环境工程仪器分析 第二章 原子吸收光谱分析
- 格式:ppt
- 大小:637.00 KB
- 文档页数:69
原子吸收光谱分析4。
2.1 概述4。
2。
1。
1 基本概念1)原子光谱根据原子外层电子跃迁所产生的光谱进行分析的方法,称为原子光谱法,包括原子发射光谱法、原子吸收光谱法和原子荧光光谱法。
本章重点介绍应用广泛的原子吸收光谱法。
2)原子吸收光谱原子吸收光谱法,又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法.4。
2.1。
2 仪器结构和过程图4-21 原子吸收示意图如上图,含Pb溶液将经过预处理-喷射成雾状进人燃烧火焰中,Pb化合物雾滴在火焰温度下,挥发并离解成Pb原子蒸气。
用Pb空心阴极灯作光源,产生Pb的特征谱线,通过Pb原子蒸气时,由于蒸气中基态Pb原子的吸收,Pb的特征谱线强度减弱,通过单色器和检测器测得其减弱程度,即可计算出溶液中Pb的含量。
4。
2。
1。
3 方法特点灵敏度高,10—9g/ml-10—12g/ml。
选择性好,准确度高。
单一元素特征谱线测定,多数情况无干扰。
测量范围广.测定70多种元素。
操作简便,分析速度快。
4。
2.2 原子吸收法基本原理 4。
2。
2.1 共振线和吸收线 1) 基本概念➢ 共振线电子从基态跃迁到能量最低的激发态(称为第一激发态),为共振跃迁,所产生的谱线称为共振吸收线(简称共振线).当电子从第一激发态跃回基态时,则发射出同样频率的谱线,称为共振发射线(也简称共振线)。
对大多数元素来说,共振线是指元素所有谱线中最灵敏的线。
➢ 特征谱线各种元素的原子结构和外层电子排布不同.不同元素的原子从基态激发至第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线不同而有其特征性,这种共振线称为元素的特征谱线。
2) 朗伯原理图4-22 原子吸收法的朗伯定律示意图原理公式:b K e I I νν-=0νK :吸收系数;ν:频率。
吸收线图4-23 吸收线轮廓图 图4—24 吸收线半宽度比较上述两个图,注意图的纵坐标参量的不同。
原子吸收光谱分析基本要点:1. 了解影响原子吸收谱线轮廓的因素;2. 理解火焰原子化和高温石墨炉原子化法的基本过程;3. 了解原子吸收分光光度计主要部件及类型;4. 了解原子吸收分光光度法干扰及其抑制方法;5. 掌握原子吸收分光光度法的定量分析方法及实验条件选择原则。
第一节原子吸收光谱分析概述一、原子吸收光谱分析定义:根据物质产生的原子蒸气中待测元素的基态原子对光源特征辐射谱线吸收程度进行定量的分析方法。
二、原子吸收光谱分析的特点:( 1 )灵敏度高:其检出限可达 10 -9 g /ml ( 某些元素可更高 ) ;( 2 )选择性好:分析不同元素时,选用不同元素灯,提高分析的选择性;( 3 )具有较高的精密度和准确度:试样处理简单。
第二节原子吸收光谱分析基本原理一、原子吸收光谱的产生及共振线在一般情况下,原子处于能量最低状态(最稳定态),称为基态(E 0 = 0)。
当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。
处于激发电磁波的形式放出能量:共振发射线:电子从基态跃迁到能量最低的激发态时要吸收一定频率的光,它再跃迁回基态时,则发射出同样频率的光(谱线),这种谱线称为共振发射线。
共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线。
共振线:共振发射线和共振吸收线都简称为共振线。
各种元素的原子结构和外层电子排布不同,不同元素的原子从基态激发至第一激发态(或由第一激发态跃迁返回基态)时,吸收(或发射)的能量不同,因而各种元素的共振线不同而各有其特征性,所以这种共振线是元素的特征谱线。
二、谱线轮廓与谱线变宽式中:Kn ——基态原子对频率为的光的吸收系数,它是光源辐射频率的n函数由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色l ),而是具有一定的宽度、轮廓,即透射光的强度表现为一个相似于图8-3的频率分布, 若用原子吸收系数Kn随n变化的关系作图得到吸收系数轮廓图:(二)谱线变宽引起谱线变宽的主要因素有:1. 自然宽度:在无外界影响下,谱线仍有一定宽度,这种宽度称为自然宽度,以ΔvN 表示。
仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。
其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。
在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。
2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。
通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。
在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。
通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。
在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。
通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。
在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。
仪器分析原子吸收光谱法原子吸收光谱法是一种常用的仪器分析技术,用于测定物质中特定金属元素的含量。
该方法基于原子在特定波长的光下吸收特定能量的现象,通过测量所吸收的光的强度,可以确定样品中目标金属元素的浓度。
原子吸收光谱法主要包括石墨炉原子吸收光谱法(Graphite Furnace Atomic Absorption Spectroscopy, GF-AAS)和火焰原子吸收光谱法(Flame Atomic Absorption Spectroscopy, FAAS)。
两种方法的原理基本相同,只是在光源和样品的处理上有所不同。
在GF-AAS中,样品首先转化为气态原子,并通过石墨炉中的加热将其浓缩。
然后,通过光源产生的特定波长的光照射样品,在特定波长的光作用下,样品中的目标金属元素发生原子态到激发态的跃迁,吸收特定的能量。
通过测量光源透射光的强度变化,可以得到样品中目标金属元素的浓度。
在FAAS中,样品通过喷射到火焰中所产生的高温环境下转化为气态原子。
然后,通过特定波长的光照射样品,样品中的目标金属元素吸收特定能量,发生原子态到激发态的跃迁。
同样,通过测量光源透射光的强度变化,可以测定样品中目标金属元素的浓度。
原子吸收光谱法具有以下优点:1. 灵敏度高:原子吸收光谱法可以测定微量金属元素的含量,其灵敏度在ppb(亿分之一)到ppm(百万分之一)的水平上。
2.选择性好:由于每种金属元素吸收特定波长的光,因此不同金属元素之间相互干扰较小。
通过选择不同的光源波长,可以测定多种金属元素的含量。
3.准确性高:原子吸收光谱法经过多年的发展,仪器的准确性和重复性得到大幅提高。
同时,该方法具有较低的标准偏差和高的精密度。
4.快速分析:原子吸收光谱法具有快速分析的特点,一个样品一般只需几分钟即可完成分析,适用于大批量样品的分析。
除了优点之外1.需要样品前处理:样品的前处理会影响到分析结果的准确性和检测灵敏度。
例如,在GF-AAS中,样品需要进行湿氧化处理,其中可能会引入外源性污染物。
仪器分析各个章节小结仪器分析是对于物质进行定性、定量和结构分析的一种方法。
它是近几十年来发展迅猛的一门科学,已经成为当代化学、生物学、药学和地球科学等各类研究工作中不可缺少的分析技术。
在仪器分析课程中,涵盖了许多章节,如下。
第一章:分光光度法分光光度法是利用物质对光的吸收作用来分析物质的一种方法。
该方法是一种非常常用、快速准确的分析方法,可以用于测定有机和无机物质,例如测量肝素、胆固醇、蛋白质、染料、金属离子等的浓度。
分光光度法的测定方法有单波长法、多波长法和倒置分光光度法等。
单波长法测定速度快,但多波长法测定的结果更加准确。
第二章:原子吸收光谱法原子吸收光谱法利用物质吸收特定波长的光来分析物质的成分和浓度,这种方法是一种分析化学的经典技术。
原子吸收光谱法的主要优势是其选择性、准确性和精确程度都比较高。
原子吸收光谱法的应用范围广泛,可以用于测定钠、钾、镁、铜、铅、锌等元素的含量。
第三章:荧光分析法荧光分析法是利用物质对光的荧光特性来分析物质的一种方法。
这种方法对于非常微小的样本也具有极高的灵敏度,可以用于检测基于荧光信号的分子诊断,荧光标记的细胞和生物分子等。
在荧光分析法的范畴中,有几种不同的方法,包括比色融合法、固相光谱法和时间分辨荧光光谱法等。
每种方法都有其独特的应用领域和优劣点。
第四章:分析色谱法分析色谱法是一种广泛应用于分析化学、生物化学和环境科学中的方法。
该方法是通过将样品通过色谱柱来分离各种成分,再用检测器来检测成分的浓度来进行分析。
分析色谱法包括气相色谱法、液相色谱法和毛细管电泳法等。
它们的使用范围广泛,涉及到生物和药物的分析、环境监测等方面。
第五章:电化学分析法电化学分析方法是利用电化学反应的原理进行定量分析的方法。
在电化学分析领域中,包括电位滴定法、极谱法和循环伏安法等多种方法。
电化学分析法的优点在于对物质进行非常精确的定量分析,对样品的形状和大小没有要求。
这种方法可以应用于分析化学、电化学和材料科学中的很多方面。