弹性力学第一章
- 格式:ppt
- 大小:731.00 KB
- 文档页数:22
第一章 教学参考资料(一)本章的学习要求及重点1.弹性力学的研究内容,及其研究对象和研究方法,认清他们与材料力学的区别。
2.弹性力学的几个主要物理量的定义、量纲、正负方向及符号规定等,及其与材料力学相比的不同之处。
3.弹性力学的几个基本假定,及其在建立弹性力学基本方程时的应用。
(二)本章内容提要1.弹性力学的内容─弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2.弹性力学中的几个基本物理量:体力—— 分布在物体体积内的力、记号为,,,x y z f f f 。
量纲为L -2MT -2,以坐标正向为正。
面力—— 分布在物体表面上的力,记号为,,,x y z f f f 。
量纲为L -2MT -2 ,以坐标正向为正。
应力—— 单位截面面积上的内力,记号x xy στ⋯⋯,量纲为L -2MT -2,以正面正向为正,负面负向为正;反之为负。
形变—— 用线应变, x y εε和切应变xy γ表示,量纲为1,线应变以伸长为正,切应变以直角减小为正。
位移—— 一点位置的移动,记号为,,u v w ,量纲为L ,以坐标正向为正。
3.弹性力学中的基本假定理想弹性体假定—连续性,完全弹性,均匀性,各向同性。
小变形假定。
4.弹性力学问题的研究方法已知:物体的边界形状,材料性质,体力,边界上的面力或约束。
求解:应力、形变和位移。
解法:在弹性体区域V 内,根据微分体上力的平衡条件,建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件,建立物理方程。
在弹性体边界S 上,根据面力条件,建立应力边界条件,根据约束条件,建立位移边界条件。
然后在边界条件下,求解区域内的微分方程,得出应力、形变和位移。
(三)弹性力学的发展简史与其他任何学科一样,从这门力学的发展史中,我们可以看出人们认识自然的不断深化的过程:从简单到复杂,从粗糙到精确,从错误到正确的演变历史。
第一章 弹性力学的内容和基本概念1、均匀性假设:物体各部分物理性质都是相同的,不随坐标位置的变化而变化。
连续性假设:物体所有物理量均为物体空间的连续函数。
各向同性假设:物体的弹性常数将不随坐标方向的改变而变化。
完全弹性假设:研究对象的材料弹性常数不随应力或应变的变化而改变。
小变形假设:忽略位移等分量的高阶小量,使基本方程成为线性的偏微分方程组。
无初始应力假设:弹性力学求解的应力仅仅是外力或者温度改变而产生的。
2.弹性力学是研究物体在弹性范围内由于外载荷作用或物体温度改变而产生的应力、应变和位移。
3.弹性力学除了研究杆件外,还研究平面问题和空间问题,在研究这些问题时,并不采用变形或应力分布之类的假设,由于结构和受力的复杂性,以无限小的单元体作为研究和分析问题的出发点,并由力平衡方程、几何方程和物理方程等构成数学-力学问题求解。
4.在相互垂直平面上,切应力成对存在且数值相等,两者都垂直于两个平面的交线,方向则共同指向或共同背离这一交线。
这就是(剪)切应力互等定理。
5.平面问题可分为平面应力问题和平面应变问题。
(1)当弹性体的一个方向尺寸很小,例如薄板,在板的边缘有平行于板面并沿板厚均匀分布的力作用。
六个应力分量只剩下平行于xOy 面的三个应力分量,即x σ、y σ、xy τ,而且它们只是坐标x ,y 的函数,与z 无关。
这类问题称作平面应力问题。
(2)当弹性体的一个方向尺寸很大,例如很长的柱形体。
在柱形体的表面上,有平行于横截面而不沿长度变化的外力。
六个应力分量只剩下四个,即x σ、y σ、z σ、xy τ,这类问题称作平面应变问题。
6.相容方程是在按应力求解平面问题时,平衡微分方程中包含三个应力分量,而方程有两个,因此需要从几何和物理方程中导出一个只含有应力分量的补充方程,就这样导出了相容方程.其作用是作为求解应力函数的补充方程,并作为应力分量应当满足的条件之一。
7.圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么, 近处的应力分布将有显著的改变,但是远处所受的影响可以忽略不计。
弹性力学网络课程第一章绪论内容介绍知识点弹性力学的特点弹性力学的基本假设弹性力学的发展弹性力学的任务弹性力学的研究方法内容介绍:一. 内容介绍本章作为弹性力学课程的引言,主要介绍课程的研究对象、基本分析方法和特点;课程分析的基本假设和课程学习的意义以及历史和发展。
弹性力学的研究对象是完全弹性体,因此分析从微分单元体入手,基本方程为偏微分方程。
偏微分方程边值问题在数学上求解困难,使得弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
本章介绍弹性力学分析的基本假设。
弹性力学分析中,必须根据已知物理量,例如外力、结构几何形状和约束条件等,通过静力平衡、几何变形和本构关系等,推导和确定基本未知量,位移、应变和应力等与已知物理量的关系。
由于工程实际问题的复杂性是由多方面因素构成的,如果不分主次地考虑所有因素,问题是十分复杂的,数学推导将困难重重,以至于不可能求解。
课程分析中使用张量符号描述物理量和基本方程。
目前,有关弹性力学的文献和工程资料都是使用张量符号的。
如果你没有学习过张量概念,请进入附录一学习,或者查阅参考资料。
二. 重点1.课程的研究对象;2.基本分析方法和特点;3.弹性力学的基本假设;4.课程的学习意义;5.弹性力学的发展。
特点:弹性力学,又称弹性理论。
作为固体力学学科的一个分支,弹性力学的基本任务是研究弹性体由于外力载荷或者温度改变,物体内部所产生的位移、变形和应力分布等,为解决工程结构的强度,刚度和稳定性问题作准备,但是并不直接作强度和刚度分析。
构件承载能力分析是固体力学的基本任务,但是对于不同的学科分支,研究对象和方法是不同的。
弹性力学的研究对象是完全弹性体,包括构件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛。
弹性是变形固体的基本属性,而“完全弹性”是对弹性体变形的抽象。