2-4光学参量调制变换原理
- 格式:ppt
- 大小:461.50 KB
- 文档页数:27
光学参量振荡波长调谐
光学参量振荡是一种非线性光学过程,它涉及到光的参量过程和振荡。
在光学参量振荡中,两束泵浦光束通过非线性材料相互作用,产生两束新的光束,即信号光和辅助光。
信号光和辅助光的频率和波矢之间存在特定的相位匹配条件。
波长调谐是指通过改变泵浦光束的频率或非线性材料的温度或其他参数,来调节信号光和辅助光的波长。
通常情况下,波长调谐可以通过改变非线性材料的相位匹配条件来实现。
当泵浦光束的频率或非线性材料的参数发生变化时,相位匹配条件也会发生改变,从而导致信号光和辅助光的波长发生调谐。
波长调谐在光学参量振荡中具有重要的应用。
通过调谐信号光的波长,可以实现光在不同频率范围内的相互作用,从而实现光的频率转换、光谱分析、光通信等应用。
波长调谐还可以根据特定的应用需求,选择合适的波长范围和调谐范围,以满足不同领域的应用需求。
光学相位调制的原理和应用
光学相位调制是一种控制光波相位的技术,它可以通过调制光波的相位来实现信号的调制和传输。
其原理基于光波的干涉现象,通过改变光的相位,可以改变光的干涉图样,进而实现信号的编码和解码。
光学相位调制的原理可以简述如下:当光波通过被调制的光栅、液晶、或者光电效应材料等介质时,介质中的折射率、吸收系数或者透明度会发生变化,从而改变了光波的相位。
通过对这些介质施加不同的电压或者传递不同的电流,可以精确地控制光波的相位调制。
光学相位调制在光通信、光存储和光计算等领域有着重要的应用。
它可以用于调制和解调光信号,实现高速光通信和高容量光存储。
此外,光学相位调制还可以用于光学成像和光学测量,例如在显微镜和干涉仪中的应用,可以实现高分辨率的图像获取和精确的测量结果。
光学相位调制还被广泛应用于激光器技术中。
通过调制光波的相位,可以实现激光器的频率调制、激光束的调制和激光脉冲的调制等功能。
这些应用对于光学通信、雷达、激光雷达、光学光谱、激光打印、光学标记和生物医学影像等领域具有重要意义。
总之,光学相位调制是一种重要的光学技术,它可以实现光信号的调制和传输,具有广泛的应用前景。
通过精细的相位调制,
可以实现高速、高容量的光通信和光存储系统,并在光学成像、光学测量和激光器技术等方面发挥重要作用。
第四章 光参量放大与光参量振荡自从1961年Franken 等人首先观察到二次谐波产生后不久,1962年Kingston 等人在理论上预言了三波相互作用中存在参量增益的可能性。
1965年,Wang 和Resettle 首先观察到三波非线性相互作用过程中的参量增益。
同年,Goodman 和Miller 首次用3LiNbO 晶体制作成了第一台光参量振荡器,开辟了一套全新运转的光学参量振荡器;1970年,Smith 、Parker 和Amman 等人将参量振荡器置于激光谐振腔内,分别研制成了连续和脉冲内腔式光学参量振荡器;1971年,Yarborough 和Massey 研制成了无共振腔的光学参量振荡器。
光学参量振荡器的输出具有很高的单色性和方向性,它是将频率固定的相干辐射变成可调谐相干辐射的重要手段之一。
与激光器输出激光的波长是由相应的原子跃迁决定的不同,光学参量振荡器输出波长是由泵频光的频谱、空间分布、相位匹配条件决定的,是可以在较大范围内调谐。
由于光学参量振荡器可以提供从可见一直到红外的可调谐相干辐射,因此在光谱研究中具有广阔的应用前景。
3ω、2ω的光波产生差频132=-ωωω(),在此过程中,频率为2ω的光波不是减少而是随着差频1ω光的产生一起增加,或者说频率为2ω的光波被放大了,这种放大称为光学参量放大。
在参量放大中,一般把频率为3ω的光叫泵频光,频率为2ω的光叫信频光,频率为1ω的光叫闲频光,光学参量放大器(Optical Parametric Amplifier,简称为OPA )就是指对信号光进行放大的器件。
与激光放大器增益是由原子、分子能级之间的粒子数反转提供的不同,光参量放大器的增益是由非线性介质中光波之间的相互作用产生的。
4.1.1光参量放大过程的普遍解光参量放大是和频产生的逆过程,它的一般理论与差频产生的理论相同,不同的是输入光的条件。
通常把参量放大看成是用单个泵浦光束来激发的过程,而把差频产生看成是用两个强度相近的泵浦光束来激发的过程。
南京理工大学光电检测-习题解答南京理工大学光电检测课后习题答案第1章1、举例说明你说知道的检测系统的工作原理。
(1)光电检测技术在工业生产领域中的应用:在线检测:零件尺寸、产品缺陷、装配定位…(2)光电检测技术在日常生活中的应用:家用电器——数码相机、数码摄像机:自动对焦---红外测距传感器自动感应灯:亮度检测---光敏电阻空调、冰箱、电饭煲:温度检测---热敏电阻、热电偶遥控接收:红外检测---光敏二极管、光敏三极管可视对讲、可视电话:图像获取---面阵CCD医疗卫生——数字体温计:接触式---热敏电阻,非接触式---红外传感器办公商务——扫描仪:文档扫描---线阵CCD红外传输数据:红外检测---光敏二极管、光敏三极管(3)光电检测技术在军事上的应用:夜视瞄准机系统:非冷却红外传感器技术激光测距仪:可精确的定位目标光电检测技术应用实例简介点钞机钞票的荧光反映,可判别钞票真假。
(4)纸宽的检测—红外发光二极管及接收二极管的应用主要是用于根据钞票经过此红外发光及接收二极管所用的时间及电机的转速来间接的计算出钞票的宽度,并对机器的运行状态进行判断,比如有无卡纸等;同时也能根据钞票的宽度判断出其面值。
(5)喂钞台、接钞台传感器—红外对管的应用在点钞机的喂钞台和取钞台部分分别有一个作为有无钞票的发射接收红外对管,用来检测是否有钞票放入或取出。
2、如何实现非电量的测量?为实现非电量的电测量,首先要实现从非电量到电量的变换,这一变换是靠传感器来实现的。
传感器接口电路是为了与传感器配合将传感器输出信号转换成低输出电阻的电压信号以方便后续电路的处理。
一般说来,信号都需要进一步放大并滤除噪声。
放大后的信号经模拟/数字变换后得到数字信号,以便于微处理器或微控制器。
微处理器或微控制器是测控系统的核心,它主要有两个作用:一是对数字信号进行进一步处理并将信号输出显示、存储和控制。
二是管理测控系统的各个部分以实现测控系统的智能化,即根据信号和测量条件的变化,自动地改变放大器的增益、滤波器的参数及其它的电路参数。
光调制光调制就是将一个携带信息的信号叠加到载波光波上,完成这一过程的器件称为调制器。
调制器能使载波光波的参数随外加信号变化而变化,这些参数包括光波的振幅、位相、频率、偏振、波长等。
承载信息的调制光波在光纤中传输,再由光探测器系统解调,然后检测出所需要的信息。
光调制技术已广泛应用于光通信、测距、光学信息处理、光存储和显示等方面。
一、光调制的方法(1)直接调制法:外加信号直接控制激光器的泵浦源,如控制半导体激光器的注入电流,从而使激光的某些参量得到调制。
根据调制信号的类型,直接调制又可以分为模拟调制和数字调制两种。
a 、半导体激光器(LD )直接调制半导体激光器处于连续调制工作状态时,无论有无调制信号,由于有直流偏置,所 以功耗较大,甚至引起温升,会影响或破坏器件的正常工作。
b 、半导体发光二极管(LED )的调制半导体发光二极管由于不是阈值器件,它的输出光功率不像半导体激光器那样会随注入电流的变化而发生突变,因此,LED 的P -I 特性曲线的线性比较好。
c 、半导体光源的模拟调制无论是使用 LD 或LED 作光源,其调制线性好坏与调制深度m 有关:偏置电流调制电流幅度阈值电流偏置电流调制电流幅度=-=m m :L E D :LD d 、半导体光源的脉冲编码数字调制数字调制是用二进制数字信号“1”和“0”码对光源发出的光波进行调制。
而数字信号大都采用脉冲编码调制,即先将连续的模拟信号通过“抽样”变成一组调幅的脉冲序列,再经过“量化”和“编码”过程,形成一组等幅度、等宽度的矩形脉冲作为“码元”,结果将连续的模拟信号变成了脉冲编码数字信号。
然后,再用脉冲编码数字信号对光源进行强度调制。
(2)腔内调制:腔内调制是通过改变激光器的参数如增益、谐振腔Q 值或光程等实现的,主要用于Q开关、腔测空、锁模等技术。
腔内调制又分为被动式与主动式两类。
①被动调制这种调制利用某些吸收波长与激光波长一致的可饱和吸收体(如染料)的非线性吸收特性。
四 电光调制与光信模拟实验袁礼文 10329073 光信02班 C2组 2013-03-13&20一、实验目的通过实验操作以及数据进行分析,学习并掌握电光调制、声光调制、磁光调制的机制及运用,在此基础上进一步了解光通信系统的结构。
二、实验仪器晶体电光调制电源,铌酸锂(LiNbO 3),He-Ne 激光器及可调电源,可旋转偏振片,格兰棱镜,光接收器,有源音响三、实验原理1、电光调制的物理机制电光调制的物理基础是电光效应,目前已发现有两种电光效应,一种是泡克耳斯(Pockels )效应,即折射率的变化量与外加电场强度的二次方成正比。
另一种是克尔效应,即折射率的变化量与外加电场强度的二次方成比例。
利用克尔效应制成的调制器称为克尔盒,其中的光学介质为具有电光效应的液体有机化合物。
利用泡克耳斯制成的调制器称为泡克耳斯盒,其中的光学介质为非中心对称的压电晶体。
泡克耳斯盒又有纵向调制器和横向调制器两种。
现以实验中使用的电光晶体DKDP (磷酸二氘钾)横向调制为例阐述电光调制的简单机理。
图2 电光调制器原理图原理图如上图所示,晶体位于两个正交的偏振器之间,起偏器 P 1的偏振方向平行于电光晶体的 Y 轴,光没晶体入射光的 X 轴方向加上电场后,它们将旋转 45°变成感应轴X ’、Y ’。
现在对晶体内部的偏振光传播进行讨论。
DKDP 是负单轴晶体,它的折射率椭球方程为: 2221o o ex y z I I I ++= (1) 其中 x 为光轴方向,在平行于光轴的方向加上电压后,折射率椭球方程变为:2226321z o o ex y z E xy I I I γ+++= (2) 对上式进行坐标系的变换,消除式中的交叉项:()()'cos 45'sin 45''/'sin 45'sin 45''/'x x y x y y x y x y z z ⎧=-=-⎪⎪=+=+⎨⎪=⎪⎩(3) 图1可推导出加了电场后,折射率椭球方程为:2222221'''x y zx y z n n n ++= (4) 介电主轴的折射率变为:(5)沿 Z 轴入射的光束经起偏器变为平行于 X 轴的线偏振光,进入晶体后(在 Z =0处),被分 解 成 沿 OX ’、OY ’方向的两个分量,其振幅和相伴都相等,用复数表示为E X ’(0)=A, E Y ’(0)=A ,入射光强度为(6)当光通过长度为 L 的晶体后,由于电光效应,E X ’、E Y ’之间就产生一个相位差δ,从而有:(7)光从晶体出射后,通过检偏器后的光是晶体中的光的两分量在 Y 轴上的投影之和,即:(8)从而对应的输出光的强度为:(9) 其中,, 从而可知调制器的透过率为:(10)当从晶体出射的光的两个分量的相位差为δπ=时,外电场所加的电压为半波电压,可求得此时的电压为:(11)从而可知透过率可表示为:(12)当加在晶体上的直流电压为U 0,同时加在晶体上的交流调制信号是sin m U t ω其中Um 是其振幅,ω是调制频率。
光学中的光学调制方程光学调制方程是指光学器件中的光场与外界调制信号之间的关系。
调制的目的不仅是为了实现信号传输,更是为了在光通信、光存储、光传感等领域开展应用。
光调制主要有三种方式:振幅调制(AM)、相位调制(PM)和频率调制(FM)。
本文将重点讲述光在振幅调制和相位调制下的调制方程式。
一、振幅调制的光学方程式振幅调制,即将模拟信号电流与光源亮度的线性关系转化为模拟信号电流与光幅度的线性关系。
通过调制光的幅度,实现对数字信息的传输。
设偏振射线电场为Ei=E0Xcosωt, 其中E0为振幅、X为振幅调制器的调制函数,cosωt为振幅调制的载波信号。
偏振射线通过波片会分为光场电场与垂直于光场电场的电场两个偏振向量,设它们的幅度分别为E1和E2,两个偏振向量所对应的光强分别为I1和I2。
我们可以计算得出调制后光场电场的功率为:P=0.5E02X2 —( 1)偏振器的作用是为光线带上一个特定方向的偏振向量,使光线沿这一方向传播。
如果偏振器的方向为φ,与光场电场方向的夹角为θ,则有:I=I0sin2 (θ-φ) —( 2)其中,I0为偏振器透射光强度零偏值。
当I1和I2经过偏振器得到透射时,两个方向上的光强度可分别表示为:I1=I0sin2 (θ-φ),I2=I0sin2 ((θ+π/2)-φ)代入上式可得:P=0.5E^2_0 [Xcos(ωt)+Xcos(ωt+π)] —( 3)P=0.5E^2_0 Xcosωt —( 4)这就得到了光学方程式。
由此可以看出,振幅调制后,光幅度的变化与振幅调制函数X 成正比。
即每个调制函数的周期内,光波频率不变,振幅发生变化,从而实现模拟信号的光电转换。
二、相位调制的光学方程式相位调制,即将模拟信号电流与光源相位的线性关系转化为模拟信号电流与光相位的线性关系。
通过调制光的相位,实现对数字信息的传输。
设照射在相位调制器上的光波通过器件后,产生一个加性相位变化量(其中包括直流分量和调制分量),并把光场电场变为E=E0cos(ωt+Φ),其中Φ为调制后的相位变化量。
电光调制电光调制四电光调制与光信模拟实验袁礼⽂10329073 光信02班C2组2013-03-13&20 ⼀、实验⽬的通过实验操作以及数据进⾏分析,学习并掌握电光调制、声光调制、磁光调制的机制及运⽤,在此基础上进⼀步了解光通信系统的结构。
⼆、实验仪器晶体电光调制电源,铌酸锂(LiNbO3),He-Ne 激光器及可调电源,可旋转偏振⽚,格兰棱镜,光接收器,有源⾳响图三、实验原理1、电光调制的物理机制电光调制的物理基础是电光效应,⽬前已发现有两种电光效应,⼀种是泡克⽿斯(Pockels)效应,即折射率的变化量与外加电场强度的⼆次⽅成正⽐。
另⼀种是克尔效应,即折射率的变化量与外加电场强度的⼆次⽅成⽐例。
利⽤克尔效应制成的调制器称为克尔盒,其中的光学介质为具有电光效应的液体有机化合物。
利⽤泡克⽿斯制成的调制器称为泡克⽿斯盒,其中的光学介质为⾮中⼼对称的压电晶体。
泡克⽿斯盒⼜有纵向调制器和横向调制器两种。
现以实验中使⽤的电光晶体DKDP (磷酸⼆氘钾)横向调制为例阐述电光调制的简单机理。
图2 电光调制器原理图原理图如上图所⽰,晶体位于两个正交的偏振器之间,起偏器 P 1的偏振⽅向平⾏于电光晶体的 Y 轴,光没晶体⼊射光的 X 轴⽅向加上电场后,它们将旋转 45°变成感应轴X ’、Y ’。
现在对晶体内部的偏振光传播进⾏讨论。
DKDP是负单轴晶体,它的折射率椭球⽅程为:2221o o e x y z I I I ++=(1)其中 x 为光轴⽅向,在平⾏于光轴的⽅向加上电压后,折射率椭球⽅程变为:2226321z o o e x y z E xy I II γ+++=(2)对上式进⾏坐标系的变换,消除式中的交叉项:()()'cos 45'sin 45''/2'sin 45'sin 45''/2'x x y x y y x y x y z z ?=-=-??=+=+??=??o o o o(3)可推导出加了电场后,折射率椭球⽅程为:2222221'''x y z x y z n n n ++=(4)介电主轴的折射率变为:(5)沿 Z 轴⼊射的光束经起偏器变为平⾏于 X轴的线偏振光,进⼊晶体后(在 Z =0处),被分解成沿 OX ’、OY ’⽅向的两个分量,其振幅和相伴都相等,⽤复数表⽰为E X’(0)=A, E Y’(0)=A,⼊射光强度为(6)当光通过长度为L 的晶体后,由于电光效应,E X’、E Y’之间就产⽣⼀个相位差δ,从⽽有:(7)光从晶体出射后,通过检偏器后的光是晶体中的光的两分量在Y 轴上的投影之和,即:(8)从⽽对应的输出光的强度为:(9)其中,, 从⽽可知调制器的透过率为:(10)当从晶体出射的光的两个分量的相位差为δπ=时,外电场所加的电压为半波电压,可求得此时的电压为:(11)从⽽可知透过率可表⽰为:(12)当加在晶体上的直流电压为U 0,同时加在晶体上的交流调制信号是sin m U t ω其中Um 是其振幅,ω是调制频率。