【常考题】高二数学上期末试题及答案
- 格式:doc
- 大小:1.46 MB
- 文档页数:21
镇海中学(zhōngxué)2021学年第一学期期末考试高二年级数学试卷第I卷〔选择题〕一、选择题.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.,,那么〔〕A. B. C. D.或者【答案】C【解析】【分析】求解出集合的取值范围,利用交集定义求解.【详解】由得:或者,即或者那么此题正确选项:【点睛】此题主要考察集合运算中的交集运算,属于根底题.,,那么〔〕A. B.C. D.【答案】D【解析】【分析】根据(gēnjù)单调性,可得,再验证可得最终结果.【详解】在上单调递增,即又又此题正确选项:【点睛】此题考察与对数函数有关的比拟大小类问题,属于根底题.在点〔1,0〕处切线的倾斜角为,那么〔〕A. 2B.C. -1D. 0 【答案】A【解析】【分析】求导得,代入,可得切线斜率,即的值.【详解】由题意得:代入,可得切线斜率又,得此题正确选项:【点睛】此题考察导数的几何意义、直线斜率与倾斜角的关系,属于根底题.R上的函数的图像是连续的,且其中的四组对应值如下表,那么在以下区间中,函数不一定存在零点的是〔〕x 1 2 3 53 -1 2 0A. B. C. D.【答案(dá àn)】D【解析】【分析】根据零点存在定理,依次判断各个选项。
又为的子集,那么区间有零点,那么区间也必有零点;上有零点,那么上必有零点;由此可得结果.【详解】由题意可得:在上必有零点又,在上必有零点在上必有零点又,在上必有零点在上不一定存在零点此题正确选项:【点睛】此题主要考察零点存在定理,关键在于需要明确当,不能得到区间内一定无零点的结论,需要进一步判断.,假设,那么〔〕A. 1B. -1C. -2D. 3【答案】B【解析(jiě xī)】【分析】判断的奇偶性,通过奇偶性求得函数的值.【详解】由题意得:即定义域为,关于原点对称又可得:为奇函数此题正确选项:【点睛】此题考察通过函数奇偶性求函数值。
数学期末考试试卷及答案(高二上学期)一、选择题(每题4分,共40分)1. 若复数z满足|z-1|=|z+1|,则z在复平面内表示的点位于()A. 实轴B. 虚轴C. 线段AB的中点D. 圆心O答案:C2. 已知函数f(x)=2x+1,若f(f(x))=3,则x等于()A. -1B. 0C. 1D. 2答案:A3. 设函数g(x)=x²-4x+c,若g(x)的图象上存在两个点A、B,使得∠AOB=90°(其中O为坐标原点),则c的取值范围是()A. (-∞, 1]B. [1, +∞)C. (-∞, 3]D. [3, +∞)答案:A4. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为()A. 1B. 3C. 5D. 7答案:B5. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,∠DCE=30°,则BD的长度为()A. 8B. 10C. 12D. 16答案:B6. 已知函数h(x)=x³-3x,若h(x)的图象上存在一个点P,使得∠AOP=90°(其中O为坐标原点),则x的取值范围是()A. (-∞, 0]B. [0, +∞)C. (-∞, 1]D. [1, +∞)答案:C7. 若等比数列{bn}的前三项分别为1、2、4,则该数列的公比为()A. 2B. 3C. 4D. 5答案:A8. 已知函数p(x)=x²-2x+1,若p(p(x))=0,则x等于()A. 0B. 1C. 2D. 3答案:B9. 设函数q(x)=|x-1|+|x+1|,则q(x)的最小值为()A. 0B. 1C. 2D. 3答案:C10. 若三角形ABC中,∠A=60°,AB=3,AC=4,则BC的长度为()A. 5B. 6C. 7D. 8答案:B二、填空题(每题4分,共40分)11. 若复数z=a+bi(a、b为实数),且|z|=2,则___。
数学期末考试试卷及答案(高二上学期)一、选择题(共40分,每小题2分)1. 一次函数y = 2x - 3的图象是直线,下列说法正确的是()。
A. 过点(-3, 3)B. 过点(0, -3)C. 过点(3, 0)D. 过点(0, 3)答案:C2. 已知函数y = ax² + bx + c的图象经过点(1, 4),则a + b + c的值为()。
A. 4B. 6C. 8D. 10答案:B3. 在直角坐标系中,已知点A(2, 3),点B在x轴上,且AB = 5,则点B的坐标为()。
A. (2, 0)B. (0, -3)C. (7, 0)D. (-3, 0)答案:A4. 设函数f(x) = 2x + 3,g(x) = x² - 4,则f(g(2))的值为()。
A. 3B. 7C. 9D. 11答案:C5. 函数y = x² - 6x + 8的图象是一条抛物线,下列说法正确的是()。
A. 开口向上B. 开口向下C. 与x轴平行D. 与y轴平行答案:A二、解答题(共60分)6. 解方程组:2x - y = 3x + y = 5解答:将第一式两边同时加上第二式得到:2x - y + x + y = 3 + 53x = 8x = 8/3将x的值代入第二式得到:8/3 + y = 5y = 5 - 8/3y = 15/3 - 8/3y = 7/3因此,方程组的解为x = 8/3,y = 7/3。
7. 某商品原价为120元,现在打8折出售,求出售价格。
解答:打8折即为原价乘以0.8,所以出售价格为120元 × 0.8 = 96元。
8. 某数的5倍减去6等于30,求这个数。
解答:设这个数为x,则根据题意可以列出方程:5x - 6 = 305x = 30 + 65x = 36x = 36/5因此,这个数为36/5。
9. 已知等差数列的首项为3,公差为4,求第10项。
解答:第10项可以通过首项加上9倍公差来计算:第10项 = 3 + 9 × 4= 3 + 36= 39因此,第10项为39。
第一学期期末考试 高二 年级 数学 试卷一、选择题(本大题共12小题,每小题5分,满分60分)每小题只有一个....正确选项,请将正确选项填到答题卡处1.设集合{|(1)(2)0}A x x x =+-<, {|13}B x x =<<,则A B =( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x << D .{|23}x x <<2.下列函数中,在区间上为增函数的是( )A .B .C .D .3.已知平面向量,,且//,则=( ) A .B .C .D .4.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( )A .12B .8C .6D .46.函数()22)(x x f π=的导数是( )A .x x f π4)(=' B. x x f 24)(π=' C. x x f 28)(π=' D. x x f π16)(='7.为了得到函数的图象,可以将函数的图象( )A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度8.已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(3 ,且双曲线的一个焦点在抛物线27y x = 的准线上,则双曲线的方程为 ( )A .2212128x y -=B .2212821x y -=C .22134x y -=D .22143x y -=9.若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为( )A .318B .315C .3824+D .31624+10.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A .925 B .1625 C .310 D .1511.己知函数恒过定点A .若直线过点A ,其中是正实数,则的最小值是( )A .B .C .D . 512.已知不等式2201x m x ++>-对一切()1x ∈+∞,恒成立,则实数m 的取值范围是( ) A . 6m >- B . 6m <- C . 8m >- D . 8m <-第II 卷 (非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知命题p :∀x >0,(x +1)e x >1,则p 为 .14.设变量x ,y 满足约束条件,22,2.y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则z =x -3y 的最小值为15.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__________16.对于下列表格x 196 197 200 203 204 y136 7 m所示的五个散点,已知求得的线性回归方程为y ^=0.8x -155. 则实数m 的值为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分11分)已知0m >,p :()()260x x +-≤,q :22m x m -≤≤+ . (I )若p 是q 的充分条件,求实数m 的取值范围;(Ⅱ)若5m =,“p 或q ”为真命题,“p 且q ”为假命题,求实数x 的取值范围.18、(本小题满分11分).在锐角中,分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的周长.19 . (本小题满分12分)已知数列{}n a 中,)(2,1*11N n a a a n n ∈==+,数列{}n b 是以公差为3的等差数列,且32a b =.(1) 求数列{}n a ,{}n b 的通项公式; (2) 求数列{}n n b a -的前n 项和n S .20.(本小题满分12分)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;(2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为3(9698),5(98104),4(104106).y x x x =≤<⎧⎪≤<⎨⎪≤≤⎩求这批产品平均每个的利润.21.(本小题满分12分)已知椭圆)0(12222>>=+b a by a x C :的焦距为32,长轴长为4.(1)求椭圆C 的标准方程;(2)直线m x y l +=:与椭圆C 交于 A ,B 两点.若OB OA ⊥,求m 的值.22. (本小题满分12 分) 已知函数(1)讨论函数 f (x)的单调性; (2)若对任意的a ∈ [1,4),都存在 (2,3]使得不等式成立,求实数m 的取值范围.高二数学期末考试参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 101112答案ABBABCADCDBA13、∃x 0>0,使得(x 0+1)0e x ≤1. 14.-8 15.32 16. 8 17. (本题11分)解:(I ):26p x -≤≤ ………………………1分p 是q 的充分条件[]2,6∴-是[]2,2m m -+的子集 ………………………2分 022426m m m m m >⎧⎪∴-≤-⇒≥∴⎨⎪+≥⎩的取值范围是[)4,+∞………………………5分(Ⅱ)当5m =时,:37q x -≤≤,由题意可知,p q 一真一假, ………………………6分p 真q 假时,由2637x x x x -≤≤⎧⇒∈∅⎨<->⎩或 ………………………8分 p 假q 真时,由26326737x x x x x <->⎧⇒-≤<-<≤⎨-≤≤⎩或或 ………………………10分 所以实数x 的取值范围是[)(]3,26,7-- ………………………11分18. (本题11分)解:(1),由正弦定理得A C A sin sin 2sin 3•=…………1分又,, …………3分又 …………5分(2)由已知得,…………7分在中,由余弦定理得…………8分即,又,(舍负)…………10分故的周长为 …………11分19 . (本题12分)解(1))(2,1*11N n a a a n n ∈==+ ,{}的等比数列是公比为数列2n a ∴, 121-⨯=∴n n a ..........................................3分 因为等差数列{}n b 的公差为3,又42232===a b ,所以233)1(2-=⨯-+=n n b b n ,..........................6分 (2))()()(2211n n n b a b a b a S -++-+-=)(2121n n b b b a a a ++-++=)(.....................8分 2)231(212-1-+--=n n n ..................................10分 122322-+-=nn n...............................12分20、 (本题12分)解: (1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.......1分 设样本容量为n .∵样本中产品净重小于100克的个数是36...........2分 ∴36n =0.300,∴n =120...........3分.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750.........4分∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.....5分 (2) 产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100, (0.100+0.150+0.125)×2=0.750, 0.075×2=0.150,........8分∴其相应的频数分别为120×0.1=12,120×0.750=90,120×0.150=18,...10分 ∴这批产品平均每个的利润为1120×(3×12+5×90+4×18)=4.65(元)...12分 20.(本题12分)解:(1)∵椭圆)0(12222>>=+b a b y a x C :的焦距为32,长轴长为4,3=∴c ,2=a ,∴1=b ,..........................................2分∴椭圆C 的标准方程为1422=+y x .........................4分 (2)设),(,2211y x B y x A )(,将直线AB的方程m x y +=为代入椭圆方程得0448522=-++m mx x . .......................6分 则58-21mx x =+,544221-=m x x , ①.又0)44(206422>--=∆m m ,解得52<m . .......................9分,由OB OA ⊥得:0)(2))((2212121212121=+++=+++=+m x x m x x m x m x x x y y x x ........11分将①代入,得5102±=m ,又∵满足52<m ,∴5102±=m .........12分22.(本题满分12分)解:(1).........2分令得:..........3分令得:...........4分所以函数f(x)的单调递增区间为:和;单调递减区间为:.........6分(2)因为由(1)知函数在(2,3]上单调递增,所以........8分若对任意的a[1,4),都存在(2,3]使得不等式成立,等价于恒成立........9分令当时,所以当时,........11分故实数m 的取值范围是:.......12分。
一、选择题1、数列}{n a 的首项为2,且41-=-n n a a (n ≥2),则通项公式是: A 、n a n 46-= B 、24-=n a n C 、1+=n a n D 、n a n 24-=2、已知数列}{n a 的通项公式为nn n n a )5(43-+=,前n 项的和为n S ,则=∞→nn SlimA 、87- B 、7259-C 、0D 、54- 3、经过点(5、10)且与原点距离为5的直线的斜率是: A 、43B 、2C 、21D 、43或不存在 4、以原点圆心,且截直线01543=++y x 所得弦长为8的圆的方程是:A 、522=+y x B 、2522=+y x C 、422=+y x D 、1622=+y x 5、方程01)2()1(22=-++++m y m mx 所表示的图形是一个圆,则常数m 的值是:A 、2B 、-1C 、2或-1D 、不存在 6、直线02)()32(22=--+-+m y m m x m m 与直线01=--y x 平行,则m 的值是:A 、1B 、-1C 、1或-1D 、不存在7、椭圆1121622=+y x 上的点P 到右焦点距离为38,则P 点的横坐标是:A 、38B 、83C 、316D 、37 8、给出下列四条不等式:①2)1(-x >2)(x ②2)1(-x >x ③x ≥0 ④x >12)1(-x >x 2)1(-x >x以上不等式中与不等式x x >-1同解的有 A 、①③ B 、②④ C 、③ D 、④9、等差数列{}n a 中23=a ,公差1=d ,n S 为前n 项的和,要使+++321321S S S …+nS n 的值最大,则n 为: A 、7 B 、8 C 、9 D 、8或910、数列{}n a 满足21=a ,++=21a a a n …+1-n a (n ≥2),则20a 等于: A 、172 B 、182 C 、192 D 、220 二、填空题:11、直线x y 21=关于直线x y 2=对称的直线方程是__________12、不等式2<|12-x |<8的解集是_________________13、与直线0543=+-y x 垂直, 且与圆4)2()1(22=++-y x 相切的直线方程是_____。
高二数学上学期期末考试题第I 卷(试题) 一、 选择题:(每题5分,共60分)2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )(A )18, (B )6, (C )23, (D )243 3、与不等式xx --23≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)32--x x≥0, (D)(x-3)(2-x)>06、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( )(A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π(C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π437、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( )(A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=08、直线y=x+23被曲线y=21x 2截得线段的中点到原点的距离是 ( )(A )29 (B )29 (C )429 (D )22911、双曲线: 的准线方程是191622=-x y ( ) (A)y=±716 (B)x=±516 (C)X=±716 (D)Y=±51612、抛物线:y=4ax 2的焦点坐标为 ( ) (A )(a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a161,0)二、填空题:(每题4分,共16分) 13、若不等式ax 2+bx+2>0的解集是(–21,31),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 . 15、已知圆的方程⎩⎨⎧-=+=θθsin 43cos 45y x 为(θ为参数),则其标准方程为 .16、已知双曲线162x -92y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为 .三、 解答题:(74分)17、如果a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分)19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。
上学期高二的数学期末考试试题和答案一、选择题(每题5分,共25分)1. 若函数f(x) = 2x + 1是单调递增的,则实数a的取值范围是:A. a > -1B. a ≤ -1C. a > 0D. a ≤ 02. 已知函数g(x) = x^3 - 6x^2 + 9x,则g'(x)的正确表达式是:A. 3x^2 - 12x + 9B. 3x^2 + 12x - 9C. 6x^2 - 12x + 9D. 6x - 123. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积为:A. -7B. 7C. -5D. 54. 已知等差数列的前5项和为35,公差为3,首项为:A. 5B. 6C. 7D. 85. 若复数z = 3 + 4i的模为5,则复数z的辐角主值为:A. π/4B. π/2C. 3π/4D. π二、填空题(每题5分,共25分)1. 若函数f(x) = x^3 - 6x在区间(-∞,2)内单调递减,则实数a的取值范围是______。
2. 已知函数g(x) = x^3 - 6x^2 + 9x,则g'(x)的正确表达式是______。
3. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积为______。
4. 已知等差数列的前5项和为35,公差为3,首项为______。
5. 若复数z = 3 + 4i的模为5,则复数z的辐角主值为______。
三、解答题(每题10分,共50分)1. (10分)已知函数f(x) = x^3 - 6x^2 + 9x,求f'(x)并讨论f(x)的单调性。
2. (10分)已知等差数列的首项为a,公差为d,前n项和为S,求证:S = n/2 * (2a + (n - 1)d)。
3. (10分)解方程:x^2 + (a - 2)x + 1 = 0,讨论方程的实数根情况。
4. (10分)已知复数z = a + bi(a, b为实数),且|z| = 5,求复数z的模和辐角主值。
高二数学上学期期末考试试题(及答案)高二数学上学期期末考试试题及答案第I卷(选择题)1.在三角形ABC中,已知a+b=c-2ab,则C=()。
A。
2π/3 B。
π/3 C。
π D。
3π/4改写:在三角形ABC中,已知a+b=c-2ab,求C的大小。
答案:B2.在三角形ABC中,已知cosAcosB=p,求以下条件p的充要条件。
A。
充要条件B。
充分不必要条件C。
必要不充分条件D。
既非充分也非必要条件改写:在三角形ABC中,已知cosAcosB=p,求p的充要条件。
答案:B3.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为()。
A。
9 B。
27 C。
54 D。
72改写:已知等比数列{an}和等差数列{bn}的一些条件,求{bn}的前9项和。
答案:C4.已知数列{an}的前n项和Sn=n+2n,则数列{a1}的前n 项和为()。
A。
n^2/(n-1) B。
n(n+1)/(2n+1) C。
3(2n+3)/(2n+1) D。
3(n+1)/(n-1)改写:已知数列{an}的前n项和Sn=n+2n,求数列{a1}的前n项和。
答案:B5.设 2x-2y-5≤2,3x+y-10≥3,则z=x+y的最小值为()。
A。
10 B。
8 C。
5 D。
2改写:已知不等式2x-2y-5≤2和3x+y-10≥3,求z=x+y的最小值。
答案:C6.对于曲线C:x^2/4+y^2/k^2=1,给出下面四个命题:①曲线C不可能表示椭圆;②“14”的必要不充分条件;④“曲线C表示焦点在x轴上的椭圆”是“1<k<5”的充要条件。
其中真命题的个数为()。
A。
0个 B。
1个 C。
2个 D。
3个改写:对于曲线C:x^2/4+y^2/k^2=1,判断下列命题的真假,并统计真命题的个数。
答案:C7.对于曲线C:x^2+y^2=1与直线y=k(x+3)交于点A,B,则三角形ABM的周长为()。
【常考题】高二数学上期末试题带答案一、选择题1.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )A .116B .18 C .38D .3162.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤3.执行如图所示的程序框图,若输入8x =,则输出的y 值为( )A .3B .52C .12D .34-4.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1445.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸6.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .637.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( ).①1月至8月空气合格天数超过20天的月份有5个 ②第二季度与第一季度相比,空气合格天数的比重下降了 ③8月是空气质量最好的一个月 ④6月的空气质量最差 A .①②③B .①②④C .①③④D .②③④8.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号B .32号C .33号D .34号9.下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =110.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变11.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.193612.执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.36二、填空题13.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.14.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.15.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________16.执行下面的程序框图,如果输入的0.02t=,则输出的n=_______________.17.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.18.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A)的概率为________19.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.20.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.三、解答题21.某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中40%的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.拥有驾驶证 没有驾驶证 合计得分优秀得分不优秀 25合计100(1)补全上面22⨯的列联表,并判断能否有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关?(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k ≥ 0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照[)[)[]50,60,60,70,...,90,100分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)(1)求频率分布直方图中的x 的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数. 23.用秦九韶算法求()543383f x x x x =+-25126x x ++-,当2x =时的值.24.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率25.设关于x 的一元二次方程2220x bx a -+=,其中,a b 是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率. (1)若随机数,{1,2,3,4}a b ∈;(2)若a 是从区间[0,4]中任取的一个数,b 是从区间[1,3]中任取的一个数. 26.某学校高一、高二、高三的三个年级学生人数如下表高三高二高一女生100150z男生300450600按年级分层抽样的方法评选优秀学生50人,其中高三有10人.(1)求z 的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如下:9.4,8.6,9.2, 9.6,8.7,9.3,9.0,8.2,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.2.B解析:B 【解析】 【分析】根据题意可知该程序运行过程中,95i =时,判断框成立,191i =时,判断框不成立,即可选出答案。