高二数学上学期期末考试试题 文38
- 格式:doc
- 大小:1.08 MB
- 文档页数:3
2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
学年第一学期阶段性考试 高二数学(文科)试卷第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项符合题目要求. 1.已知命题2015log ,:2=∈∀x R x p ,则p ⌝为( )A .2015log ,2=∉∀x R xB .2015log ,2≠∈∀x R xC .2015log ,020=∈∃x R xD .2015log ,020≠∈∃x R x2.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .5,6,7,8,9D .6,16,26,36,46 3.如果一个家庭有两个小孩,则两个孩子是一男一女的概率为( ) A .14 B .13 C .12 D .234.双曲线1222=-y x 的渐近线方程为( ) A. 02=±y x B. 02=±y x C .02=±y x D .02=±y x5.甲、乙两名学生五次数学测验成绩(百分制)如图所示. ①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分与乙同学的平均分相等; ③甲同学成绩的方差大于乙同学成绩的方差. 以上说法正确的是( ) A .①②B .②③C .①③D .①②③6.用秦九韶算法求多项式7234)(234++++=x x x x x f 的值,则)2(f 的值为( ) A .98 B .105 C .112 D .119 7.运行如右图的程序后,输出的结果为( ) A .6053 B .54 C .65 D .76 8.已知椭圆221164x y +=过点)1,2(-P 作弦且弦被P 平分,则此弦 所在的直线方程为( )7 90 1 38 90 1 289甲乙ENDS PRINT WEND i i i i S S i WHILE S i 1))1(/(1601+=+*+=<==A .032=--y xB .012=--y xC .042=--y xD .042=+-y x9.已知)(x g 为函数)0(1232)(23≠--=a ax ax ax x f 的导函数,则它们的图象可能是( )A .B .C .D .10.已知倾斜角为︒45的直线l 过抛物线x y 42=的焦点,且与抛物线交于B A ,两点,则OAB ∆(其中O 为坐标原点)的面积为( ) A .2B .22C .23D .811.已知(),()f x g x 都是定义在R 上的函数,且满足以下条件:①()()xf x ag x =⋅(0,a >1)a ≠且;②()0g x ≠;③)(')()()('x g x f x g x f ⋅<⋅. 若(1)(1)5(1)(1)2f fg g -+=-,则实数a 的值为 ( )A .21 B .2 C .45 D .2或21 12.如图,直线m x =与抛物线y x 42=交于点A ,与圆4)1(22=+-x y 的实线部分(即在抛物线开口内 的圆弧)交于点B ,F 为抛物线的焦点,则ABF ∆的 周长的取值范围是( ) A .()4,2 B .()6,4 C .[]4,2 D . []6,4第Ⅱ卷二、填空题:本大题共四小题,每小题5分.13.将十进制数)10(2016化为八进制数为 . 14.已知变量x 与y 的取值如下表:x 23 5 6y 7a -8 a +9 12从散点图可以看出y 对x 呈现线性相关关系,则y 与x 的线性回归直线方程a bx y+=ˆ必经过的定点为 .15.已知P 为圆4)2(:22=++y x M 上的动点,)0,2(N ,线段PN 的垂直平分线与直线PM 的交点为Q ,点Q 的轨迹方程为 .16.已知函数xxe x f =)(,现有下列五种说法:①函数)(x f 为奇函数;②函数)(x f 的减区间为()-1∞,,增区间为()1+∞,;频率组距50 55 60 65 70 75 80体重(kg)O0.070.060.050.040.030.020.01③函数)(x f 的图象在0x =处的切线的斜率为1; ④函数)(x f 的最小值为1e-. 其中说法正确的序号是_______________(请写出所有正确说法的序号).三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设命题p :12>-x ;命题q :0)1()12(2≥+++-a a x a x .若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.18.(本小题满分12分)某校对高二年段的男生进行体检,现将高二男生的体重()kg 数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[)65,60的人数为200.根据一般标准,高二男生体重超过65kg 属于偏胖,低于55kg 属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[)6560,内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.19. (本小题满分12分)(1)执行如图所示的程序框图,如果输入的[]3,1-∈t ,若输出的s 的取值范围记为集合A ,求集合A ;(2)命题p :A a ∈,其中集合A 为第(1)题中的s 的取值范围;命题q :函数a x ax x x f +++=2331)(有极值; 若q p ∧为真命题,求实数a 的取值范围.20.(本小题满分12分)已知双曲线C :)00(12222>>=-,b a by a x .(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为b a ,,求双曲线C 的离心率小于5的概率;(2)在区间[]61,内取两个数依次记为b a ,,求双曲线C 的离心率小于5的概率.21.(本小题满分12分)已知椭圆C:)0(12222>>=+b a by a x 的中心在坐标原点O ,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形. (1)求椭圆C 的标准方程;(2)若斜率为k 的直线l 经过点)0,4(M ,与椭圆C 相交于A ,B 两点,且21>⋅OB OA ,求k 的取值范围.22. (本小题满分12分)已知函数)(2ln )(2R a x xa x a x f ∈++-=. (1)当1=a 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)当0>a 时,若函数()f x 在[1,]e 上的最小值记为)(a g ,请写出)(a g 的函数表达式.高二数学(文科)试卷参考答案一、DDCD BBCD ABAB二、13.)8(3740 14.()9,4 15.)0(1322<=-x y x 16.③④ 三、17.解:由p :12>-x 解得1<x 或3>x .……………………………… 3分由q :0)1()12(2≥+++-a a x a x 得[]0)1()(≥+--a x a x ,解得a x ≤或1+≥a x .……………………………… 6分∵p ⌝是q ⌝的必要不充分条件,∴p 是q 的充分不必要条件. …………………… 8分 ∴⎩⎨⎧≤+≥311a a ,则21≤≤a .∴实数a 的取值范围是[]21,.……………………………… 10分 18.解:(1)体重在[)65,60内的频率2.05)01.002.003.007.003.0(1=⨯++++-=04.052.0==组距频率 补全的频率分布直方图如图所示. ……………4分 (2)设男生总人数为n ,由2.0200=n,可得1000=n 体重超过kg 65的总人数为30010005)01.002.003.0(=⨯⨯++在[)70,65的人数为1501000503.0=⨯⨯,应抽取的人数为33001506=⨯, 在[)70,65的人数为1001000502.0=⨯⨯,应抽取的人数为23001006=⨯, 在[)80,75的人数为501000501.0=⨯⨯,应抽取的人数为1300506=⨯. 所以在[)70,65 ,[)75,70,[]80,75三段人数分别为3,2,1.…………………… 8分 (3)中位数为60kg 平均数为(52.50.0357.50.0762.50.0467.50.0372.50.0277.50.01)561.75⨯+⨯+⨯+⨯+⨯+⨯⨯=(kg)…12分19.解:(1)由程序框图可知,当11<≤-t 时,t s 2=,则[)2,2-∈s . 当31≤≤t 时,()322+--=t s组距kg)O0.0.0.0.0.0.0.∵该函数的对称轴为2=t ,∴该函数在[]21,上单调递增,在[]3,2上单调递减. ∴2,3min max ==s s ∴[]3,2∈s综上知,[]3,2-∈s ,集合[]3,2-=A ……………………………… 4分 (1)函数a x ax x x f +++=2331)(有极值,且12)(2'++=ax x x f , 0)('=x f 有两个不相等的实数根,即04)2(2>-=∆a 解得1-<a 或1>a即命题p :1-<a 或1>a .……………………………… 8分q p ∧为真命题,则⎩⎨⎧≤≤->-<3211a a 或a ,解得3112≤<-<≤-a 或a ;∴实数a 的取值范围是[)(]2,113--⋃,.……………………………… 12分20.解:双曲线的离心率22221ab ac a c e +===. 因为5e <a b ab 20422<<∴<∴.……………………………… 2分 (1) 因玩具枚质地是均匀的,各面朝下的可能性相等,所以基本事件),(b a 共有16个:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).设“双曲线C 的离心率小于5”为事件A ,则事件A 所包含的基本事件为(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有12个. 故双曲线C 的离心率小于5的概率为431612)(==A P .…………………………… 7分(2) ∵[][]6,1,6,1∈∈b a∴⎪⎩⎪⎨⎧<<≤≤≤≤a b b a 206161 所以以a 为横轴,以b 为纵轴建立直角坐标系,如图所示,21422155=⨯⨯-⨯=阴影S ,由几何概型可知,双曲线C 的离心率小于5的概率为2521=P .……………………………… 12分21.解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,32,22222=-=∴==∴c a b a c∴椭圆C 的标准方程为13422=+y x .……………………………… 4分 (2) 设直线l 的方程为)4(-=x k y ,设A (x 1,y 1),B (x 2,y 2)联立⎩⎨⎧=+-=1243)4(22y x x k y ,消去y 可得(0126432)43(2222=-+-+k x k x k∵直线l 与椭圆C 相交于A ,B 两点,∴0>∆由0)1264)(43(4)32(2222>-+-=∆k k k 解得412<k 设),(11y x A ,),(22y x B则34322221+=+k k x x ,3412642221+-=k k x x ……………………………… 7分211643324431264)1(16)(4)1()4()4(2222222221221221212121>++-+-+=++-+=--+=+=⋅k k k k k k k k x x k x x k x k x k x x y y x x OB OA解得196272>k ∴41196272<<k所以k 的取值范围是211433143321<<-<<-k 或k .……………………………… 12分22.解:(1)∵)(2ln )(2R a x x a x a x f ∈++-=,∴12)(22'+--=xa x a x f 当1=a 时,121)(,2ln )(2'+--=++-=xx x f x x x x f 2)1(,3)1('-===f k f曲线)(x f y =在点))1(,1(f 处的切线方程为)1(23--=-x y 即052=-+y x .……………………………… 3分(2)222222'))(2(212)(x a x a x x a ax x x a x a x f +-=--=+--=0,0>>x a ,由0)('>x f 得a x 2>,由0)('<x f 得a x 20<<)(x f ∴在(]a 2,0上为减函数,在()+∞,2a 上为增函数.……………………………… 5分①当210120≤<≤<a 即a 时,)(x f 在[]e ,1上为增函数. 12)1()(2+==∴a f a g 在(]a 2,0上为减函数,在()+∞,2a 上为增函数.…………… 7分②当22121ea e 即a <<<<时,)(x f 在[]a 2,1上为减函数,在(]e a ,2上为增函数. a a a a f a g 3)2ln()2()(+-==∴……………………………… 9分③当22ea e 即a ≥≥时,)(x f 在[]e ,1上为减函数. e ea a e f a g ++-==∴22)()(……………………………… 11分综上所述,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥++-<<+-≤<+=)2(2)221(3)2ln()210(12)(22e a e e a a e a a a a a a a g ……………………………… 12分。
高二数(Shu)学上学期期末考试试题及答案高(Gao)二数学(理(Li))试(Shi)题第(Di)Ⅰ卷(选择题(Ti) 共60分)一(Yi)、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个(Ge)选项中,只有一项是符合题目要求的.1、命题“若”的逆否命题是()A.若 B.C.若D.2、命题,若是真命题,则实数的取值范围是()A. B. C.D.3、下列各数中最大的数为()A.101111(2) B.1210(3) C.112(8) D.69(12)4、如图所示的程序框图,若输出的S=31,则判断框内填入的条件是()A. B. C. D.5、从某小学随机抽取200名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取36人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为( ).A.3 B.6 C.9 D.12(第4题图)(第5题图)6、袋中装有3个黑球、2个白球、1个红球,从中任取两个,互斥而不对立的事件是()A.“至少(Shao)有一个黑球”和“没有黑球” B.“至少(Shao)有一个白球”和“至少有一个红球”C.“至少有一个白(Bai)球”和“红球黑球各有一个” D.“恰有一个白球(Qiu)”和“恰有一个黑球”7、利用随机数表法对一个容量为500编号(Hao)为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第4列(Lie)的数开始向右读数,(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第3个数是()A.584 B.114 C.311 D.1608、是空(Kong)间的一个单位正交基底,在基(Ji)底{},,a b c下的坐标为,则p在基底下的坐标为()A. B. C.D.9、假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A. B. C. D.10、已知是双曲线的左、右焦点,过的直线与的左、右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为()A.4 B. C. D.11、已知定义域为的奇函数的导函数为,当时,,若,,,则的大小关系正确的是()A. B. C. D.12、已知是抛物线的焦点,直线与该抛物线交于第一象限内的两点A ,B ,若,则的值是( )A .B .C .D .第(Di)Ⅱ卷(非选择题 共90分)二.填空题:本(Ben)大题共4小题,每小题5分,共20分,把答案填在题中横线上.13、由曲(Qu)线,直(Zhi)线及(Ji)轴所围成的图(Tu)形的面积为 .14、椭(Tuo)圆与(Yu)直线交于两点,过原点与线段中点的直线的斜率为,则的值为 .15、下列命题:①命题“”的否命题为“”;②命题“”的否定是“” ③对于常数,“”是“方程表示的曲线是双曲线”的充要条件;④“”是“”的必要不充分条件;⑤已知向量不共面,则向量可以与向量和向量构成空间向量的一个基底.其中说法正确的有 (写出所有真命题的编号). 16、设定义域为的单调函数,对任意的,都有,若是方程的一个解,且,则实数.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17、(本小题满分10分) 设关于的一元二次方程.(1)若a 是从1,2,3,4四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有两个不等实根的概率;(2)若a 是从区间任取的一个数,b 是从区间任取的一个数,求上述方程有实根的概率.18、(本小题满分12分) 某厂采用新技术改造后生产甲产品的产量x (吨)与相应的生产成本y (万元)的几组对照数据.x 3 4 5 6 y33.54.55(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)已知该厂技改前生产50吨甲产品的生产成本为40万元.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产成本比技改前降低多少万元?(参考(Kao)数据(Ju):,)19、(本小题(Ti)满分12分)如图(Tu):四棱锥中(Zhong),底面是(Shi)平行四边(Bian)形,且,,,,点(Dian)F是的中点,点在边上移动.(1)证明:当点E在边BC上移动时,总有;(2)当等于何值时,与平面所成角的大小为45°.20、(本小题满分12分)已知函数,(1)若)(xf的一个极值点为1,求a的值;(2)设在上的最大值为b,当时,恒成立,求a的取值范围.21、(本小题满分12分)已知中心在原点,焦点在x轴的椭圆过点,且焦距为2,过点分别作斜率为的椭圆的动弦,设分别为线段,AB CD的中点.(1)求椭圆的标准方程;(2)当,直线是否恒过定点?如果是,求出定点坐标.如果不是,说明理由.22、(本小题满分12分)设函数(1)求函数)(xf的最小值;(2)设,讨论函数的单调性;(3)在第二问的基础上,若方程,()有两个不相等的实数根,求证:.高(Gao)二数学(理)参考答(Da)案DCDAB CCACB DA13. 14. 15. ③⑤ 16. 217. 解:设事件A 为“方程(Cheng)有实根”.当a >0,b >0时,方程(Cheng)有实根的充要条件为a>b(1)由题意知本题是一个古典概型,试验(Yan)发生包含的基本事件共12个: (1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2)(4,0)(4,1)(4,2) ………………2分(Fen) 其中第一个数表示(Shi)a 的取值,第二个数表示b 的取值.事件A 中包(Bao)含9个基本事件, ………………4分∴事件A 发生的概率为 ………………5分(2)由题意知本题是一个几何概型,试验的全部结束所构成的区域为{(a ,b )|1≤a≤4,0≤b≤2}满足条件的构成事件A 的区域为{(a ,b )|1≤a≤4,0≤b≤2,a≥b}………………8分∴所求的概率是 ………………10分18. 解(1)略 ………………2分(2)由已知42186ii x==∑42166.5ii y==∑4175.5i ii x y==∑所以,由最小二乘法确定的回归方程的系数为:b ^=………………5分a ^=y -b ^x =4-0.7×4.5=0.85 ………………7分 因此,所求的线性回归方程为y ^=0.7x +0.85 ………………8分(3)由(2)的回归方(Fang)程及技改前生产50吨甲产(Chan)品的生产成(Cheng)本,得降低的生(Sheng)产成(Cheng)本为(Wei):40-(0.7×50+0.85)=4.15(万(Wan)元). (12)分(Fen)19. 解解:(1)分别以AD、AB、AP所在直线为x、y、z轴,建立如图所示空间坐标系则可得P(0,0,1),B(0,1,0),F(0,,),D(,0,0)设BE=x,则E(x,1,0)∴=(x,1,﹣1)得=x•0+1×+(﹣1)×=0可得,即AF⊥PE成立;………………5分(2)求出=(,0,﹣1),设平面PDE的一个法向量为则,得………………7分∵PA与平面PDE所成角的大小为45°,=(0,0,1)∴sin45°==,得=………………9分解之得x=或x=∵BE=x,………………11分∴BE=,即当CE等于时,PA与平面PDE所成角的大小为45°.……………12分20. 解: (1),令,则a=1………………3分经检验,当a=1时,1是)(xf的一个极值点………………4分(2) ,所以()g x在[1,2]上是增函数,[2,4]上是减函数………………7分在[)1,x∈+∞上恒成立,由x∈[1,+∞)知,x+ln x>0,………………8分所以f(x)≥0恒成立等价于a≤x2x+ln x在x∈[e,+∞)时恒成立,………………9分令h (x )=x2x +ln x ,x ∈[1,+∞),有h ′(x )=xx -1+2ln xx +ln x 2>0,………………10分所(Suo)以h (x )在[1,+∞)上是(Shi)增函数,有h (x )≥h (1)=1,所(Suo)以a ≤1 ………………12分(Fen)21. 解(Jie):(1)由题(Ti)意知设右(You)焦点………………2分(Fen)椭圆方程为 ………………4分(2)由题意,设直线,即代入椭圆方程并化简得………………5分………………7分同理 ………………8分当时, 直线MN 的斜率………………9分直线MN 的方程为………………10分又 化简得 此时直线过定点(0,)当时,直线MN 即为y 轴,也过点(0,32-)………………12分 综上,直线过定点(0,32-) 22. (1)解:f′(x )=lnx+1(x >0),令f′(x )=0,得.……………2分∵当时,f′(x)<0;当时,f′(x)>0∴当(Dang)时(Shi),.………………3分(Fen)(2)F′(x)=2x﹣(a﹣2)﹣(x>0).当a≤0时(Shi),F′(x)>0,函数F(x)在(0,+∞)上单调递增,函数F(x)的单调增区间为(0,+∞).当a>0时,由(You)F′(x)>0,得x>;由(You)F′(x)<0,得0<x<.所以函数F(x)的单(Dan)调增区间为,单调减(Jian)区间为. (7)分(3)证明:因为x1、x2是方程F(x)=m的两个不等实根,由(1)知a>0.不妨设0<x1<x2,则﹣(a﹣2)x1﹣alnx1=c,﹣(a﹣2)x2﹣alnx2=c.两式相减得﹣(a﹣2)x1﹣alnx1﹣+(a﹣2)•x2+alnx2=0,即+2x1﹣﹣2x2=ax1+alnx1﹣ax2﹣alnx2=a(x1+lnx1﹣x2﹣lnx2).所以a=.因为F′=0,即证明x1+x2>,即证明﹣+(x1+x2)(lnx1﹣lnx2)<+2x1﹣﹣2x2,即证明ln <.设t=(0<t<1).令g(t)=lnt﹣,则g′(t)=.因为t>0,所以g′(t)≥0,当且仅当t=1时,g′(t)=0,所以g(t)在(0,+∞)上是增函数.又g(1)=0,所以当t∈(0,1)时,g(t)<0总成立.所以原题得证………………12分。
高二数学上学期期末考试题一、选择题:(每题5分,共60分)2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )(A )18, (B )6, (C )23, (D )243 3、与不等式xx --23≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)32--x x≥0, (D)(x-3)(2-x)>06、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( )(A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π(C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π437、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( )(A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=08、直线y=x+23被曲线y=21x 2截得线段的中点到原点的距离是 ( )(A )29 (B )29 (C )429 (D )22911、双曲线: 的准线方程是191622=-x y ( ) (A)y=±716 (B)x=±516 (C)X=±716 (D)Y=±51612、抛物线:y=4ax 2的焦点坐标为 ( ) (A )(a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a161,0)二、填空题:(每题4分,共16分) 13、若不等式ax 2+bx+2>0的解集是(–21,31),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 .15、已知圆的方程⎩⎨⎧-=+=θθsin 43cos 45y x 为(θ为参数),则其标准方程为 .16、已知双曲线162x -92y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为 .三、 解答题:(74分)17、如果a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分)19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。
第二中学2021-2021学年(xuénián)高二数学上学期期末考试试题文【本套试卷满分是150分,考试时间是是为120分钟】第一卷〔选择题 60分〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,选出符合题目要求的一项〕1.椭圆的离心率是〔〕A.B.C.D.2.一物体按规律运动,那么在时的瞬时速度是〔〕A.4 B.12 C.16 D.183.双曲线的焦点到渐近线的间隔是〔〕A.2 B.3 C.4 D. 54.〔〕A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.为函数的极小值点,那么a=〔〕A.B.3 C.D.9 6.命题,命题在区间上单调递增.那么以下命题中为真命题的是〔〕A.B.C.D.7.某几何体的三视图如右图,正视图和侧视图均为直角边为3的等腰直角三角形,那么这个几何体的体积是〔〕A.6 B.9 C.18 D.27 8.上可导函数(hánshù)的图象如右图,那么不等式的解集是〔〕A.B.C.D.9.为坐标原点,为抛物线的焦点,为上一点,假设,那么的面积是〔〕A.B.4 C.D.210.函数上单调递增,那么实数a的取值范围是〔〕A.B.C.D.11.双曲线的左右焦点分别为,正三角形的一边与双曲线左支交于点,且,那么双曲线C的离心率的值是〔〕A.B.C.D.12.定义在R上的函数()x f的导函数为,恒成立,那么〔〕A.B.C.D.第二卷〔非选择题 90分〕二、填空题:本大题一一共(yīgòng)4小题,每一小题5分,一共20分.把答案填在答卷的相应位置. 13.命题的否认是______________________. 14.曲线在点处的切线方程是_____________________.15.设是双曲线的两个焦点,点P 在双曲线上,假设线段的中点在轴上,那么的值是____________________.16.三棱锥的各顶点都在以O 为球心的球面上,且两两垂直,,那么球心O 到平面的间隔 是____________.三、解答题:本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤.17.〔10分〕设函数.〔1〕写出函数()x f 的递减区间; 〔2〕求函数()x f 在区间上的最大值.18.〔12分〕设命题,命题.〔1〕假设是的充分而不必要条件,务实数a 的取值范围;〔2〕假设,q p ∧为假命题,q p ∨为真命题,求的取值范围.19.〔12分〕抛物线过点,直线与C 交于两点.〔1〕求抛物线方程; 〔2〕假设(ji ǎsh è)线段中点为,求直线l 的方程.20.〔12分〕如图,在多面体中,四边形与是边长均为4的正方形,,且.〔1〕求证:; 〔2〕求三棱锥的体积.21.〔12分〕设椭圆的左右焦点分别为21F F ,,离心率为31,点P 在椭圆上,且的面积的最大值为.〔1〕求椭圆C 的方程; 〔2〕直线与椭圆C 交于不同的两点B A ,两点,假设在x 轴上存在点,使得,求点G 的横坐标的取值范围.22.〔12分〕设函数在点处的切线方程为.〔1〕求的值,并求()x f 的单调区间;〔2〕证明:当时,.数学(shùxué)答案〔文科〕1~5、DBAAB6~10、CBDAC 11~12、CD 13、14、15、16、17、解:〔1〕......................................1分令......................................2分当单调递增;单调递减,单调递增.....................................4分因此,函数()x f 的递增区间为.....................................5分(2)由〔1〕知,函数上的最大值有可能在处取到,.....................................9分因此函数()[]3,3-在x f 上的最大值为 (10)分18、解:〔1〕使命题p 为真的x的范围为集合.................................1分使命题q 为真的x 的范围为集合.................................2分由题知..................3分,,即............4分,解得................................6分〔2〕当2 a 时,集合(jíhé),由题知,命题一真一假...............................7分假设,那么...............................8分,解得..........................9分假设,那么............................10分,解得....................11分综上所述,x 的取值范围是...............................12分19、解:〔1〕将点,得.....................3分因此,抛物线方程为.....................4分 〔2〕设点,那么....................6分得, ③....................8分由....................9分代入③得....................10分因此直线l 的方程为,整理得....................12分20、解:〔1〕证明: (1)分 又..................2分且 (4)分又..................5分〔2〕....................7分....................9分....................12分21、解:〔1〕由得....................3分解(fēnjiě)得....................4分因此,椭圆C的方程为....................5分〔2〕设的中点为,....................6分由....................7分,,..........8分,.............9分..........10分,所以....................12分22、解:〔1〕 ......1分,由得,∴∴....................3分当因此(yīncǐ)........... ..5分〔2〕证明,设,..................6分..................7分所以 (9)分.................. 10分因此,,得证..............12分内容总结。
2022-2023学年陕西省部分名校高二上学期期末数学试卷(文科)考生注意:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2. 请将各题答案填写在答题卡上.3. 本试卷主要考试内容:北师大版必修5占30%,选修1-1占70%.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 椭圆C :22143x y +=的长轴为( ) A. 1B. 2C. 3D. 42. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若3c =,4b =,3A π=,则a =( )A.B. C. 5 D. 63. 已知p :0x ∀>,230x x +>;q :x ∃∈R ,210x +=.则下列命题中,真命题是( )A. p q ⌝∧B. p q ⌝∨C. p q ∧⌝D. p q ∧4. 设0(3)(3)lim 6x f x f x x∆→+∆--∆=-∆,则()3f '=( )A. -12B. -3C. 3D. 125. 已知等比数列{}n a 的前n 项乘积为n T ,若25T T =,则4a =( ) A. 1B. 2C. 3D. 46. 已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为340x y +=,则该双曲线的离心率是( )A.43B.53C.54D.7. 已知抛物线C :220x y =-的焦点为F ,抛物线C 上有一动点P ,且()3,6Q --,则PF PQ +的最小值为( )A. 8B. 16C. 11D. 268. 已知数列{}n a 满足1n n a a d -=+,2n ≥,n ∈N ,则“2m n a a d -=”是“2m n -=”的( ) A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件9. 函数21()ln 32f x x x =++的最小值是( ) A.92 B. 4C.72D. 310. 设1a <,则1211a a+-+的最小值为( )A.32B. 32- C. 1D. 211. 已知P 为抛物线C :216x y =-上一点,F 为焦点,过P 作C 的准线的垂线,垂足为H ,若PFH △的周长不小于30,则点P 的纵坐标的取值范围是( ) A. (],5-∞-B. (],4-∞-C. (],2-∞-D. (],1-∞-12. 定义在()0,+∞上的函数()f x 的导函数为()f x ',且()()4xf x f x '<恒成立,则( )A. 16(1)4(2)f f f >>B. 16(1)(2)4f f f >>C. 16(1)4(2)f f f <<D. 16(1)(2)4f f f <<第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13. 已知双曲线C :2221(0)x y a a-=>的焦距为10,则a =______.14. 若x ,y 满足约束条件10201x y x y x +-≥⎧⎪-≥⎨⎪≤⎩,则z y x =-的最小值为______.15. 已知函数()ln 1f x x x mx =++的零点恰好是()f x 的极值点,则m =______.16. 已知椭圆C :2214x y +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上的一点,若121cos 3F PF ∠=-,则12PF PF ⋅=______.三、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分) 已知函数()f x 满足32()(1)1f x x f x '=-⋅+.(1)求()1f '的值;(2)求()f x 的图象在2x =处的切线方程. 18.(12分)已知抛物线C :()220y px p =->,()06,A y -是抛物线C 上的点,且10AF =.(1)求抛物线C 的方程;(2)已知直线l 交抛物线C 于M ,N 两点,且MN 的中点为()4,2-,求直线l 的方程. 19.(12分)已知数列{}n a 的前n 项和为n S ,且(7)2n n n S +=. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 20.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin()bC A B a=--. (1)求A ;(2)设2a =,当b 的值最大时,求ABC △的面积. 21.(12分)已知函数()()ln 1f x x x a x =+-. (1)当2a =-时,求()f x 的单调区间;(2)证明:当1a <-时,()f x 在()1,+∞上存在唯一零点. 22.(12分)已知双曲线C :()222210,0x y a b a b-=>>的右焦点为),渐近线方程为2y x =±. (1)求双曲线C 的标准方程;(2)设D 为双曲线C 的右顶点,直线l 与双曲线C 交于不同于D 的E ,F 两点,若以EF 为直径的圆经过点D ,且DG EF ⊥于点G ,证明:存在定点H ,使GH 为定值.高二数学试卷参考答案(文科)1. D 椭圆C :22143x y +=的长轴为4. 2. A 由余弦定理可得2222cos 13a b c bc A =+-=,所以a = 3. C 由题意可得p 为真命题,q 为假命题.故p q ∧⌝为真命题.4. B 因为0(3)(3)lim2(3)6x f x f x f x∆→+∆--∆'==-∆,所以()33f '=-.5. A 因为25T T =,所以3451a a a =.因为2354a a a =,所以41a =.6. C 因为()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,所以:3:4b a =,54c e a ===.7. C 记抛物线C 的准线为l ,作PT l ⊥于T ,当P ,Q ,T 共线时,PF PQ +有最小值,最小值为6112p+=. 8. C 因为()2m n a a m n d d -=-=,所以2m n -=或0d =,故“2m n a a d -=”是“2m n -=”的必要不充分条件.9. C 由题意可得233111()x f x x x x -'=-=,令()0f x '>,1x >,令()0f x '<,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,故()f x 的最小值是()712f =.10. A12112(11)11211a a a a a a ⎛⎫+=+-++ ⎪-+-+⎝⎭12(1)331122a a a a +-++-+=≥,当且仅当12(1)11a a a a+-=-+,即3a =-. 11. A 如图,设点P 的坐标为(),m n ,准线4y =与y 轴的交点为A ,则4PF PH n ==-,FH ====PFH △的周长为()24n -.设函数()2(4)(0)f n n n =-≤,则()f n 为减函数,因为()530f -=,所以()30f n ≥的解为5n ≤-.12. A 设函数4()()f x g x x=,0x >,则4385()4()()4()()0x f x x f x xf x f x g x x x''--'==<, 所以()g x 在()0,+∞上单调递减,从而(1)(2)g g g >>,即44(1)(2)12f f >>,则16(1)4(2)f f f >>.13. 2125a +=,解得a =a =-(舍去).14. -1 作出可行域(图略),当直线y x z =+经过点()1,0时,z y x =-取最小值,最小值为-1.15. -1 设0x 是()ln 1f x x x mx =++的零点,也是()f x 的极值点,则()ln 1f x x m '=++,所以0000ln 10ln 10x x mx x m ++=⎧⎨++=⎩,解得01x =,1m =-. 16. 3 因为22212121212cos 2PF PF F F F PF PF PF +-∠=⋅()21212122122PFPF PFPF PF PF +-⋅-=⋅122113PF PF =-=-⋅,所以123PF PF ⋅=.17. 解:(1)因为2()32(1)f x x f x ''=-⋅,所以(1)32(1)f f ''=-,解得(1)1f '=. (2)由(1)可得32()1f x x x =-+,2()32f x x x '=-,则()25f =,()28f '=.故所求切线的方程为()582y x -=-,即811y x =-. 18. 解:(1)因为6102pAF =+=, 所以8p =,故抛物线C 的方程为216y x =-.(2)易知直线l 的斜率存在,设直线l 的斜率为k ,()11,M x y ,()22,N x y ,则2112221616y x y x ⎧=-⎨=-⎩,两式相减得()22121216y y x x -=--,整理得12121216y y x x y y -=--+.因为MN 的中点为()4,2-,所以12121644y y k x x -==-=--,所以直线l 的方程为()244y x -=-+,即4140x y ++=. 19. 解:(1)当1n =时,111842a S ⨯===. 当2n ≥时,1(1)(6)2n n n S --+=,所以1(7)(1)(6)322n n n n n n n a S S n -+-+=-=-=+,因为1n =也满足,所以通项公式为3n a n =+.(2)因为11111(3)(4)34n n n b a a n n n n +===-++++, 所以1111111145563444416n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭. 20. 解:(1)三角形的性质和正弦定理可知sin sin sin()sin()sin()2cos sin sin b B C A B A B A B A B a A==--=+--=⋅,其中sin 0B ≠,所以2sin cos sin 21AA A ==,因为()0,A π∈,所以()20,2A π∈,故22A π=,4A π=.(2)由正弦定理有22sin 4sin sin b B Cb B C a A++===+,且34sin 4sin 4B C B B π⎛⎫+=+-⎪⎝⎭cos ))B B B ϕ=+=+,其中1tan 2ϕ=,所以当()sin 1B ϕ+=时,b +有最大值,此时sin cos 5B ϕ==,cos 5B =,所以sin sin()sin (sin cos )42C A B B B B π⎛⎫=+=+=+=⎪⎝⎭由正弦定理有sin sin a bA B=,故b =,所以1112sin 2225ABC S ab C ==⨯=△. 21.(1)解:当1a =时,()ln 1f x x '=-.令()0f x '<,得0e x <<,令()0f x '>,得e x >, 所以()f x 的单调递减区间为()0,e ,单调递增区间为()e,+∞. (2)证明:()()ln 1f x x a '=++,令()0f x '=,得1e a x --=,因为1a <-,所以10e e 1a -->=.当()11,e a x --∈时,()0f x '<,()f x 在()11,e a --上单调递减;当()1e ,a x --∈+∞时,()0f x '>,()f x 在()1e ,a --+∞单调递增. 而()1e (1)0af f --<=,且()()e e ln e e 10a a a af a a ----=+-=->, 又因为()f x 在()1e ,a --+∞上单调递增, 所以()f x 在()1e ,a --+∞上有唯一零点. 当()11,e a x --∈时,恒有()()10f x f <=,()f x 无零点.综上,当1a <-时,()f x 在()1,+∞上存在唯一零点.22.(1)解:由题意知c =因为双曲线C 的渐近线方程为2y x =±,所以2b a =.因为222a cb =-,所以2a =,b =故双曲线C 的标准方程为22143x y -=. (2)证明:设()11,E x y ,()22,F x y .①当直线l 的斜率存在时,设l 的方程为y kx m =+,联立方程组22143y kx m x y =+⎧⎪⎨-=⎪⎩,化简得()()2223484120k x kmx m ---+=,则()()222(8)4412340km m k ∆=++->,即22430m k -+>,且122212283441234km x x k m x x k ⎧+=⎪⎪-⎨--⎪=⎪-⎩. 因为()()1212220DE DF x x y y ⋅=--+=, 所以()()2212121(2)4k x x km x x m ++-+++()2222241281(2)403434m km k km m k k--=+⋅+-⋅++=--, 化简得221628(2)(14)0m km k m k m k ++=++=, 所以2m k =-或14m k =-,且均满足22430m k -+>.当2m k =-时,直线l 的方程为()2y k x =-,直线过定点()2,0,与已知矛盾; 当14m k =-时,直线l 的方程为()14y k x =-,过定点()14,0M . ②当直线l 的斜率不存在时,由对称性不妨设直线DE :2y x =-,联立方程组222143y x x y =-⎧⎪⎨-=⎪⎩,得2x =(舍去)或14x =,此时直线l 也过定点()14,0M .因为DG EF ⊥,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径. 故存在定点()8,0H ,使GH 为定值6.。
2022-2021学年安徽省黄山市高二(上)期末数学试卷(文科)一.选择题1.直线x+y+3=0的倾斜角是()A.π B.π C. D.2.以下说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若命题p:∃x0∈R,使得x02+x0+1<0,则﹁p:∀x∈R,则x2+x+1≥0D.若p∨q为真命题,则p,q均为真命题3.直线x+ay+1=0与直线(a+1)x﹣2y+3=0相互垂直,则a的值为() A.﹣2 B.﹣1 C. 1 D.﹣2或14.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是() A. m⊂α,n⊂α,m∥β,n∥β⇒α∥β B.α∥β,m⊂α,n⊂α,⇒m∥nC. m⊥α,m⊥n⇒n∥α D. n∥m,n⊥α⇒m⊥α5.如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是()A. BD∥平面CB1D1B. AC1⊥BDC. AC1⊥平面CB1D1D.异面直线AC1与CB所成的角为60°6.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为() A. y=±2x B. y=±x C. y=±x D. y=±x7.直线y=kx+2与抛物线y2=8x只有一个公共点,则k的值为()A. 1 B. 0 C. 1或0 D. 1或38.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣89.底面是正方形,侧面是全等的等腰三角形的四棱锥,其5个顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. 16π C. 9π D.10.已知直线交于P,Q两点,若点F 为该椭圆的左焦点,则取最小值的t值为()A.﹣ B.﹣ C. D.二.填空题11.已知某几何体的三视图如图所示,则该几何体的体积为.12.过点P(1,2)的直线l与圆C:(x+3)2+(y﹣4)2=36交于A 、B两点,当|AB|最小时,直线l的方程是.13.已知抛物线C:y2=x的焦点为F,A(x0,y0)是抛物线上一点,|AF|=x0,则x0= .14.已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的标准方程为.15.如图,已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是A1B1,CC1的中点,过D1,E,F作平面D1EGF 交BB1于G.给出以下五个结论:①EG∥D1F;②BG=3GB1;③平面D1EGF⊥平面CDD1C1;④直线D1E与FG的交点在直线B1C1上;⑤几何体ABGEA1﹣DCFD1的体积为.其中正确的结论有(填上全部正确结论的序号)三.解答题(共6小题,共75分)16.已知命题p:“∀x>1,x+≥a”,命题q:“方程x2﹣ax+2a=0有两个不等实根”,p∧q为假命题,p∨q为真命题,求实数a的取值范围.17.已知圆C 的圆心为坐标原点O,且与直线l1:x﹣y﹣2=0相切.(1)求圆C的方程;(2)若与直线l1垂直的直线l2与圆C交于不同的两点P、Q,且以PQ为直径的圆过原点,求直线l2的方程.18.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE ;(3)求三棱锥E﹣ABC的体积.19.一个几何体是由圆柱ADD1A1和三棱锥E﹣ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC ,AB⊥AC,AB=AC,AE=2.(1)求证:AC⊥BD;(2)求三棱锥E﹣BCD的体积.20.在平面直角坐标系xOy 中,直线l 与抛物线y2=2x相交于P、Q两点,假如•=3,O为坐标原点.证明:直线l过定点.21.已知椭圆的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为.(Ⅰ)求椭圆方程;(Ⅱ)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(),证明:为定值.2022-2021学年安徽省黄山市高二(上)期末数学试卷(文科)参考答案与试题解析一.选择题1.直线x+y+3=0的倾斜角是()A.π B.π C. D.考点:直线的倾斜角.专题:直线与圆.分析:先求出直线的斜率,再求直线的倾斜角.解答:解:∵直线x+y+3=0的斜率k=﹣,∴直线x+y+3=0的倾斜角α=.故选:A.点评:本题考查直线的倾斜角的求法,是基础题,解题时要留意直线的性质的合理运用.2.以下说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若命题p:∃x0∈R,使得x02+x0+1<0,则﹁p:∀x∈R,则x2+x+1≥0D.若p∨q为真命题,则p,q均为真命题考点:命题的真假推断与应用.专题:简易规律.分析:直接写出命题的逆否命题推断A正确;由充分条件、必要条件的概念推断B正确;直接写出特称命题的否定推断C正确;由复合命题的真假推断说明D错误.解答:解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.命题A正确;对于B,由x=1,能够得到x2﹣3x+2=0.求解x2﹣3x+2=0得到x=1或x=2.∴“x=1”是“x2﹣3x+2=0”的充分不必要条件.命题B正确;对于C,命题p:∃x0∈R,使得x02+x0+1<0的否定为﹁p:∀x∈R,则x2+x+1≥0.命题C为真命题;对于D,∵若p,q中只要有一个为真命题,则p∨q为真命题.∴p∨q为真命题,则p,q均为真命题错误.命题D为假命题.故选:D.点评:本题考查了命题的真假推断与应用,解答的关键是熟记教材有关基础学问,属中档题.3.直线x+ay+1=0与直线(a+1)x﹣2y+3=0相互垂直,则a的值为()A.﹣2 B.﹣1 C. 1 D.﹣2或1考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由题意求出两条直线的斜率,利用两条直线的垂直条件,求出a的值.解答:解:由于直线方程:x+ay+1=0,直线方程:(a+1)x﹣2y+3=0,所以两条直线的斜率是:和,由于直线x+ay+1=0与直线(a+1)x﹣2y+3=0相互垂直,所以()×=﹣1,则a=1,故选:C.点评:本题考查两直线垂直的条件:斜率之积等于﹣1,留意斜率不存在时对应的特殊状况.4.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是() A. m⊂α,n⊂α,m∥β,n∥β⇒α∥β B.α∥β,m⊂α,n⊂α,⇒m∥nC. m⊥α,m⊥n⇒n∥α D. n∥m,n⊥α⇒m⊥α考点:空间中直线与平面之间的位置关系.分析:结合题意,由面面平行的判定定理推断A,面面平行的定义推断B,线面垂直的定义推断C,利用平行和垂直的结论推断.解答:解:A不正确,m、n少相交条件;B不正确,分别在两个平行平面的两条直线不肯定平行;C不正确,n可以在α内;故选D点评:本题主要考查了面面平行的判定定理及定义,线面垂直的定义及一些结论来推断空间线面的位置关系,培育规律思维力量.5.如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是()A. BD∥平面CB1D1B. AC1⊥BDC. AC1⊥平面CB1D1D.异面直线AC1与CB所成的角为60°考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:借助于正方体图形,利用空间中线线、线面、面面间的位置关系判定A、B、C、D选项正确与否,从而确定答案.解答:解:∵BD∥B1D1,BD不包含于平面CB1D1,B1D1⊂平面CB1D1,∴BD∥平面CB1D1,故A正确;∵BD⊥CC1,BD⊥AC,CC1∩AC=C,∴BD⊥平面ACC1,又AC1⊂平面ACC1,∴AC1⊥BD,故B正确;∵由三垂线定理知AC1⊥B1D1,AC1⊥B1C,∴AC1⊥平面CB1D1,故C正确;由CB∥C1B1,得∠AC1B1,其正切值为,故D错误.故选:D.点评:本题考查命题真假的推断,是中档题,解题时要认真审题,留意空间思维力量的培育.6.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为() A. y=±2x B. y=±x C. y=±x D. y=±x考点:双曲线的简洁性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用离心率公式,再由双曲线的a,b,c的关系,可得a,b的关系,再由渐近线方程即可得到.解答:解:由双曲线的离心率为,则e==,即c=a,b===a,由双曲线的渐近线方程为y=x,即有y=x.故选D.点评:本题考查双曲线的方程和性质,考查离心率公式和渐近线方程的求法,属于基础题.7.直线y=kx+2与抛物线y2=8x只有一个公共点,则k的值为()A. 1 B. 0 C. 1或0 D. 1或3考点:抛物线的简洁性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:由,得(kx+2)2=8x,再由直线y=kx+2与抛物线y2=8x有且只有一个公共点,知△=(4k﹣8)2﹣16k2=0,或k2=0,由此能求出k的值.解答:解:由,得(kx+2)2=8x,∴k2x2+4kx+4=8x,整理,得k2x2+(4k﹣8)x+4=0,∵直线y=kx+2与抛物线y2=8x有且只有一个公共点,∴△=(4k﹣8)2﹣16k2=0,或k2=0,解得k=1,或k=0.故选C.点评:本题考查直线与抛物线的位置关系,解题时要认真审题,认真解答,留意合理地进行等价转化.8.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是() A.﹣2 B.﹣4 C.﹣6 D.﹣8考点:直线与圆的位置关系.专题:直线与圆.分析:把圆的方程化为标准形式,求出弦心距,再由条件依据弦长公式求得a的值.解答:解:圆x2+y2+2x﹣2y+a=0 即(x+1)2+(y﹣1)2=2﹣a,故弦心距d==.再由弦长公式可得 2﹣a=2+4,∴a=﹣4,故选:B.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.9.底面是正方形,侧面是全等的等腰三角形的四棱锥,其5个顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. 16π C. 9π D.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用射影定理,求出球的半径,即可求出球的表面积.解答:解:设球的半径为R ,则()2=4•(2R﹣4),∴R=,∴球的表面积为4πR2=4=.故选:A.点评:本题考查球的表面积,考查同学的计算力量,确定球的半径是关键.10.已知直线交于P,Q两点,若点F 为该椭圆的左焦点,则取最小值的t值为()A.﹣ B.﹣ C. D.考点:椭圆的简洁性质;平面对量数量积的运算.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定F的坐标,设出P,Q 的坐标,表示出,即可求得结论.解答:解:由题意,F(﹣4,0)由椭圆的对称性,可设P(t,s),Q(t,﹣s),则=(t+4,s)•(t+4,﹣s)=(t+4)2﹣s2=∴t=﹣时,取最小值故选B.点评:本题考查椭圆的性质,考查向量学问的运用,考查同学的计算力量,属于基础题.二.填空题11.已知某几何体的三视图如图所示,则该几何体的体积为8 .考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:该几何体为三棱锥,PA⊥底面ABC,PA=4,OB=OC=2,OA=3.解答:解:由三视图可知:该几何体为三棱锥,PA⊥底面ABC,PA=4,OB=OC=2,OA=3.体积V==8.故答案为:8.点评:本题考查了三棱锥的三视图及其体积计算公式,属于基础题.12.过点P(1,2)的直线l与圆C:(x+3)2+(y﹣4)2=36交于A、B两点,当|AB|最小时,直线l的方程是y=2x .考点:直线与圆相交的性质.专题:直线与圆.分析:要使|AB|最小时,则圆心到直线的距离最大,即CP⊥AB,求出直线的斜率即可.解答:解:圆心C坐标为(﹣3,4),半径R=6,要使|AB|最小时,则圆心到直线的距离最大,即CP⊥AB,此时CP的斜率k=,则AB的斜率k=2,则l的方程为y﹣2=2(x﹣1),即y=2x,故答案为:y=2x.点评:本题主要考查直线和圆的位置关系的应用,依据弦长最小,确定直线的位置关系是解决本题的关键.13.已知抛物线C:y2=x的焦点为F,A(x0,y0)是抛物线上一点,|AF|=x0,则x0= 1 .考点:抛物线的简洁性质.专题:圆锥曲线的定义、性质与方程.分析:抛物线C:y2=x的准线方程为x=﹣,由抛物线的定义可得,A到焦点的距离即为A到准线的距离,可得x0+=,解方程即可得到所求值.解答:解:抛物线C:y2=x的准线方程为x=﹣,由抛物线的定义可得,A到焦点的距离即为A到准线的距离,即有|AF|=x0+=,解得x0=1.故答案为:1.点评:本题考查抛物线的定义、方程和性质,主要考查准线方程的运用,留意定义法解题,属于基础题.14.已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的标准方程为.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由已知得,由此能求出椭圆方程.解答:解:由已知得,解得a=,b=,c=1,∴.故答案为:.点评:本题考查椭圆方程的求法,是基础题,解题时要认真审题,留意椭圆性质的合理运用.15.如图,已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是A1B1,CC1的中点,过D1,E,F作平面D1EGF 交BB1于G.给出以下五个结论:①EG∥D1F;②BG=3GB1;③平面D1EGF⊥平面CDD1C1;④直线D1E与FG的交点在直线B1C1上;⑤几何体ABGEA1﹣DCFD1的体积为.其中正确的结论有①②④⑤(填上全部正确结论的序号)考点:棱柱、棱锥、棱台的体积;棱柱的结构特征;平面与平面垂直的判定.专题:空间位置关系与距离.分析:①利用面面平行的性质定理即可推断出正误;②如图所示,取BB1的中点M,连接A1M,FM.则四边形A1D1FM是平行四边形,再利用三角形的中位线定理可得G是B1M的中点,即可推断出正误;③由A1D1⊥平面CDD1C1,可得平面A1D1FM⊥平面CDD1C1,即可推断出正误;④直线D1E与FG的交点既在平面A1B1C1D1上,又在平面BCC1B1上,因此在平面A1B1C1D1与平面BCC1B1的交线上,即可推断出正误;⑤先计算三棱台B1EG﹣C1D1F的体积V1.利用几何体ABGEA1﹣DCFD1的体积为=﹣V1,即可推断出正误解答:解:对于①,∵平面ABB1A1∥平面DCC1D1,平面D1EGF∩平面ABB1A1=EG,平面D1EGF∩平面DCC1D1=D1F,∴EG∥D1F;对于②,如图所示,取BB1的中点M,连接A1M,FM.则四边形A1D1FM是平行四边形,∴A1M∥D1F,∴A1M∥EG,又点E是A1B1的中点,∴G是B1M的中点,∴BG=3GB1;对于③,∵A1D1⊥平面CDD1C1,∴平面A1D1FM⊥平面CDD1C1,可得平面D1EGF与平面CDD1C1不行能垂直,因此不正确;对于④,直线D1E与FG的交点既在平面A1B1C1D1上,又在平面BCC1B1上,因此在平面A1B1C1D1与平面BCC1B1的交线B 1C1上,正确;对于⑤,∵==1,==,高B1C1=2,∴三棱台B1EG﹣C1D 1F的体积V1==.∴几何体ABGEA1﹣DCFD1的体积为=﹣V1=23﹣=,因此正确.故答案为:①②④⑤.点评:本题考查了空间线面面面位置关系及其判定方法、三棱台的体积计算公式,考查了空间想象力量、推理力量,属于中档题.三.解答题(共6小题,共75分)16.已知命题p:“∀x>1,x+≥a”,命题q:“方程x2﹣ax+2a=0有两个不等实根”,p∧q为假命题,p∨q为真命题,求实数a的取值范围.考点:复合命题的真假.专题:函数的性质及应用;不等式的解法及应用;简易规律.分析:别求出命题p,q为真命题时的取值范围,然后利用若p∨q为真命题,p∧q为假命题,求实数a的取值范围.解答:解:命题p为真命题时:∀x>1,x﹣1>0,依据基本不等式,a ≤x﹣1++1≤2+1=2+1=3(当且仅当x﹣1=即x=0时取相等),此时a≤3;命题q为真命题时,方程x2﹣ax+2a=0有两个不等实根,则△>0,即a2﹣8a>0,解得a<0或a>8;∵p∧q为假命题,p∨q为真命题,∴命题p 和q一真一假,p真q假时,有,则0≤a ≤3,p假q真时,有,则a>8,∴实数a的取值范围:[0,3]∪(8,+∞).点评:本题主要考查复合命题的真假与简洁命题真假之间的关系,比较基础.17.已知圆C的圆心为坐标原点O,且与直线l1:x﹣y﹣2=0相切.(1)求圆C的方程;(2)若与直线l1垂直的直线l2与圆C交于不同的两点P、Q,且以PQ为直径的圆过原点,求直线l2的方程.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)依据点到直线的距离确定圆的半径,则圆的方程可得.(2)设出直线l2的方程,推断出△OPQ为等腰直角三角形,求得圆心到直线l2的距离进而利用点到直线的距离求得c.则直线方程可得.解答:解:(1)由已知圆心到直线的距离为半径,求得半径r==2,∴圆的方程为x2+y2=4.(2)设直线l2的方程为x+y+c=0,由已知△OPQ为等腰直角三角形,则圆心到直线l2的距离为1,利用点到直线的距离公式得=,求得c=±2.所以直线l2的方程为x+y+2=0或x+y﹣2=0.点评:本题主要考查了直线与圆的方程问题的应用.点到直线的距离公式是解决此类问题的常用公式,应机敏运用.18.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(1)证明AB⊥B1BCC1,可得平面ABE⊥B1BCC1;(2)证明C1F∥平面ABE,只需证明四边形FGEC1为平行四边形,可得C1F∥EG;(3)利用V E﹣ABC =S△ABC•AA1,可求三棱锥E﹣ABC的体积.解答:解:(1)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,BB1,BC⊂平面B1BCC1,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG=AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB=,∴V E﹣ABC =S△ABC•AA1=×(××1)×2=.点评:本题考查线面平行、垂直的证明,考查三棱锥E﹣ABC的体积的计算,正确运用线面平行、垂直的判定定理是关键.19.一个几何体是由圆柱ADD1A1和三棱锥E﹣ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.(1)求证:AC⊥BD;(2)求三棱锥E﹣BCD的体积.考点:棱柱、棱锥、棱台的体积;简洁空间图形的三视图;直线与平面垂直的性质.专题:计算题.分析:(1)由已知中EA⊥平面ABC,AB⊥AC,结合线面垂直的定义及线面垂直的判定定理,我们易求出AC ⊥平面EBD,进而得到答案.(2)要求三棱锥E﹣BCD的体积,我们有两种方法,方法一是利用转化思想,将三棱锥E﹣BCD的体积转化为三棱锥C﹣EBD的体积,求出棱锥的高和底面面积后,代入棱锥体积公式,进行求解;方法二是依据V E﹣BCD=V E﹣ABC+V D﹣ABC,将棱锥的体积两个棱次的体积之差,求出两个帮助棱锥的体积后,得到结论.解答:(1)证明:由于EA⊥平面ABC,AC⊂平面ABC,所以EA⊥AC,即ED⊥AC.又由于AC⊥AB,AB∩ED=A,所以AC⊥平面EBD.由于BD⊂平面EBD,所以AC⊥BD.(4分)(2)解:由于点A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径.设圆O的半径为r,圆柱高为h,依据正(主)视图、侧(左)视图的面积可得,(6分)解得所以BC=4,.以下给出求三棱锥E﹣BCD体积的两种方法:方法1:由(1)知,AC⊥平面EBD,所以.(10分)由于EA⊥平面ABC,AB⊂平面ABC,所以EA⊥AB,即ED⊥AB.其中ED=EA+DA=2+2=4,由于AB⊥AC ,,所以.(13分)所以.(14分)方法2:由于EA⊥平面ABC,所以.(10分)其中ED=EA+DA=2+2=4,由于AB⊥AC ,,所以.(13分)所以.(14分)点评:本题考查的学问点是棱锥的体积公式,简洁空间图形的三视图,直线与平面垂直的性质,其中依据已知中三视图的体积,推断出几何体中相关几何量的大小,结合已知中其中量,进而推断出线面关系是解答本题的关键.20.在平面直角坐标系xOy中,直线l与抛物线y2=2x相交于P、Q 两点,假如•=3,O为坐标原点.证明:直线l过定点.考点:平面对量数量积的运算.专题:平面对量及应用.分析:设出直线的方程,同抛物线方程联立,得到关于y的一元二次方程,依据根与系数的关系表示出数量积,依据数量积等于3,做出数量积表示式中的b的值,即得到定点的坐标.解答:证:由题意,直线的斜率不为0,所以设l:ky=x+b,代入抛物线y2=2x,消去x得y2﹣2ky+2b=0,设P(x1,y1),Q(x2,y2)则y1+y2=2k,y1y2=2b,∵•=3,∴x1x2+y1y2=3,即(k2+1)y1y2﹣kb(y1+y2)+b2=3代入得2(k2+1)b﹣2k2b+b2=3,解得b=﹣3或者b=1,∴直线方程为ky=x﹣3或者ky=x+1,故直线l过定点(3,0)或者(﹣1,0).点评:本题主要考查向量的数量积的运算,以及直线与抛物线的位置关系.21.已知椭圆的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为.(Ⅰ)求椭圆方程;(Ⅱ)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M (),证明:为定值.考点:直线与圆锥曲线的综合问题;平面对量的坐标运算;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:(I)先求出圆心坐标,再依据题意求出a、b,得椭圆的标准方程.(II)依据直线的斜率是否存在,分状况设直线方程,再与椭圆方程联立方程组,设出交点坐标,结合韦达定理根与系数的关系,利用向量坐标运算验证.解答:解:(I)∵圆x2+y2+2x=0的圆心为(﹣1,0),依据题意c=1,a﹣c=﹣1,∴a=.∴椭圆的标准方程是:+y2=1;(II)①当直线L与x轴垂直时,L的方程是:x=﹣1,得A(﹣1,),B(﹣1,﹣),•=(,)•(,﹣)=﹣.②当直线L与x轴不垂直时,设直线L的方程为 y=k(x+1)⇒(1+2k2)x2+4k2x+2k2﹣2=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,=(x1+,y1)•(x2+,y2)=x1x2+(x1+x2)++k2(x1x2+x1+x2+1)=(1+k2)x1x2+(k2+)(x1+x2)+k2+=(1+k2)()+(k2+)(﹣)+k2+=+=﹣2+=﹣综上•为定值﹣.点评:本题考查直线与圆锥曲线的综合问题及向量坐标运算.依据韦达定理,奇妙利用根与系数的关系设而不求,是解决本类问题的关键.。
成都树德中学高2021级高二上期期末检测数学(文科)试题(考试时间:120分钟试卷满分:150分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是A.①用随机抽样法,②用系统抽样法 B.①用系统抽样法,②用分层抽样法C.①用分层抽样法,②用随机抽样法 D.①用分层抽样法,②用系统抽样法2.下面命题正确的是A .“若0ab ≠,则0a ≠”的否命题为真命题;B .命题“若1x <,则21x <”的否定是“存在1≥x ,则21x ≥”;C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件;D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件.3.直线3y kx =+被圆()()22234x y -+-=截得的弦长为2,则直线的倾斜角为A.3π B.3π-或3πC.3π或23π D.6π或56π4.执行下面的程序框图,如果输入的3N =,那么输出的S =A.1B.32C.53D.525.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则双曲线C 的渐近线方程为A.y =B.3y x =±C.12y x =±D.2y x=±6.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球B.恰好有一个白球与都是红球C.至少有一个白球与都是白球D.至少有一个白球与至少一个红球7.已知点()M ,x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则1y z x =+的取值范围是A .[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦ B .12,2⎡⎤-⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎡⎤-⎢⎥⎣⎦8.变量x 与y 的数据如表所示,其中缺少了一个数值,已知y 关于x 的线性回归方程为 1.2 3.8y x =-,则缺少的数值为A .24B .25C .25.5D .26取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为A .0.852B .0.8192C .0.8D .0.7511.已知O 为坐标原点,双曲线)0(14:222>=-b b y x C 的右焦点为F ,以OF 为直径的圆与C 的两条渐近线分别交于与原点不重合的点,,B A 若||332||||AB OB OA =+,则ABF ∆的周长为A.6B.36C.324+D.344+12.已知12F F 、分别是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,椭圆C 过(2,0)A -和(0,1)B 两点,点P在线段AB 上,则12PF PF ⋅的取值范围为()A .11,5⎡⎫-+∞⎪⎢⎣⎭B .371,5⎡⎤⎢⎥⎣⎦C .[2,1]-D .11,15⎡⎤-⎢⎥⎣⎦二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线28y x =的焦点到其准线的距离为________.14.已知“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是假命题,则实数m 的取值范围为.15.在区间[0,1]上随机取两个数x、y ,则满足13x y -≥的概率为___________.16.已知直线y kx =与椭圆C :222212x yb b+=交于,A B 两点,弦BC 平行y 轴,交x 轴于D ,AD 的延长线交椭圆于E ,下列说法中正确的命题有__________.①椭圆C 的离心率为2;②12AE k k =;③12AE BE k k ⋅=-;④以AE 为直径的圆过点B .x2223242526y2324▲2628三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知圆C 上有两个点()()2,3,4,9A B ,且AB 为直径.(1)求圆C的方程;(2)已知()0,5P ,求过点P 且与圆C 相切的直线方程.18.(本小题满分12分)某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)求这50名问卷评分数据的中位数;(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.19.(本小题满分12分)已知双曲线C 的焦点在x 轴上,焦距为4,且它的一条渐近线方程为y =.(1)求C 的标准方程;(2)若直线1:12l y x =-与双曲线C 交于A ,B 两点,求||AB .20.(本题满分12分)某书店销售刚刚上市的高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:单价/元1819202122销量/册6156504845由数据知,销量y 与单价x 之间呈线性相关关系.(1)求y 关于x 的回归直线方程;附:=J1 (−p(−p(−p2,=−.(2)预计以后的销售中,销量与单价服从(1)中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?22.(本小题满分12分)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.公众号高中僧试题下载高2021级期末考试数学(文)试题参考答案一、1-5CDCCA6-10BCABD11-12BD二、13、11614、2m≤15、9216、②③④18、(1)由频率分布直方图可得:()0.028 2 0.0232 0.0156 0.004101a+⨯+++⨯=,解得a=0.006;(2)由频率分布的直方图可得设中位数为m,故可得()()0.004 0.006 0.023210700.0280.5m++⨯+-⨯=,解得m=76,所以这50名问卷评分数据的中位数为76.(3)由频率分布直方图可知评分在[40,60)内的人数为0.004 50100.00610505⨯⨯+⨯⨯=(人),评分在[50,60)内的人数为0.00650103⨯⨯=(人),设分数在[40,50)内的2人为12,a a,分数在[50,60)内的3人为123,,b b b,则在这5人中抽取2人的情况有:()12,a a,()11,a b,()12,a b,()13,a b,()21,a b,()22,a b,()23,a b,()12,b b,()13,b b,()23,b b,共有10种情况,其中分数在在[50,60)内的2人有()12,b b,()13,b b,()23,b b,有3种情况,所以概率为P=310.…………………………………12分19、(1)因为焦点在x轴上,设双曲线C的标准方程为22221(0,0)x y a ba b-=>>,由题意得24c=,所以2c=,①又双曲线C的一条渐近线为y x=,所以3ba=,②又222+=a b c,③联立上述式子解得a=1b=,故所求方程为2213x y-=;(2)设11(,)A x y,22(,)B x y,联立2211213y xx y⎧=-⎪⎪⎨⎪-=⎪⎩,整理得213604x x+-=,由2134((6)1504∆=-⨯⨯-=>,所以1212x x+=-,1224x x=-,即AB===20、(1)由表格数据得=18+19+20+21+225=20,=61+56+50+48+455=52.则J15 (i−)(y i−)=﹣40,J15 (i−)2=10,则=−4010=−4,=−=52﹣(﹣4)×20=132,则y关于的回归直线方程为=−4x+132;(2)获得的利润z=(x﹣10)(﹣4x+132)=﹣4x2+172x﹣1320,对应抛物线开口向下,则当x=−1722×(−4)=21.5时,z取得最大值,即为了获得最大利润,该单元测试卷的单价应定为21.5元.22、(1)由题意得12p=,即2p=,所以抛物线的准线方程为1x=-.(2)设(,),(,),(),A AB B c cA x yB x yC x y,重心(,)G GG x y.令2,0Ay t t=≠,则2Ax t=.由于直线AB过F,故直线AB方程为2112tx yt-=+,代入24y x=,得222(1)40ty yt---=,故24Bty=-,即2Byt=-,所以212(,Bt t-.又由于11(),(3)3G A B c G A B cx x x x y y y y=++=++及重心G在x轴上,故220ct yt-+=,得422211222((),2()),(3t tC t t Gt t t-+--.所以直线AC方程为222()y t t x t-=-,得2(1,0)Q t-.由于Q在焦点F的右侧,故22t>.从而424222124422242221|1||2|||223221222211||||1||||2||23Act t tFG yS t t ttt tS t tQG y t tt t-+-⋅⋅--====--+--⋅--⋅-.令22m t=-,则0m>,1221223434S mS m m mm=-=-++++3212≥-=+.当m=12SS取得最小值12+,此时(2,0)G.。
高二期末考试数学试题(文科)一,选择题(每小题5分,共60分)1.命题“”地否定是( )A. B.C. D.【结果】C【思路】【思路】依据特称命题地否定是全称命题即可得到结论.【详解】依据题意,先改变量词,然后否定结论,可得原命题地否定是:“”,故选C.【点睛】本题主要考查特称命题地否定,其方式是先改变量词,然后否定结论。
全称性命题地否定地方式也是如此.2.为了解名学生地学习情况,采用系统抽样地方式,从中抽取容量为地样本,则分段地间隔为()A. B. C. D.【结果】C【思路】试题思路:由题意知,分段间隔为,故选C.考点:本题考查系统抽样地定义,属于中等题.3.以下茎叶图记录了甲,乙两组各五名学生在一次英语听力测试中地成绩(单位:分).已知甲组数据地中位数为15,乙组数据地平均数为16.8,则x,y地值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8【结果】C【思路】【思路】识别茎叶图,依据中位数,平均数地定义,可求出x,y地值.【详解】依据茎叶图中地数据可得:甲组数据是9,12,10+x,24,27。
它地中位数是15,可得10+x=15,解得:x=5。
乙组数据地平均数为:,解得:y=8,所以x,y地值分别为5和8,故选C.【点睛】本题主要考查茎叶图及中位数,平均数地定义,依据茎叶图得到各数据进行求解是解题地关键.4.已知椭圆地左焦点为则m=()A. 2B. 3C. 4D. 9【结果】B【思路】试题思路:由题意,知该椭圆为横椭圆,所以,故选B.考点:椭圆地几何性质.5.执行如图所示地程序框图,输出地s值为( )A. 2B.C.D.【结果】C【思路】试题思路:时,成立,第一次进入循环:。
成立,第二次进入循环:。
成立,第三次进入循环:,不成立,输出,故选C.【名师点睛】解决此类型问题时要注意:第一,要明确是当型循环结构,还是直到型循环结构,并依据各自地特点执行循环体。
第二,要明确图中地累计变量,明确每一次执行循环体前和执行循环体后,变量地值发生地变化。
双鸭山第一中学高二期末数学(文)试题
一.选择题(共60分)
1.已知复数(23)=+z i i ,则复数z 的虚部为( )
A .3
B .3i
C .2
D .2i 2. 已知命题[]:0,2,sin 1p x x π∀∈≤,则( )
A .[]:0,2,sin 1p x x π⌝∃∈≥
B .[]:2,0,sin 1p x x π⌝∃∈->
C .[]:0,2,sin 1p x x π⌝∃∈>
D .[]:2,0,sin 1p x x π⌝∀∈->
3.命题:sin sin p ABC B C B ∆∠∠>在中,C >是的充要条件;命题22:q a b ac bc >>是的充分
不必要条件,则( )
A .p q 真假
B .p q 假假
C .p q “或”为假
D .p q “且”为真 4.执行下面的程序框图,输出的S 值为( )
A .1
B .3
C .7
D .15
5.执行上面的算法语句,输出的结果是( )
A.55,10
B.220,11
C.110,10
D.110,11
6.已知变量,x y 满足约束条件1330x y x y x +≥⎧⎪
+≤⎨⎪≥⎩
,则目标函数2z x y =+的最小值是( )
A .4
B .3
C .2
D . 1 7. 动圆圆心在抛物线24y x =上,且动圆恒与直线1x =-相切,则此动圆必过定点( ) A .()2,0 B .()1,0 C .()0,1 D .()0,1- 8.一圆形纸片的圆心为O ,F 是圆内一定点(异于O ),M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆
9.设斜率为2的直线l 过抛物线()2
0y ax a =≠的焦点F ,且和y 轴交于点A ,若O
A F ∆(O 为坐标原点)的面积为4,则抛物线方程为( ) A.24y x =± B. 28y x =± C.24y x = D.28y x = 10.
曲线1y =与直线()24y k x =-+有两个交点,则实数k 的取值范围是( ) A .50,
12⎛⎫ ⎪⎝⎭ B .5,12⎛⎫+∞ ⎪⎝⎭ C .13,34⎛⎤ ⎥⎝⎦ D .53,124⎛⎤
⎥⎝⎦
11.双曲线()2222:10,0x y C a b a b
-=>>的左右焦点分别是12,F F ,过1F 作倾斜角为0
30的直线交
双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )
A
.
3
12.过双曲线 ()2222:10,0x y C a b a b
-=>>的左焦点1F ,作圆222
x y a +=的切线交双曲线右支于
点P ,切点为点T ,1PF 的中点M 在第一象限,则以下结论正确的是( ) A .b a MO MT -=- B. b a MO MT ->- C .b a MO MT -<- D .b a MO MT -=+
二.填空题(共20分) 13.复数
212i
i
+-的共轭复数是 14.已知圆Q 过三点()1,0A ,()3,0B ,()0,1C ,则圆Q 的标准方程为 15.与抛物线2y x =有且仅有一个公共点,并且过点()1,1的直线方程为
16.已知双曲线
22
19x y m
-=的一个焦点在圆22450x y x +--=上,则双曲线的渐近线方程为 三.解答题(共70分)
17.(本小题10分)(1)设椭圆()22
22
:10x y
C a b a b
+=>>过点()0,4,离心率为35,求C 的标准 方程;
(2)已知抛物线的准线方程是2y =-,求抛物线的标准方程。
18.(本小题12分)已知一个圆经过()3,3A ,()2,4B 两点,且圆心C 在直线1
22
y x =
+上, (1)求圆C 的标准方程;(2)若直线2y kx =+与圆C 有两个不同的交点,求k 的取值范围。
19.(本小题12分).在三棱柱111ABC A B C -中,侧棱1AA ABC ⊥平面,各棱长均为2,
,,,D E F G 分别是棱1111,,,AC AA CC AC (1)求证:平面1B FG BED 平面; (2)求三棱锥1B BDE -的体积。
20. (本小题12分)已知命题:P 直线20x y -=与双
曲线
()22
21016x y m m
-=>没有公共点,命题 :q 直线20x ny n +-=与焦点在x 轴上的椭圆()22
2
1016x y m m +=>恒有公共点,若p q ∨为真 命题,p q ∧为假命题,求m 的取值范围。
21.(本小题12分)已知抛物线2y x =-与直线()1y k x =+相交于,A B 两点, (1)求证:OA OB ⊥;
(2)当AOB ∆
k 的值。
22. (本小题12分)椭圆()22
22:10x y C a b a b
+=>>的上顶点为B ,过点B 且互相垂直的动直线
12,l l 与椭圆的另一个交点分别为,P Q ,若当1l 的斜率为2时,点P 的坐标是5
4,33⎛⎫-- ⎪⎝⎭
(1)求椭圆C 的方程;
(2)若直线PQ 与y 轴相交于点M ,设PM MQ λ=
,求实数λ的取值范围。
双鸭山第一中学高二期末数学(文)答案
一.CCACD DBABD BA
二.13. i - 14. ()()2
2
225x y -+-= 15. 210x y -+=,1y = 16. 43
y x =±
17.(1)
22
12516
x y += (2)28x y = 18.(1)()()2
2
231x y -+-=; (2)403
k <<
19.(2
)V =
21. 0248m m <<≤≤或
22. (1)()2
2
2
2
210k x k x k +++=,2122
21
k x x k
++=-,121x x =, ()()()()222212121212121110OA OB x x y y x x k x k x k x k x x k =+=+++=++++=
(2
)AB d ==, 16k =± 22. (1)设直线1:2l y x b =+,54,33P ⎛⎫
-- ⎪⎝⎭代入,得2b =;椭圆方程为22214x y a +
=,54,33P ⎛⎫-- ⎪⎝⎭
代入,得2
5a =,所以22:154x y C +
= (2)设直线12,l l 方程分别为()12,20y kx y x k k =+=-+≠,由22
154
2
x y y kx ⎧+
=⎪⎨⎪=+⎩得()22
45200k x kx ++=得22054p k x k =-+,同理,可得22054Q k x k =+,由PM MQ λ= ,得
2220205454k k k k λ=++ ,所以2
229454554554k k k λ+==+++,因为2540k +>,所以29
9505420
k <<+,所以 4554
λ<<。