DNA序列测定(精)
- 格式:ppt
- 大小:183.00 KB
- 文档页数:35
放射性同位素标记的DNA序列测定分析测定DNA的核苷酸序列是分析基因结构与功能关系的前提。
从小片段重叠法到加减法、双脱氧链终止法、化学降解法、自动测序,DNA测序技术发展很快。
目前在实验室手工测序常用Sanger双脱氧链终止法。
Sanger法就是使用DNA聚合酶和双脱氧链终止物测定DNA核苷酸序列的方法。
它要求使用一种单链的DNA模板或经变性的双链DNA模板和一种恰当的DNA合成引物。
其基本原理是DNA聚合酶利用单链的DNA模板,合成出准确互补链,在合成时,某种dNTP换成了ddNTP,这时,DNA聚合酶利用2’,3’-双脱氧核苷三磷酸作底物,使之掺入到寡核苷酸链的3’末端,导致3’末端无3'-OH,从而终止DNA链的生长,双脱氧核苷酸的种类不同,掺入的位置不同就造成了在不同的专一位置终止的长度不同的互补链。
通过掺入放射性核苷酸和聚丙烯酰胺凝胶电泳,即可读出模板DNA的互补链序列。
一、试剂准备1.硅化液:四氯化碳 250ml,二氯二甲基硅烷 25ml。
2.6%变性PAGE胶的配制:丙烯酰胺 28.5g,N,N’-亚甲基双丙烯酰胺1.5g,10×TBE 50ml,尿素210g,加ddH2O至500ml搅拌溶解,0.22μm滤膜过滤,4℃贮存于棕色瓶中。
使用时取50ml加入催化剂过硫酸铵(25%)50μl,TEMED 50μl,轻摇混匀,立即灌胶。
3.质粒DNA碱变性液:NaOH 2M,NaAc 3M(pH4.8),无水乙醇,70%乙醇。
4.T7测序试剂盒。
二、操作步骤1.测序板硅化,流水、ddH2O洗,无水乙醇洗,晾干。
2.灌胶:装好测序板,玻璃板以15-30°角度倾斜放置,用50ml注射器将凝胶灌到两块玻璃之间,将鲨鱼齿梳子的平端插入胶的上缘,深约0.5-1cm。
夹好,将测序板放水平。
聚合约3hr后预电泳。
3.预电泳:按照说明要求安装好电泳装置,在上槽和下槽注入1×TBE。
DNA鉴定方法DNA鉴定方法DNA鉴定是一种通过对DNA序列的比较分析,确定个体之间的亲缘关系或确认身份的方法。
DNA鉴定在刑侦、亲子鉴定、遗传病诊断等领域有广泛应用。
本文将介绍DNA鉴定的基本原理和常用方法。
DNA鉴定的原理在于人类DNA的独特性和遗传性。
DNA是一种包含遗传信息的分子,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成,它们按照一定的规则排列成两条螺旋状的链。
每个人的DNA序列都是独一无二的,除了一些双胞胎之外。
鉴定方法主要利用DNA的这种独特性,通过比较个体的DNA序列,确定是否具有亲缘关系或是否为同一人。
常用的DNA鉴定方法包括:1. RFLP(限制性片段长度多态性)分析:RFLP分析是DNA鉴定的经典方法之一。
它通过利用限制性内切酶将DNA切割成多个不同长度的片段,然后使用凝胶电泳将这些片段进行分离,并利用射入探针的杂交方法进行检测。
不同个体之间的DNA序列差异会导致不同的片段长度,从而可以通过比较片段长度来确定个体之间的亲缘关系。
2. PCR(聚合酶链式反应)分析:PCR是一种快速有效的DNA复制技术,可以从微量DNA中扩增出足够数量的DNA片段用于分析。
PCR分析常用于亲子鉴定、法医学和遗传病诊断。
PCR分析通常配合其他技术如序列分析、飞行时间质谱和DNA芯片等来进行。
3. STR(短串联重复)分析:STR分析是目前最常用的DNA 鉴定方法之一。
STR序列是由2-6个碱基重复单元组成的,不同个体之间的STR序列重复单元数目存在差异。
STR分析通过PCR扩增DNA片段,然后利用凝胶电泳分离,并通过比较STR重复单元数目来鉴定个体之间的亲缘关系或身份。
DNA鉴定的过程包括取样、提取DNA、扩增DNA片段、分离和检测。
取样可以采用血液、口腔拭子、毛发等样品。
提取DNA需要将样品中的DNA从细胞核和细胞器中分离出来。
DNA扩增通过PCR技术,可以在短时间内从微量DNA样品中复制出大量DNA片段。
第七章 DNA序列分析DNA的一级结构决定了基因的功能,欲想解释基因的生物学含义,首先必须知道其DNA 顺序。
因此DNA序列分析(DNA sequencing)是分子遗传学中一项既重要又基本的课题。
1986年由美国学者提出的,目前正在实施的人类基因组计划(human genome project),则是要通过对人类基因组3×109bp全序列的序列分析和人类基因的染色体图谱制定达到了解其结构,认识其功能,即从分子遗传学水平来认识人类自身的结构和功能特征的目的。
核酸的核苷酸序列测定方法已经过近20年的发展,因而测序的具体方法五花八门、种类繁多。
但是究其所依据的基本原理,不外乎Sanger的核酸链合成终止法及Maxam和Gilbert的化学降解法两大类。
虽然原理不同,但这两种方法都同样生成互相独立的若干组带放射性标记的寡核苷酸,每组寡核苷酸都有固定的起点,但却随机终止于特定的一种或多种残基上。
由于DNA链上每一个碱基出现在可变终止端的机会均等,因而上述每一组产物都是一些寡核苷酸的混合物,这些寡核苷酸的长度由某一种特定碱基在原DNA片段上的位置所决定。
然后在可以区分长度仅相差一个核苷酸的不同DNA分子的条件下,对各组寡核苷酸进行电泳分析,只要把几组寡核苷酸加样于测序凝胶中若干个相邻的泳道之上,即可从凝胶的放射自显影片上直接读出DNA上的核苷酸顺序。
以下分别介绍。
1、Sanger的双脱氧链终止法这是1977年由英国剑桥大学分子生物学实验室的生物化学家Sanger(桑格)等人发明的,是一种简单快速的DNA序列分析法,利用DNA聚合酶和双脱氧链终止物测定DNA核苷酸序列。
它的基本原理是:利用DNA聚合酶的两种酶促反应的能力。
第一是,DNA聚合酶能够利用单链的DNA作模板,准确地催化合成出DNA互补链。
实际上这是DNA在体外进行的复制过程。
第二是,DNA聚合酶能够利用2′,3′-双脱氧核苷三磷酸作底物,使之掺入到寡核苷酸链(由几个核苷酸组成的核苷酸链叫做寡核苷酸链)的3′末端,从而终止DNA链的生长。
第四节DNA序列测定目前应用的两种快速序列测定技术是Sanger等(1977)提出的酶法(双脱氧链终止法)和Maxam(1977)提出的化学降解法。
虽然其原理大相径庭,但这两种方法都同样生成相互独立的若干组带放射性标记的寡核苷酸,每组核苷酸都有共同的起点,却随机终止于一种(或多种)特定的残基,形成一系列以某一特定核苷酸为末端的长度各不相同的寡核苷酸混合物,这些寡核苷酸的长度由这个特定碱基在待测DNA片段上的位置所决定。
然后通过高分辨率的变性聚丙烯酰胺凝胶电泳,经放射自显影后,从放射自显影胶片上直接读出待测DNA上的核苷酸顺序。
高分辨率变性聚丙烯酰胺凝胶电泳亦是DNA序列测定技术的重要基础,可分离仅差一个核苷酸、长度达300~500个核苷酸的单链DNA分子。
DNA序列测定的简便方法为详细分析大量基因组的结构和功能奠定了基础,时至今日,绝大多数蛋白质氨基酸序列都是根据基因或cDNA的核苷酸序列推导出来的。
除传统的双脱氧链终止法和化学降解法外,自动化测序实际上已成为当今DNA序列分析的主流。
此外,新的测序方法亦在不断出现,如上世纪90年代提出的杂交测序法(sequencing by hybridization,SBH)等。
一、双脱氧末端终止法测序㈠原理双脱氧末端终止法是Sanger等在加减法测序的基础上发展而来的。
1980年他又因设计出一种测定DNA(脱氧核糖核酸)内核苷酸排列顺序的方法而与W·吉尔伯特、P·伯格共获1980年诺贝尔化学奖。
桑格是第四位两次获此殊荣的科学家。
其原理是:利用大肠杆菌DNA聚合酶Ⅰ,以单链DNA为模板,并以与模板事先结合的寡聚核苷酸为引物,根据碱基配对原则将脱氧核苷三磷酸(dNTP)底物的5′-磷酸基团与引物的3′-OH末端生成3′,5′-磷酸二酯键。
通过这种磷酸二酯键的不断形成,新的互补DNA得以从5′→3′延伸。
Sanger引入了双脱氧核苷三磷酸(ddTNP)作为链终止剂。
基因测序技术的原理基因测序技术是一种在基因水平分析生物体遗传信息的方法,它的原理是根据DNA双螺旋结构的特性将DNA分子拉直,并通过生物化学反应和高通量测序技术将DNA序列信息读出。
这项技术不仅可以用于研究基因组学、进化学和生物多样性等领域,还可以用于基于遗传学的医学诊断、治疗和药物研发。
一、DNA序列测定原理DNA序列测定是指将DNA分子中的核苷酸序列一个接着一个地测定出来,从而得到完整的DNA序列信息。
DNA测序技术已经成为生命科学中的重要研究工具,主要应用于基因组学和转录组学等领域,用于解析生物体基因组的组织结构、进化历史、生态适应、遗传多样性和表观遗传学等方面的问题。
DNA序列测定主要包括三个步骤:(1)DNA样本制备DNA样本制备是DNA测序的第一步,它涉及到从体内或环境中提取DNA样本,并对DNA 样本进行精细的纯化和质控处理,以获得高质量的DNA样本。
一般情况下,从组织、细胞、血液、唾液、粪便等不同来源的样本中提取DNA,然后通过DNA纯化操作去除携带有杂质和碎片的DNA。
(2)DNA序列反应DNA序列反应是DNA测序中最核心的一个步骤,其中包含PCR扩增、文库构建、芯片及管道测序和单分子测序等不同方法。
这些方法的原理都是利用化学、物理或计算机技术对DNA分子进行处理和分析,比如在PCR扩增中,通过利用DNA聚合酶的特性,在DNA模板和引物的作用下反复的进行酶促反应,得到大量的DNA共同体。
芯片及管道测序则是基于大规模并行的DNA测序,它可以快速、高通量地获取DNA序列信息。
而单分子测序则是利用纳米技术和光学技术将单个DNA分子在线上逐个测序。
(3)数据分析数据分析是DNA测序的最后一步,主要包括测序数据质控、处理、比对、组装和注释等方面。
数据分析是一个复杂的过程,涉及到多种学科的知识,比如生物信息学、统计学和计算机科学等。
对于DNA测序数据的分析需要采用一系列的软件和工具,以得到更加准确和可靠的结果。