-2-2L MT ; B .0lim S F f S ∆→∆=∆,-1-2L MT ; C .0lim A F p A ∆→∆=∆,-1-2L MT ; D .0lim V F f V ∆→∆=∆,-1-2L MT 。
6、弹性力学研究中,在作数学推导时可方便地运用连续和极限的概念,是利用了( )假定。
A .完全弹性;B .连续性;C .均匀性;D .各向同性。
7、( A )四个假设是对物体的材料性质采用的基本假设,凡是符合这四个假设的物体,就称为理想弹性体。
A .完全弹性,连续性,均匀性和各向同性;B .完全弹性,连续性,均匀性和小变形;C .连续性,均匀性,各向同性和小变形;D .完全弹性,连续性,小变形和各向同性。
弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么就是均匀的各向异性体,什么就是非均匀的各向同性体?【分析】均匀的各项异形体就就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件与钢筋混凝土构件能否作为理想弹性体?一般的岩质地基与土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件与土质地基可以作为理想弹性体;一般的钢筋混凝土构件与岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体就是连续的,也就就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变与位移等物理量就可以瞧成就是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示她们的变化规律。
完全弹性假定:假定物体就是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间就是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体就是均匀的,即整个物体就是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都就是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体就是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移与变形就是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变与转角都远小于1。
弹性力学题库_弹性力学题库第一章绪论1、所谓“完全弹性体”是指(B)。
A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时间、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、关于弹性力学的正确认识是(A)。
A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D)。
A、杆件B、板壳C、块体D、质点4、弹性力学研究物体在外力作用下,处于弹性阶段的应力、应变和位移。
5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围和精度。
与材料力学相比弹性力学的特点有哪些?答:1)研究对象更为普遍;2)研究方法更为严密;3)计算结果更为精确;4)应用范围更为广泛。
6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。
(×)改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围和精度。
7、弹性力学对杆件分析(C)。
A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些关于变形的近似假定8、图示弹性构件的应力和位移分析要用什么分析方法?(C)A、材料力学B、结构力学C、弹性力学D、塑性力学解答:该构件为变截面杆,并且具有空洞和键槽。
9、弹性力学与材料力学的主要不同之处在于(B )。
A、任务B、研究对象C、研究方法D、基本假设10、重力、惯性力、电磁力都是体力。
(√)11、下列外力不属于体力的是(D)A、重力B、磁力C、惯性力D、静水压力12、体力作用于物体内部的各个质点上,所以它属于内力。
(×)解答:外力。
它是质量力。
13、在弹性力学和材料力学里关于应力的正负规定是一样的。
C )第一章 绪论1、 所谓“完全弹性体”是指(B )。
A 、 材料应力应变关系满足虎克定律B 、 材料的应力应变关系与加载时间、历史无关C 、 本构关系为非线性弹性关系D 、 应力应变关系满足线性弹性关系 2、 关于弹性力学的正确认识是( A )。
A 、 计算力学在工程结构设计中的作用日益重要B 、 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设C 、 任何弹性变形材料都是弹性力学的研究对象D 、 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、 下列对象不属于弹性力学研究对象的是(D )。
A 、杆件B 、板壳C 、块体D 、质点4、 弹性力学研究物体在 外力作用下,处于弹性阶段的应力、应变和位移。
5、 弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验 算材力结果的适用范围和精度。
与材料力学相比弹性力学的特点有哪些?答:1)研究对象更为普遍; 2) 研究方法更为严密; 3) 计算结果更为精确; 4)应用范围更为广泛。
6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。
(X )改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学 公式的适用范围和精度。
8、图示弹性构件的应力和位移分析要用什么分析方法?(7、弹性力学对杆件分析(C )。
A 、无法分析B 、得出近似的结果C 、得出精确的结果D 、需采用一些关于变形的近似假定D 、静水压力A 、材料力学B 、结构力学C 、弹性力学D 、塑性力学解答:该构件为变截面杆,并且具有空洞和键槽。
9、弹性力学与材料力学的主要不同之处在于( B )。
10、重力、惯性力、电磁力都是体力。
(V ) 11、下列外力不属于体力的是( D )A 、重力B 、磁力C 、惯性力12、体力作用于物体内部的各个质点上,所以它属于内力。
(X )解答:外力。
它是质量力。
弹性⼒学教案.doc弹性⼒学教案第⼀章绪论(4学时)介绍弹性⼒学研究的内容、基本概念和基本假设。
1、主要内容:第⼀节弹性⼒学的内容第⼆节弹性⼒学的基本概念第三节弹性⼒学的基本假设2、本章重点:弹性⼒学的基本概念。
3、本章难点:弹性⼒学的基本概念。
4、本章教学要求:理解弹性⼒学的基本假设、基本概念。
5、教学组织:弹性⼒学是在学习了理论⼒学、材料⼒学等课程的基础上开设的专业课程。
学⽣已经建⽴了关于应⼒、应变、位移的概念。
⽽且能够⽤材料⼒学的⽅法对杆件进⾏应⼒计算;并进⼀步对其进⾏强度、刚度和稳定性的分析。
在本章第⼀节的教学中,要明确弹性⼒学、材料⼒学和结构⼒学在研究对象上的分⼯的不同;在研究⽅法上的不同;及其不同的原因。
并且让学⽣初步了解弹性⼒学的研究⽅法。
在本章第⼆节的教学中,要进⼀步深⼊研究作⽤在弹性体上的⼒。
明确内⼒与外⼒、体⼒与⾯⼒、应⼒⽮量与应⼒张量等概念及其表达⽅式。
在本章第三节的教学中,研究弹性⼒学的基本假设。
通过基本假设的讲解,让学⽣明⽩合理的科学假设在科学研究中的必要性和重要性。
要启发学⽣理解弹性⼒学的各个假设及其限定的缘由。
第⼆章弹性⼒学平⾯问题的基本理论(14学时)本章研究平⾯问题的基本⽅程、边界条件及其解法。
1、主要内容:第⼀节平⾯问题第⼆节平衡微分⽅程第三节斜截⾯上的应⼒、主应⼒第四节⼏何⽅程、刚体位移第五节斜截⾯上的应变及位移第六节物理⽅程第七节边界条件第⼋节圣维南原理第九节按位移求解的平⾯问题第⼗节按应⼒求解的平⾯问题、相容⽅程第⼗⼀节常体⼒情况下的简化第⼗⼆节应⼒函数、逆解法与半逆解法2、本章重点:平⾯问题的基本⽅程、应⼒函数及边界条件。
3、本章难点:平⾯问题的基本⽅程及边界条件的确定。
4、本章教学要求:掌握弹性⼒学平⾯问题的基本⽅程和应⼒边界条件;理解圣维南原理及相容⽅程的意义。
掌握按应⼒求解弹性⼒学问题的基本⽅程和概念;掌握按位移求解弹性⼒学问题的基本⽅程和概念。
弹性力学网络课程第一章绪论内容介绍知识点弹性力学的特点弹性力学的基本假设弹性力学的发展弹性力学的任务弹性力学的研究方法内容介绍:一. 内容介绍本章作为弹性力学课程的引言,主要介绍课程的研究对象、基本分析方法和特点;课程分析的基本假设和课程学习的意义以及历史和发展。
弹性力学的研究对象是完全弹性体,因此分析从微分单元体入手,基本方程为偏微分方程。
偏微分方程边值问题在数学上求解困难,使得弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
本章介绍弹性力学分析的基本假设。
弹性力学分析中,必须根据已知物理量,例如外力、结构几何形状和约束条件等,通过静力平衡、几何变形和本构关系等,推导和确定基本未知量,位移、应变和应力等与已知物理量的关系。
由于工程实际问题的复杂性是由多方面因素构成的,如果不分主次地考虑所有因素,问题是十分复杂的,数学推导将困难重重,以至于不可能求解。
课程分析中使用张量符号描述物理量和基本方程。
目前,有关弹性力学的文献和工程资料都是使用张量符号的。
如果你没有学习过张量概念,请进入附录一学习,或者查阅参考资料。
二. 重点1.课程的研究对象;2.基本分析方法和特点;3.弹性力学的基本假设;4.课程的学习意义;5.弹性力学的发展。
特点:弹性力学,又称弹性理论。
作为固体力学学科的一个分支,弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
构件承载能力分析是固体力学的基本任务,但是对于不同的学科分支,研究对象和方法是不同的。
弹性力学的研究对象是完全弹性体,包括构件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛。
弹性是变形固体的基本属性,而“完全弹性”是对弹性体变形的抽象。