《绝对值》教学与评析
- 格式:doc
- 大小:32.00 KB
- 文档页数:4
准确把握内容,有效进行教学——评“绝对值(第一课时)”一、抓住教学核心,逐步实现过渡本节是一节概念课,教师注重概念形成的过程。
从不同的实际问题中,抽象出绝对值的概念,并且教师对绝对值概念的内涵与外延的联系与区别认识的非常到位。
在教学中,借助数轴,得到了绝对值的定义。
再通过引导学生,概括出绝对值的性质,并从几何、代数两个角度,求具体数的绝对值,又上升为符号|a|,加强学生对概念的理解,之后对概念进行辨析。
通过三种数学语言及其转化,渗透数形相依、分类讨论的思想方法。
二、设计有效活动,突出学生主体在抽象出绝对值概念的过程中,教师设计的很有层次,通过三个实际情境引入概念,从情境一、情境二中的教师举例,教师建系,到情境三中的教师举例,教师建系,再到学生举例,学生建系,学生在教师层层递进的引导下,体验了将实际问题数学化的过程。
在探索绝对值的性质的活动中,教师利用例题1中7个绝对值的计算结果,引导学生进行观察,猜想,发现规律。
学生先独立思考,再相互交流,师生共同总结得出绝对值的性质。
在此活动中充分体现了学生的主体和教师的主导作用,而且渗透了由特殊到一般和分类讨论的思想方法,让学生经历了如何发现性质的活动过程,培养了学生基本的活动经验。
这一系列活动,让学生去思考、去表达、去展示。
这些活动是冷静的思考,不是表面上的热闹非凡;这种活动是真实自然的,不是为了活动而活动,活动成为学生表达思想的需要;同时这些活动又深藏着热烈,这种热烈来源于问题的不断深入,伴随着活动逐个完成,学生的主体地位得到了体现,思维得到锤炼,在这种锤炼中,每个人都收获了成长。
三、合理使用技术,实现课堂高效在教学中,对于实际问题的抽象,教师通过PPT的动画功能,给予学生直观的认识,这有益于提高学生的抽象思维能力。
同时,引导学生将实际问题数学化,提高了学生的数学建模的意识。
四、选择适当情境,渗透爱国主义教育教学中,通过情境一的问题,在教学中渗透了爱国主义教育。
《绝对值》教学与评析七年级数学华师大版一、教学实录(一)、创设情景,引入新课:师:请同学们探讨下面的问题(课件演示)问题:第一辆汽车从车站出发向东行驶了5km ,第二辆汽车从车站出发向西行驶了4km ,如果规定向东为正,那么:①第一辆汽车的位置可以表示为 ;第二辆汽车的位置可以表示为 。
②第一辆汽车与车站的距离是 ,第二辆汽车与车站的距离是 。
师:大家思考第一个问题:汽车在公路上的位置可以用什么方法表示? 生1:第一辆汽车的位置表示为+5km ,第二辆汽车的位置表示为-4km 。
生2:汽车在公路上的位置可以用有理数中正、负数的相反意义量表示师:同学们思维很活跃,我们知道,出租车是计程收费的,出租车司机只考虑出租车行驶的距离,而不考虑出租车行驶的方向。
当不考虑方向时,汽车到车站的路程(距离)又要用什么方法表示?生3:第一辆汽车与车站的距离是5km ,第二辆汽车与车站的距离是4km 。
师:回答得很好,我们如果把车站当作数轴的原点,那么两辆汽车到车站的距离分别就是数轴上表示+5与-4的点到原点的单位长度,它们与方向无关。
你们认为用一个什么办法来表示数轴上的点到原点的距离比较合适? 学生经过短时间的思考齐声回答:绝对值〔提出绝对值的概念及表示方法〕……二、亲身实践,探究新知师:我们在确定一个数的绝对值时,可以在数轴上的标出这点,然后考虑它与原点之间相隔多少个单位长度,而不考虑它位于原点的何方。
请问:|-6|= ;|0.5|= ;|-3|= 。
|0| = 。
|21|= 。
生4: 12的绝对值是12,即|21|=12; 5的绝对值是5,即|5|=5; 0的绝对值是0,即|0|=0;-6的绝对值是6,即|-6|=6; -3的绝对值是3,即|-3|=3; 师:回答很完整,观察这样的结论,你们相互之间讨论总结,能够说出一些关于绝对值的特点吗?学生展开讨论三、探索规律,归纳知识师:同学们,你们通过学习,对绝对值有什么认识?生5:绝对值只是一个数,不要符号。
【探讨与反思】
本节课通过多媒体展示,并创设现实的情景问题,让学生在极其轻松的氛围中,通过交流讨论,探索绝对值规律,学会求解一些简单的绝对值问题,使学生对数学产生一定的兴趣和求知欲望。
让学生通过数一数、试一试、做一做等练习,给学生恰当的思考空间,让学生更好的自主学习。
通过对本节的反思,发现还存在许多问题:教学过程中过多地注意结论的得出,忽视过程的分析和总结;只注意结论的得出,忽视结论的应用;只注意理论的建立忽视尝试运用于解决实际问题;整个过程多媒体展示比较多,忽视学生的参与性与主体性;为此,我自认为本节课学生的热情很高,但积极调动的不高;课堂气氛活跃,但是不够热情;学生参与性增强,但是动手能力减弱。
所以,要真正使一节课完美,还需要认真分析和发现学生的真正需求,怎样能够使学生积极地参与到整个教学过程中,是上好一节课的标准。
总而言之,把学生放在课堂的主体,才是上好课的保证。
在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。
绝对值教材分析(经典版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日叙言下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. I want to know Please pay attention to the different format and writing styles of sample essays!绝对值教材分析这是绝对值教材分析,是优秀的数学教案文章,供老师家长们参考学习。
七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。
通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
教学过程:一、创设情境,复习导入。
今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。
(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。
在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。
这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。
你还能举出其他类似的例子吗?。
小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。
2024年七年级绝对值教学反思引言:绝对值是初中数学中的一个重要概念,也是学生在数轴上学习数学时必须掌握的基础知识之一。
本文将对2024年我在七年级绝对值教学中的教学方法、教学效果以及教学反思进行总结,以期能够在今后的教学中不断改进和提高自己的教学水平。
一、教学方法:1. 意义导入在教学开始前,我通过举例子、给出实际问题等方式引导学生思考绝对值的概念及其在日常生活中的应用,激发学生学习的兴趣和动机。
2. 图像展示通过绘制数轴上的点,并与学生实际生活中的情境结合起来,帮助学生直观地理解绝对值的概念,从而加深他们对该概念的记忆和理解。
3. 基本性质分析通过对绝对值的基本性质进行分析,如非负性、对称性、可加性等,帮助学生建立起对绝对值概念的系统化和逻辑性的认识,以及掌握其相关的计算方法。
4. 练习巩固在课堂中,我设计了各类丰富的练习题,既包括基本的计算题,也包括应用题,以帮助学生巩固绝对值的相关概念和运算方法,并将其运用到不同的实际问题中。
二、教学效果:1. 学生学习兴趣的提高通过我在教学中采用的生动有趣的教学手段,学生的学习兴趣得到了有效激发。
越来越多的学生愿意积极参与到教学活动中,并表现出了较强的学习主动性。
2. 学生学业成绩的提升通过综合评估和学生自主测评的结果发现,学生对于绝对值的掌握程度明显提高。
其中,不仅能够准确地计算绝对值,还能将其应用到解决实际问题中。
这些成绩的提高,得益于教学方法的合理运用和有针对性的练习。
三、教学反思:1. 教学材料的选择在教学中,我发现目前市面上的七年级数学教材中对于绝对值的章节内容较为简单,缺乏深入的讲解和详细的习题设计。
因此,在今后的教学中,我需要继续积累并整理更多的教学材料,以满足学生对于不同难度练习的需求。
2. 教学内容的层次性尽管学生在最后测试中的成绩有所提高,但仍有一部分学生在掌握绝对值计算方法和应用方面存在一定的困难。
反思之后,我认识到在教学中没有很好地划分教学内容的难度等级,导致学生在学习过程中出现了明显的起伏。
绝对值教案(优秀6篇)七年级数学《绝对值》教案篇一教学目标1、了解绝对值的概念,会求有理数的绝对值;2、会利用绝对值比较两个负数的大小;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。
教学建议一、重点、难点分析绝对值概念既是本节的教学重点又是教学难点。
关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。
教材上绝对值的定义是从几何角度给出的。
,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。
这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。
此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构绝对值的定义;绝对值的表示方法;用绝对值比较有理数的大小。
三、教法建议用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。
可以把利用数轴给出的定义作为绝对值的一种直观解释。
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。
“非负数”的概念视学生的情况,逐步渗透,逐步提出。
四、有关绝对值的一些内容1.绝对值的代数定义一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
2.绝对值的几何定义在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。
3.绝对值的主要性质(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。
(4)两个相反数的绝对值相等。
五、运用绝对值比较有理数的大小1、两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
《绝对值》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《绝对值》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析《绝对值》是人教版七年级上册第一章有理数中的重要内容。
绝对值的概念是有理数运算的基础,也是后续学习整式、方程等知识的重要工具。
从教材的编排来看,绝对值的概念是在数轴、相反数等知识的基础上引入的,它将有理数的运算从单纯的数值运算拓展到了符号和数值的综合运算,使学生对有理数的认识更加全面和深入。
二、学情分析七年级的学生已经掌握了数轴、相反数等基本概念,具备了一定的观察、分析和抽象概括能力。
但是,他们对于抽象的数学概念的理解和应用还存在一定的困难,需要通过具体的实例和直观的图形来帮助他们理解。
在学习绝对值之前,学生对于数的大小比较和运算主要是基于数值的大小,对于符号的处理还不够熟练。
因此,在教学中要注重引导学生从符号和数值两个方面来理解绝对值的概念,培养他们的符号意识和运算能力。
三、教学目标基于对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解绝对值的概念,会求一个数的绝对值。
(2)掌握绝对值的性质,会利用绝对值比较两个有理数的大小。
2、过程与方法目标(1)通过数轴上点与原点的距离引出绝对值的概念,培养学生的观察、分析和抽象概括能力。
(2)通过绝对值的计算和大小比较,培养学生的运算能力和逻辑推理能力。
3、情感态度与价值观目标(1)让学生在自主探索和合作交流中,感受数学的乐趣和成功的喜悦,增强学习数学的信心。
(2)通过绝对值的几何意义,让学生体会数学与生活的密切联系,培养学生的数学应用意识。
四、教学重难点1、教学重点(1)绝对值的概念和性质。
(2)利用绝对值比较两个有理数的大小。
2、教学难点绝对值概念的理解和应用。
五、教法与学法1、教法(1)启发式教学法:通过设置问题情境,引导学生思考和探索,激发学生的学习兴趣和主动性。
《绝对值》教学与评析
七年级数学华师大版
一、教学实录
(一)、创设情景,引入新课:
师:请同学们探讨下面的问题(课件演示)
问题:第一辆汽车从车站出发向东行驶了5km ,第二辆汽车从车站出发向西行驶了4km ,如果规定向东为正,那么:
①第一辆汽车的位置可以表示为 ;第二辆汽车的位置可以表示为 。
②第一辆汽车与车站的距离是 ,第二辆汽车与车站的距离是 。
师:大家思考第一个问题:汽车在公路上的位置可以用什么方法表示? 生1:第一辆汽车的位置表示为+5km ,第二辆汽车的位置表示为-4km 。
生2:汽车在公路上的位置可以用有理数中正、负数的相反意义量表示
师:同学们思维很活跃,我们知道,出租车是计程收费的,出租车司机只考虑出租车行驶的距离,而不考虑出租车行驶的方向。
当不考虑方向时,汽车到车站的路程(距离)又要用什么方法表示?
生3:第一辆汽车与车站的距离是5km ,第二辆汽车与车站的距离是4km 。
师:回答得很好,我们如果把车站当作数轴的原点,那么两辆汽车到车站的距离分别就是数轴上表示+5与-4的点到原点的单位长度,它们与方向无关。
你们认为用一个什么办法来表示数轴上的点到原点的距离比较合适? 学生经过短时间的思考齐声回答:绝对值
〔提出绝对值的概念及表示方法〕
……
二、亲身实践,探究新知
师:我们在确定一个数的绝对值时,可以在数轴上的标出这点,然后考虑它与原点之间相隔多少个单位长度,而不考虑它位于原点的何方。
请问:|-6|= ;|0.5|= ;|-3|= 。
|0| = 。
|2
1|= 。
生4: 12的绝对值是12,即|2
1|=12; 5的绝对值是5,即|5|=5; 0的绝对值是0,即|0|=0;
-6的绝对值是6,即|-6|=6; -3的绝对值是3,即|-3|=3; 师:回答很完整,观察这样的结论,你们相互之间讨论总结,能够说出一些关于绝对值的特点吗?
学生展开讨论
三、探索规律,归纳知识
师:同学们,你们通过学习,对绝对值有什么认识?
生5:绝对值只是一个数,不要符号。
师:你的认识有一定的道理,但不完全正确,象-3的绝对值是3,3还是有符号的,只是“+”省略不写而已,0的绝对值是0,它就没有符号。
生5:哦,我懂了。
师:结合上面的结论,你们能否概括出数a绝对值与它本身有何关系?
生6:正数的绝对值都是它本身;零的绝对值是零;负数的绝对值是它的相反数。
师:其实我们也可以说“正数与0的绝对值是它本身”,如果一个数的绝对值是它的相反数,那么这个数应该是什么数?
生6:负数或零
师:回答得很好,从上面各个数的绝对值的正负性上来看,还有什么新的发现?
生7:绝对值总是正数或者零。
师:对,不难看出,不论有理数a为何值,它的绝对值总是正数或者零,我们以后通常把正数与零统称为非负数,这就是绝对值的非负性,
所以:|a|≥0
四、应用新知,解决问题
1.课件展示教材例题(略)
2.学生抢答与分组练习(电视文化走进数学)
师:什么数的相反数是它本身?
生甲:正数
师:还有吗?要考虑各种情形。
生乙:还有零。
师:对,应该说“非负数的绝对值是它本身”,那么什么数的绝对值是它的相反数?
生丙:负数与零
师:绝对值不大于它本身的数是什么数?
生丁:零
师:绝对值不小于它本身的数是什么数?
生戊:负数与零。
……
五、延伸拓展,联系实际
多媒体课件展示问题:正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测的结果(用正数记超过规定质量的克数,用负数记不足质量的克数):-25、+10、-20、+30、+15、-40
请你指出哪一个足球的质量好一些,并用你所学的知识进行说明。
师:同学们,根据你们的亲身体验,你们认为哪个足球质量好?
生7:我认为超过30g的足球好,理由是:把上面六个数都标到数轴上,可以看出30最大,这说明这个足球最重,所以这个足球质量最好。
生8:我认为生7的观点不正确,按照图中各数的绝对值,可以发现-40的绝对值最大,且-40最小,所以这个足球最轻,应该是这个足球的质量最好。
师:足球质量的好、坏不是以轻、重来衡量,不能以6个数的大小来作为评判足球好坏的标准,正规比赛所用的足球是有严格的质量与大小规定的。
我们可以把足球的标准质量当作“原点”,要用足球的实际质量偏离“原点”的大小来衡量足球的优劣。
生9:我认为生8与生9的观点都错了,足球的质量是要看足球与标准质量的偏差的大小来判断。
师:生9的见解很精辟,请继续发表你的看法。
生9:因为|-25|=25,|+10|=10,|-20|=20,|+30|=30,|+15|=15,
|-40|=40。
根据10<15<20<25<30<40可以知道,只超过规定质量10g 的足球与标准足球的误差最小,所以它的质量最好。
师:回答很好,掌声鼓励(鼓掌)。
师:题目中的数据反映了6个足球偏离规定质量的克数,偏离越小,质量越好;偏离越大,质量越差。
所以可以用绝对值的大小来判断优劣,这种思想在我们实际生活中是经常遇到的。
……。
二、教学反思:
这节课是关于绝对值概念的新课,从知识与技能的角度来看,要通过这节课的学习,让学生理解绝对值的几何意义与代数意义,会求任意一个有理数的绝对值;从过程与方法的角度来看,让学生能结合实例,并借助于数轴上的点与原点的距离来探索绝对值的有关内容;在情感、态度与价值观这方面,要让学生注意思维的周密性,要考虑到问题可能出现的各种情况,要培养他们严谨、细致、认真的学习态度。
绝对值作为初中数学中的一个重要概念,对后面有理数的运算等学习有直接的影响,因此在教学中,为了突破这一重点,我在教学时没有简单地采用定义、练习的做法,而是以新的课程标准要求为指导,按照“①创设情景,引入新课;②亲身实践,探究新知;③探索规律,归纳知识;④应用新知,解决问题;⑤延伸拓展,联系实际。
”等五个环节组织教学。
本节课设计了几组符合学生认知水平的问题,遵循从感性到理性的循序渐进的认知规律,使学生思维呈螺旋状展开,改变了传统教学中过于注重知识传授的倾向,变学生被动接受的讲授式教法为自主感知探究的教法,强调学生的自主探索和教师与学生之间的师生互动。
在“创设情景,引入新课”中,从学生熟悉而又贴近生活的出租车计费问题入手,以学生已有的知识为起点,从用有理数表示汽车的位置过渡到汽车离车站的距离,在思考并回答问题的过程中,逐步领会绝对值概念的实质,这是一种创新,有助于学生主
动建构起绝对值的概念,符合学生的认知规律。
在课堂上采取了谈话式引导教学法并结合抢答竞赛的方法,试图充分发挥学生的表现欲望,提高他们学习的积极性,这是电视文化对数学教学的积极影响,属于活动教学的初级阶段,有利于学生自主参与意识和相互合作精神的培养,这样,不仅提高了教学效果,并促进了学生思维品质的形成。
在“延伸拓展,联系实际”的环节中用学生喜爱的足球运动为基础,提出有趣而有挑战性的问题来激发学生学习绝对值的兴趣,让学生根据绝对值的“几何”意义认识:一个数的绝对值越小,则距离原点就越近,我们可以把足球的标准质量当作原点,所以足球的实际质量与规定的标准质量的偏差越小越好,即越小越符合标准,将实际问题转化为数学问题。
让学生体会到生活中的事情也蕴藏着丰富的数学知识,用数学知识可以解决许多生活问题,使学生真正认识到生活与数学密不可分。
上完本节课后,我认真地反思了课堂设计及整个教学过程,无论从教学效果还是从课堂气氛来看,我个人认为是比较成功的,首先,创设生动具体的教学情景是成功上好一节课的保证,通过情景让学生观察思考,发现绝对值的规律,体验数学是充满探索性和创造性的,它是引导学生积极参与自主探究和合作交流活动的平台。
教学从身边的实例入手,利用多媒体课件提供情景,让学生身临其境,体会到绝对值的引入是学习与生活的需要。
其次学生喜闻乐见的事情是保持旺盛的学习欲望的动力。
在学法上,重视了学法指导,在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。
对整个学习过程,采用引导与合作相结合的学习方式,关注学生的学习兴趣和学习经验,让学生主动参与学习活动,并引导学生在课堂上感悟知识的生成、发展与变化,培养了学生的创新思维能力。