钢围堰计算书
- 格式:doc
- 大小:756.75 KB
- 文档页数:12
单壁钢围堰计算书一、计算依据1、xxxxxx施工设计图;2、《钢结构设计规范》(GB50017-2003);3、水利水电工程钢闸门设计规范(SL74-95)4、《钢结构计算手册》二、工程概况本设计主要为xxxx大桥水中墩系梁施工用钢围堰,该项目共计12个水中墩,其中9#、12#—19#墩因系梁底标高较低,采用单壁钢围堰施工。
现场调查,施工最高水位为414米,根据各墩位系梁标高,确定三、主要技术参数1、现场调查,施工最高水位为414米;2、Q235钢[σ]=140Mp,[σw]=145Mp,[τ]=85Mp3、钢弹性模量Es=2.1×105MPa;四、围堰构造围堰采用单壁钢围堰,面板为8mm厚钢板,竖向背楞采用8号槽钢,间距400mm,竖向设置三道围檩,围檩使用I32b,对应围檩设置三道内支撑,每道支撑为4根φ140x5.5mm钢管。
封底混凝土厚1.5米,采用C20混凝土,采用水下多点灌注的方式。
五、计算过程(一)面板计算面板按支撑在围檩上的连续加筋板计算,横向取3.2米宽一条(一块板),竖向取全长7.9米,荷载为静水压力荷载。
简图如下:正面图侧面图荷载为静水压力,按水深7.6米考虑(水面标高414米,围堰底标高406.9米),则q=7.6x10=76KN/m2。
3、计算结果按上述图示与荷载,计算结果如下:(1)面板变形:(2)面板应力:通过以上两图,可以看到面板最大变形为 2.35mm,最大应力77Mpa,满足要求。
结论:面板采用8mm厚钢板刚度与强度满足要求。
(二)竖向背楞计算1、计算简图竖向背楞简化为支撑在围檩上的连续梁,计算简图如下:3002、计算荷载荷载主要为静水压力,Q=76KN/m2,竖肋间距400mm,荷载q=76/100x400=30.4N/mm3、计算结果根据上述图示及荷载,计算竖向背楞的结果如下:(1)下部0-3.7米内单元(采用2[8截面]Mmax=6.9105KNxmQmax=85.379KN[8的几何特性为:A=2x1020=2040 mm2A0=(80-2x8)x5x2+400x8=3840mm2I=1010000x2=2020000mm4W=25300x2=50600mm3σmax= M max /W=6.9105·106/50600=136.6N/ mm2<145N/ mm2τmax= Q max /A0=85379/3840=22.2N/ mm2<85N/ mm2 (12)上部3.7-7.9米内单元(采用[8截面]Mmax=3.06KNxmQmax=12.051KN[8的几何特性为:A=1020 mm2A0=(80-2x8)x5+400x8=3520mm2I=1010000mm4W=25300mm3σmax= M max /W=3.06·106/25300=120.9N/ mm2<145N/ mm2τmax= Q max /A0=12051/3520=3.4N/ mm2<85N/ mm2结论:竖肋上部4.2米采用[8,下部3.7米采用[8,满足要求。
目录一、工程概况 (2)二、主动土压力及被动土压力计算 (2)三、支撑的布置和计算 (5)四、钢板桩入土深度计算 (7)五、坑底抗隆稳定性计算 (7)六、内撑系统的组成及详细计算 (8)长沙湾大桥68#、69#墩钢板桩围堰计算书一、工程概况xxx特大桥为厦深铁路潮汕至惠州南段新建工程上的一座特大型桥梁,x#墩承台平面尺寸为6.9×11.1m,厚度为2.2m,承台底面标高-5.501m,采用德国拉森(Larseen)Ⅳ型锁口钢板桩施工。
桥位处施工水位+1.528m,计算水位按+2.5米考虑。
钢板桩顶标高按+3.0米设置,底标高为-15m,钢板桩总长18m。
二、主动土压力及被动土压力计算1、设计图纸上的基本计算资料+2.5~-2.7m为河水,内摩擦角ϕ0为0°,粘结力c0为0kPa,天然容重γ0为10.0KN/m3-2.7~-5.5m为淤泥:内摩擦角ϕ1为5°,粘结力c1为4.5kPa,天然容重γ1为17KN/m3,地基容许承载力[σ]=20kPa-5.5m以下为硬塑状粘土层,天然容重γ为20KN/m3,地基容许承载力[σ]=180kPa,γ2=20KN/m3,c2=20Kpa,ϕ2=2002、土压力计算方法由于土层为透水性差的的流塑状淤泥与硬塑状黏土,依据2008年《注册结构工程师专业考试应试指南》(施岚青主编)P896页,对于渗透性小的土层计算土压力时采用“水土合算”法,即在计算土压力时将地下水位以下的土体重度取为饱和重度,水压力不再单独叠加;对于渗透性大的土层计算土压力时采用“水土分算”法,即在计算土压力时将地下水位以下的土体重度取为浮容,水压力单独叠加。
即根据这个计算原则,本方案中流塑状淤泥采用水土分算,硬塑状粘土采用水土合算法进行计算。
3、主动土压力计算:依据《简明施工计算手册》(第三版)P180页公式4-1b , Pa=γHtg 2(450-2ϕ)-2c tg(450-2ϕ) =γHKa-2c Ka 其中Ka= tg 2(450-2ϕ) 先计算主动土压力系数Ka :流塑状淤泥Ka 1= tg 2(450-25)=0.84硬塑状黏土Ka 2= tg 2(450-220)=0.49流塑状淤泥采用水土分算法:河水底面Pa 0=γH=γw h 0=10×5.2=52KN/m 2流塑状淤泥土压力计算: 顶面Pa 1顶=-2c Ka=-2c 11Ka =-2×4.5×84.0 =-8.3KN/m 2顶面水压力=γw h 0=10×5.2=52KN/m 2则流塑状淤泥顶面的水土压力=52-8.3=43.7 KN/m 2 底面Pa 1底=γh 1Ka-2c Ka=γ1h 1Ka 1-2c 11Ka=(17-10)×(5.5-2.7)×0.84-2×4.5×84.0 =8.2KN/m 2流塑状淤泥底面水压力=γw (h 0+h 1)=10×(5.2+2.8)=80KN/m 2 则流塑状淤泥底面的主动水土压力=80+8.2=88.2 KN/m 2 硬塑状黏土采用水土合算法计算:硬塑状黏土顶面Pa 2顶=γHKa 2-2c 2Ka=(γw h 0+γ1h 1)Ka 2-2c 22Ka=(10×5.2+17×2.8)×0.49-2×20×49.0 =20.8KN/m 2硬塑状黏土底面Pa 2底=γHKa-2c Ka=(γw h 0+γ1h 1+γ2h 2)Ka 2-2c 22Ka=(10×5.2+17×2.8+20×9.5)×0.49-2×20×49.0 =113.9KN/m 24、被动土压力计算:依据《简明施工计算手册》(第三版)P184页公式4-7, Pp=γHtg 2(450+2ϕ)+2c tg(450+2ϕ) =γHKp+2c Kp 其中Kp= tg 2(450+2ϕ) 先计算被动土压力系数Kp : 硬塑状淤泥Kp 2= tg 2(450+220)=2.04 硬塑状黏土采用水土合算法计算: 硬塑状黏土顶面Pa 2顶= 2c 22Kp=2×20×04.2 =57.1KN/m 2硬塑状黏土底面Pa 2底=γHKp 2+2c 2Kp=γ2h 3Kp 2+2c 22Kp=20×8.5×2.04+2×20×04.2=404KN/m 25、主动土压力与被动土压力计算图式 计算图式见下图:计算水位+2.5堰内硬塑状淤泥顶-6.5(封底底面)被动土压力主动土压力及被动土压力计算图式三、支撑的布置和计算支撑层数和间距的布置采用等弯矩理论进行布置计算,为简化计算,采用简化的主动土压力计算,简化后的土压力当C=0时的等效容重为 γ等效=98.6/(2.5+6.5)=11.0KN/m 2。
PX#墩钢围堰接高计算书目录一、工程概况 (2)二、现有钢围堰设计概况 (2)三、P9#墩施工情况 (3)四、水文情况 (3)五、钢围堰接高设计方案 (4)(一)、接高钢围堰设计 (4)(二)、接高钢围堰计算 (4)1、计算参数 (4)钢围堰外水位高度:钢围堰内水位高度:、计算模型 (4)3、计算结果 (5)4、压杆稳定分析 (9)六、结语 (10)一、工程概况XXXXXXXXXXXXXXXXXXXXX工程位于XXXXXXXXXXXXX之间,XXX桥平行于既有大桥上游,XXX桥桥梁中心线距离既有大桥桥梁中心线米,主桥桥型及桥跨均保持与既有大桥一致。
XXX桥主桥工程主桥设计采用140+240+140m的三跨预应力混凝土连续刚构桥,主桥设计起点为K10+,终点为K10+,主桥全长528米。
XXXXXXXXXXXXXXXXXXXXXXX主桥设墩位PX#、PX#、PXX#墩和PXXX#桥台,其中PX、PXX#主墩为连续钢构体系,PX#墩位于沙坪坝区域河漫滩,并临近于嘉陵江中心地段。
PX#主墩承台平面尺寸为25×米,承台厚米,设12根Φ桩。
承台底面标高,顶面标高,承台处地面标高与承台顶面标高基本一致。
承台处枯水位标高。
PX#主墩为双薄壁墩,墩身薄壁截面尺寸为(16×m,两薄壁之间的净距为,P9#主墩墩高51m,在桥墩横桥向端部设置分水尖。
二、现有钢围堰设计概况XXXXXXXX复线桥P9#墩采用双壁矩形钢围堰形式施工基础,围堰长米,宽米,高米,壁厚米,钢围堰底标高,钢围堰顶标高。
钢围堰高度上分成三节,第一、二节高米,第三节高米。
钢围堰内空面比承台宽5cm,钢围堰内设米厚封底混凝土,钢围堰隔舱内填充1米高混凝土。
钢围堰主要结构组成如下:内外面板厚6mm,除在封底混凝土范围内可不设置外,其余均设置;水平环板厚12mm,宽度200mm,竖向最大间距,最小间距;水平杆件用750x750x8mm角钢,水平最大间距,为每一平环板上布置;竖向杆件用10号槽钢,水平间距,为全高度布置;钢材材质均采用Q235,焊接形式为坡口对接焊和贴角焊接,焊接范围为全焊接和断续焊接。
主墩钢围堰结构计算书一、工程概况1、设计情况XX江特大桥主桥主墩71~73号墩每个主墩设计11根直径2.8m的钻孔灌注桩,梅花形布置,桩基中心间距7.6m。
承台位于河床面以下,承台设计为矩形,承台平面尺寸为26.8x17.2m,承台厚度为6.0m,采用C40防腐砼。
设计承台底面标高分别为12.307m、-13.907m、-11.807m。
2、地形、地质和水文XX江特大桥20年一遇洪水位为+2.634m,71~73号主墩位于XX江深水区,墩位处水深约10~11米,百年一遇最大水流速度1.36m/s。
墩位处淤泥质土层厚11~15m,淤泥质土粘聚力标准值取C=5.77kpa,内摩擦角取φ=11.5o,饱和重度γ=15KN/m3。
3、钢围堰结构71~73号主墩承台采用双壁钢围堰围水施工。
钢围堰采用双壁结构,舱壁厚度1.5m,考虑围堰下沉可能产生的偏位和倾斜,围堰内腔平面尺寸比承台尺寸放大20cm,钢围堰封底砼采用C30水下砼,封底厚度3.0m,刃脚砼高度2.0m,夹壁砼高度7.0m。
主墩钢围堰由壁体、刃脚、内撑三大部分组成。
壁体主要由隔舱板、箱形梁、水平环板、水平斜杆及内外壁板构成。
刃脚高度 2.0m,作为围堰底节的组成部分一道加工。
内撑用型钢构成平面框架,与钢围堰箱形梁一起形成稳定结构体系,另外设置竖向支撑,减小受压杆件的自由长度。
在内撑位置设置竖向箱形梁作为一级支撑结构,水平设置环形板作为二级支撑结构,垂向设置角钢次梁为三级支撑结构,内外壁之间通过水平斜杆和水平环板连接而形成整体。
钢围堰内、外壁板采用8mm钢板(考虑有夹壁砼,底节壁板厚度6mm),箱形梁腹板采用12mm钢板,箱形梁翼板采用16mm钢板,水平环板采用L200x125x14角钢,水平斜撑采用L100x100x12角钢,竖肋采用L75x75x8角钢,内撑采用4-I36b工字钢。
钢围堰结构图4、钢围堰施工方法钢围堰竖向分4节,每节水平分14块,围堰块件在车间制作,然后用汽车和驳船运到现场组拼。
钢板桩围堰计算书根据各部位标高及现场实际情况,现拟对主桥123#墩承台施工所用钢板桩围堰进行验算,围堰为矩形单壁钢板桩围堰,采用钢管桩做定位桩,用型钢连接作为导梁。
承台底标高——990.50 m 钢板桩围堰顶标高——1000.38 m根据公路施工手册桥涵,主要参数如下:坑深H=8.88 m,内摩擦角取φ=28°,支撑形式为(三),一道支撑,水文地质情况为第5种情况。
查板桩计算图5-44,曲线5-5计算如下:支撑形式(三)水文情况第5种h=aH 45°40°35°30°25°20°0.10.20.30.40.50.645°40°35°30°25°20°0.10.20.30.40.5¦ΒH45°40°35°30°25°20°12345¦ΒH曲线5-5⑴固定荷载h =αH =0.38×8.88=3.3744 m(最小入土深度)M=βH3=0.25×8.883= 175.06 KN.mR=ξH2=4.1×8.882=323.3 KN⑵活载(不考虑)⑶支撑间距S1=0.475H+0.16h=0.475×8.88+0.16×3.3744=4.76 mS2=0.525H-0.16h=0.525×8.88-0.16×3.3744=4.12 m⑷板桩选择钢板桩是3号钢,常用容许弯曲应力 [σ]为180 MPaW=M/[σ]= 175.06×1000/180×1.5=648.37 cm3选用德国拉森(Larssen)Ⅱa型钢板桩(W=849 cm3)⑸支撑系统横撑选择型钢,间隔采用l=1.8 m,则内导梁的弯距 M=Rl2/8=323.3×1.82/8=130.94 KN.mW=M/[σ]= 130.94×1000/145=903.03 cm3(型钢[σ]=145 MPa)查手册,型钢采用I36b(W=920.8 cm3)支撑反力为:R×l=23.3×1.8=581.94 KN⑹修正验算考虑静水压力、动水压力及防渗要求,对钢板桩入土深度需加深:最小入土深度h修正=h×1.5=3.3744×1.5=5.06 m⑺基坑坑底安全检算Ksiρw=Ksh1/(h1+h2)ρw≤ρb式中:Ks——安全系数,可取2.0;i——水力梯度;ρw——水的密度(g/cm3);h1——基坑内抽水后水头差;h1、h2——见图示,h1=h2+5.5;ρb——土在水中的密度(g/cm3),ρb=(G-1)(1-n),G为土粒的比重,取G=2.67,n为土的孔隙率,n=e/(1+e),孔隙比e取0.75;ρb=(G-1)(1-n)=(G-1)【1-e/(1+e)】=(2.67-1)【(1-0.75/(1+0.75)】=0.954 g/cm3Ksiρw=Ksh1/(h1+h2)ρw=2×8.88/(9.55+5.5)×1=1.31>ρb入土深度不够,不符合要求。
湘潭特大桥深水墩双壁钢围堰计算书1.概括1.1工程概况长株潭城际铁路湘潭XDK45+301.7~XDK46+112.13(293#~305#墩)处跨越湘江,桥梁主跨采用变截面连续刚构梁,跨度布置为(42.5m+10×75m+42.5m),桥墩采用圆端形实心桥墩,墩高16.5m~33.5m。
295#~304#墩地处湘江河道,为深水桥墩基础,其中,296#、297#、298#、299#、墩采用双壁钢围堰施工方法,钢围堰下沉就位,混凝土封底完成后,进行钻孔桩基础及承台墩身施工。
双壁钢围堰为圆形,主要由内壁板、外壁板、隔舱板、横向桁架、竖向桁架、横向加劲肋和竖向加劲肋组成,内外壁中心距0.8m,其中,296#~298#墩钢围堰外径26.4m,内径24.8m;299#墩钢围堰外径24m,内径22.4m。
钢围堰分节制造,每节高度1.5m;刃脚节高度2.25m,刃脚高0.8m。
每节钢围堰平面平均分成8块。
钢围堰内外壁板、隔舱板均为8mm厚度的钢板,隔舱板按1/8圆周布置;横向桁架包括桁架弦板、横撑杆和M形腹杆,每节间长度为1/64圆周布置;横向桁架和横向加劲肋按0.75m的间距错开布置;竖向桁架间距为1/32圆周;竖向加劲肋的间距为1/128圆周。
钢围堰所有构件采用Q235钢。
横向桁架弦板采用两根∠100×100×8的角钢并置,其余杆件都是采用∠75×75×8角钢。
钢围堰底部采用混凝土环形封底,封底混凝土宽度1m;内侧均匀插打6根钢护筒并与钢护筒相连接,进行钻孔桩施工,钢护筒灌注混凝土后形成抗拔桩。
钢围堰顶部采用两层工字钢搭建钻孔平台,底层为56B型工字钢,顶层为36B型工字钢,需满足同时4台冲击钻机作业,每台钻机重量按15吨计。
2.钢围堰抗浮力检算296#~298#墩钢围堰外径26.4m,内径24.8m,其中296#墩钢围堰最高,高度为11.25m;本章对296#墩作抗浮力检算。
湘潭特大桥296#墩双壁钢围堰设计计算书一、设计资料1、设计施工水位28m(钢围堰顶标高29m)2、河床基岩面标高16.34m3、承台尺寸19.1m*12.4m,封底砼底面与河床面相同,采用环封。
4、承台砼:C30 [бw]=14.3MPa [бwl]=0.50 MPa[C]=0.99MPa封底砼厚2.0m。
6、钢围堰:A3 [б]=170Mpa [бw]=180 Mpa 钢围堰高12.66m 钢围堰内径24.8m 外径26.8m7、水流速度v<2m/s二、钢围堰结构钢围堰高12.66m,分为6节,刃脚节高2.5m,其余各节高2.0m。
钢围堰分为双壁,两壁间距离为1m,钢围堰内径24.8m,外径26.8m。
钢围堰制造时每节平面分成8块,圆心角45°,内弧长度24.8π×1/8=9.739m,外弧长度26.8π×1/8=10.524m;钢围堰竖向设8个隔舱,即在内外壁之间设8块隔舱板,隔舱板板厚δ=8.0mm。
钢围堰内外壁板板厚δ=8.0mm。
内外壁板设水平桁架,节间长度为10.524×1/8=1.316m(外),9.739×1/8=1.218m(内),斜杆采用∠75×75×8,弦板为环板∠125×125×8并置。
钢围堰内外壁间设竖向桁架,竖向桁架间距为10.524×1/4=2.632m(外),9.739×1/4=2.435m(内)。
桁架杆为∠75×75×8。
三、封底混凝土计算(一)封底混凝土抗浮计算封底混凝土厚度假设为H,混凝土单位重量2.30 T/m3,施工水位28m。
1、水浮力Q=D由双壁钢围堰自重D1、封底混凝土重量D2、双壁间填充混凝土重量D3、双壁间填充水重量D4平衡。
(1)封底混凝土底面上作用的向上水浮力:Q=(1/4×π×26.82-1/4×π×22.82)×(28-16.34)=1817t(2)双壁钢围堰自重:D1=200T(3)封底混凝土重量:封底混凝土重量暂定为HD2=[π×(12.42-11.42)×H+π×(13.42-12.42)×0.5] ×2.3=171.97H+93.21(4)双壁钢围堰双壁间填充砼的重量(2.5m高刃脚混凝土):D3=[1/4×π×(26.82-24.82)×0.5+1/4×π×(26.82-24.82) ×1.5] ×2.3=373t(5)双壁钢围堰双壁间填充水的重量:D4=1/4×π×(26.82-24.82)×9.16×1.0=743t(6)令Q=D1+D2+D3+D4200+171.97H+93.21+373+743=1817H=2.08m2、考虑围堰外侧桩承受上拔力桩的上拔力即桩的钢筋混凝土抗拉力D5,桩身直径125cm,C20混凝土的允许拉应力0.53Mpa=53t/m2。
钢板桩围堰计算书一、 概况15#墩位于张家港河岸,施工期间水位较高。
为了确保施工安全,将采用钢板桩围堰方法施工承台。
如附图所示,由项目提供的资料知: 开挖基坑处土为粘性土,内摩擦角10度,粘聚力为43Mpa ,湿容重为19KN/m 3 。
原地面标高+1.70m ,承台顶标高-1.70m ,承台埋深+3.50m ,承台高+3.20m 。
二、计算荷载1、活载活载按履—50考虑,承台施工时只考虑一台履带吊作业,将车辆荷载换算为土柱高度。
ho=LBNQ γ N---车辆数,N=1Q---车辆总荷载,Q=50t=500KNL---车辆履带着地长度,L=4.5mB---车辆轮宽,B=2.5+0.7=3.2mγ---土容重,γ=19KN/ m则ho=2.35.4195001⨯⨯⨯=1.83m 因此每平方米土柱的荷载为:1.83×1.0×1.0×19=34KN2、固定荷载当υ=100时,由《土质学与土力学》P159页表7-3中查得朗金土压力系数m2=0.704,1/m2=1.420,m=0.839,1/m=1.192=34×0.704-2×0.839×43= -48.218KPac点:p a2=[q+γ(h+t)]m2-2cm=[34+19(6.9+4.8)] ×0704-2×43×0.839=108.28 KPa拉力区高度ho的确定,令p a=0解得ho=2c/γm –q/γ=3.6m求主动土压力合力E AE A=1/2 p a2 (6.9+4.8-3.6)=1/2×108.3×8.1=438.6KN/m求形心C1C1=(6.9+4.8-3.6)/3=2.7m求钢板桩前的被动土压力KEp K Ep =21×21(γt 21m +2c m1)t =41(19×4.8×1.420+2×1.192×43)×4.8 =278.4 KN/m求形心C2C 2=4.8/3=1.6m取1延米长钢板桩计算对C 点取距,求T T[(h-d)+t]+ KEp ×C 2= E A C 1 T=76.2 KN/m钢管桩支撑验算:按υ426mm 钢管桩支撑设计,A=41π(42.62-40.62)=130.69cm 2 I=641π(42.64-40.64)=28287.25 cm 4E=2.1*105Mpa按两端铰接的压杆计算,自由长度为L=12.88/2=6.44米。
目录1设计资料 (1)2钢板桩入土深度计算 (9)2.1内力计算 (9)2.2入土深度计算 (10)3钢板桩稳定性检算 (11)3.1管涌检算 (11)3.2基坑底部隆起验算 (12)跨宁启特大桥跨高水河连续梁主墩承台钢板桩围堰施工计算书1设计资料(1)钢板桩顶高程H1:8.5m ,汛期施工水位:8.0m 。
(2)河床标高H 0:1.63m ;基坑底标高H3:-7.958m ;开挖深度H :15.46m 。
(3)封底混凝土采用C30混凝土,封底厚度为1m 。
(3)坑内、外土的天然容重加权平均值1r 、2r 均为:18.8KN/m 3;内摩擦角加权平均值 20=ϕ;粘聚力C :33KPa22330 5.0218.80.49a c h K γ⨯===⨯。
(4)钢板桩采用国产拉森钢板桩,选用鞍IV 型(新)(见《施工计算手册》中国建筑工业出版社P290页)钢板桩参数 A=98.70cm 2,W=2043cm 3,[]δ=200Mpa ,桩长21m 。
水压:210 6.3763.7/w w p h kN m γ=⨯=⨯= 河床位置处:21263.72330.4917.5/w a p p c K kN m =-=-⨯=基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+⨯+=(5)围囹采用2I56工字钢,支撑采用Ф630螺旋钢管。
2计算资料水压:210 6.3763.7/w w p h kN m γ=⨯=⨯=22330 5.0218.80.49a c h K γ⨯===⨯ 河床位置处:21263.72330.4917.5/w a p p c K kN m =-=-⨯=基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+⨯+=在建立计算模型的时候,采用板单元,根据等刚度的原则将以上的钢板桩截面换算为等效的矩形板截面。
目录一、工程概况 (2)二、主动土压力及被动土压力计算 (2)三、支撑的布置和计算 (5)四、钢板桩入土深度计算 (7)五、坑底抗隆稳定性计算 (7)六、内撑系统的组成及详细计算 (8)长沙湾大桥68#、69#墩钢板桩围堰计算书一、工程概况xxx特大桥为厦深铁路潮汕至惠州南段新建工程上的一座特大型桥梁,x#墩承台平面尺寸为6.9×11.1m,厚度为2.2m,承台底面标高-5.501m,采用德国拉森(Larseen)Ⅳ型锁口钢板桩施工。
桥位处施工水位+1.528m,计算水位按+2.5米考虑。
钢板桩顶标高按+3.0米设置,底标高为-15m,钢板桩总长18m。
二、主动土压力及被动土压力计算1、设计图纸上的基本计算资料+2.5~-2.7m为河水,内摩擦角ϕ0为0°,粘结力c0为0kPa,天然容重γ0为10.0KN/m3-2.7~-5.5m为淤泥:内摩擦角ϕ1为5°,粘结力c1为4.5kPa,天然容重γ1为17KN/m3,地基容许承载力[σ]=20kPa-5.5m以下为硬塑状粘土层,天然容重γ为20KN/m3,地基容许承载力[σ]=180kPa,γ2=20KN/m3,c2=20Kpa,ϕ2=2002、土压力计算方法由于土层为透水性差的的流塑状淤泥与硬塑状黏土,依据2008年《注册结构工程师专业考试应试指南》(施岚青主编)P896页,对于渗透性小的土层计算土压力时采用“水土合算”法,即在计算土压力时将地下水位以下的土体重度取为饱和重度,水压力不再单独叠加;对于渗透性大的土层计算土压力时采用“水土分算”法,即在计算土压力时将地下水位以下的土体重度取为浮容,水压力单独叠加。
即根据这个计算原则,本方案中流塑状淤泥采用水土分算,硬塑状粘土采用水土合算法进行计算。
3、主动土压力计算:依据《简明施工计算手册》(第三版)P180页公式4-1b , Pa=γHtg 2(450-2ϕ)-2c tg(450-2ϕ) =γHKa-2c Ka 其中Ka= tg 2(450-2ϕ) 先计算主动土压力系数Ka :流塑状淤泥Ka 1= tg 2(450-25)=0.84硬塑状黏土Ka 2= tg 2(450-220)=0.49流塑状淤泥采用水土分算法:河水底面Pa 0=γH=γw h 0=10×5.2=52KN/m 2流塑状淤泥土压力计算: 顶面Pa 1顶=-2c Ka=-2c 11Ka =-2×4.5×84.0 =-8.3KN/m 2顶面水压力=γw h 0=10×5.2=52KN/m 2则流塑状淤泥顶面的水土压力=52-8.3=43.7 KN/m 2 底面Pa 1底=γh 1Ka-2c Ka=γ1h 1Ka 1-2c 11Ka=(17-10)×(5.5-2.7)×0.84-2×4.5×84.0 =8.2KN/m 2流塑状淤泥底面水压力=γw (h 0+h 1)=10×(5.2+2.8)=80KN/m 2 则流塑状淤泥底面的主动水土压力=80+8.2=88.2 KN/m 2 硬塑状黏土采用水土合算法计算:硬塑状黏土顶面Pa 2顶=γHKa 2-2c 2Ka=(γw h 0+γ1h 1)Ka 2-2c 22Ka=(10×5.2+17×2.8)×0.49-2×20×49.0 =20.8KN/m 2硬塑状黏土底面Pa 2底=γHKa-2c Ka=(γw h 0+γ1h 1+γ2h 2)Ka 2-2c 22Ka=(10×5.2+17×2.8+20×9.5)×0.49-2×20×49.0 =113.9KN/m 24、被动土压力计算:依据《简明施工计算手册》(第三版)P184页公式4-7, Pp=γHtg 2(450+2ϕ)+2c tg(450+2ϕ) =γHKp+2c Kp 其中Kp= tg 2(450+2ϕ) 先计算被动土压力系数Kp : 硬塑状淤泥Kp 2= tg 2(450+220)=2.04 硬塑状黏土采用水土合算法计算: 硬塑状黏土顶面Pa 2顶= 2c 22Kp=2×20×04.2 =57.1KN/m 2硬塑状黏土底面Pa 2底=γHKp 2+2c 2Kp=γ2h 3Kp 2+2c 22Kp=20×8.5×2.04+2×20×04.2=404KN/m 25、主动土压力与被动土压力计算图式 计算图式见下图:计算水位+2.5堰内硬塑状淤泥顶-6.5(封底底面)被动土压力主动土压力及被动土压力计算图式三、支撑的布置和计算支撑层数和间距的布置采用等弯矩理论进行布置计算,为简化计算,采用简化的主动土压力计算,简化后的土压力当C=0时的等效容重为 γ等效=98.6/(2.5+6.5)=11.0KN/m 2。
这种布置是将支撑布置成使板桩各跨度的最大弯矩相等,且等于板桩的容许抵抗弯矩,以便充分发挥板桩的抗弯强度,并使板桩材料最经济。
查《桥涵》P171页悬臂端部钢板桩最大弯矩为Mmax=ph 3/6,由于[σ]=Mmax/W,所以有:[σ]=Mmax/W=rKah 3/6Wh=3rKa W /][6[σ]—板桩的容许弯曲应力r —板桩墙后土的重度 Ka —主动土压力系数 Kp —被动土压力系数参考桥涵》P171,图5-49等弯矩布置支撑,采用干封底方案,且封底混凝土厚度为1.0m 时,此时封底混凝土底面标高为-6.5m 。
将ϕ在+2.5~-6.5m 米范围内加权平均计算:ϕ平均=(5.2*0+2.8*5+1*20)/9=3.8°钢板桩力学性能,[σ]=200MPa I=31573cm 4/m W=2037m 3/m 土压力系数计算: Ka= tg 2(450-2ϕ)= tg 2(450-28.3)=0.88 h=3rKa W /][6σ=3)3^1088.011/()5^1020372006(x x x x x =293cm h1=1.1h=322cmh2=0.88h=258cm h3=0.77h=225cm h4=0.70h=205cm由计算结果,内支撑布置如下:第一道支撑布置在离计算钢板桩顶1.5米的地方,即标高为+1.5米的位置;第二道支撑布置在离第一道支撑2.7米的地方,即标高为-1.72米的位置;第三道支撑布置在离第二道支撑2.0米的地方,即标高为-3.7米的位置;四、钢板桩入土深度计算 根据不发生管涌条件:γ'≥K ×j其中j =i ×r w =w 21t t γ⨯+hK -抗管涌安全系数,取K =1.5γ'-钢板桩底面土的浮容重,γ'=wγγ-=20-10=10KN/m 3。
j -最大渗流力(动水压力) i -水头梯度t 1-围堰外侧入土深度,15-2.7=12.3m t 2-围堰内侧入土深度,15-5.5=9.5mh -地下水位至坑底的距离(即地下水形成的水头差),h=2.5+5.5=8 则有K ×j=1.5*w 21t t γ⨯+h=1.5*105.93.128⨯+=5.5<γ'=10 所以钢板桩底面不会发生管涌。
五、坑底抗隆稳定性计算按《钢板桩论文集·国内篇》P35页方法计算抗隆稳定性。
抗隆稳定性计算图示本图尺寸单位均以cm计。
计算水位+2.5流塑状淤泥顶-2.7C1如上图所示,采用此滑动模型进行验算。
先以O 为圆心,以OB 为半径作圆,交流塑状淤泥底面于E 、F ,再由E 作垂线交水面于D 点。
钢板桩底面黏聚力取为25Kpa ,则每延米抗滑力矩=c 1×h 1×OB+c ×∏×OB 2=4.5×2.8×9.5+20×3.14×9.52=5787.4KN ·M滑动力矩=21(γw h 0+γ1h 1)×OB 2=0.5×(10×5.2+17×2.8)×9.52=4494.4KN ·M抗隆起安全系数=5787.4/4494.4=1.29>1.2,所以围堰内采用干封底方案抽干水浇注封底混凝土之前坑底土不会出现隆起现象。
六、内撑系统的组成及详细计算根据以上计算可知,第一道围檩受力很小,由此第一道围檩可以采用较小的型钢框架结构,第二、三道围檩受力较大,需采用较大的型钢框架结构。
型钢框架的结构尺寸基本一致,如下图所示:各道内撑所用材料如下:第一道内撑:围檩与斜撑均采用2Ⅰ40b第二道内撑:围檩与斜撑均采用2Ⅰ45b 第三道内撑:围檩与斜撑均采用2Ⅰ56b 4、对内撑系统进行受力计算围堰内水抽干且泥土挖至-6.5m,封底混凝土浇注前,此时为围檩的最不利受力状态,此时第一道围檩沿四周作用30.2KN/m 的线荷载,第二道围檩沿四周作用90.7KN/m 的线荷载,第三道围檩沿四周作用174.9KN/m 的线荷载。
其线荷载计算如下:计算水位+2.5堰内硬塑状淤泥顶-6.5(封底底面)被动土压力围檩受力计算图示第一道围檩每延米受力=235.27.25⨯=30.2KN 第二道围檩每延米受力=35.225.517.25⨯+=90.7KN 第三道围檩每延米受力=65.225.805.51⨯+=174.9KN 将数据输入到ansys 软件中,可计算杆件的受力: 以下分析图形中的应力单位为Kg/cm 2,变形单位为cm 。
1)、第一道内撑受力计算,此时围檩外侧承受30.2KN/m的线荷载:最大应力σ= 397Kg/cm2=39.7Mpa<[f]=215MPa最大变形δ=0.25cm<1400/400=3.5cm结果表明:第一道内撑采用图式结构结构受力满足要求,安全。
2)、第二道内撑受力计算,此时围檩外侧承受90.7KN/m的线荷载:最大应力σ= 900.8Kg/cm2=90Mpa<[f]=215MPa,整体受力安全。
最大变形δ=0.7cm<1400/400=3.5cm结果表明:第二道内撑采用图式结构结构受力满足要求,安全。
3)、第三道内撑受力计算,此时围檩外侧承受174.9KN/m的线荷载:最大应力σ=1046Kg/cm2=104.6Mpa<[f]=215MPa,整体受力安全。
最大变形δ=1.2cm<1400/400=3.5cm结果表明:第三道内撑采用图式结构结构受力满足要求,安全。
综合以上计算,整个结构所有工况受力是安全的。
参考书籍:《桥涵》人民交通出版社《简明施工计算手册》第三版中国建筑工业出版社《注册结构工程师专业考试应试指南》(施岚青主编)中国建筑工业出版社出版社《钢板桩论文集·国内篇》《钢结构设计规范》中国建筑工业出版社出版社。