2.2综合式液力变矩器解析
- 格式:ppt
- 大小:1.09 MB
- 文档页数:22
液力变矩器的导轮有什么作用简单的说就是变矩液力变矩器和液力耦合器都有泵轮和涡轮,他们的差异就在有无导轮. 如果没有导轮,液力变矩器就是一个耦合器.耦合器泵轮和涡轮的转速不同而转矩相等.由于导论的存在,变矩器能在泵轮转矩不变的情况下,随着涡轮转速不同而改变涡轮转矩的输出值.在汽车变矩器中当变矩系数到达1之后由于单向离合器的作用,泵轮停止转动,变矩作用消失,变矩器实际上就成为耦合器导轮在低速时起到增扭的作用,一般安装在单向离合器上不能反转.泵轮由发动机带动旋转带动油液流动形成涡流冲击涡轮旋转将力传给涡轮.在泵轮和涡轮上有导流板, 油液形成了环流在泵轮涡轮导轮之间循环流动.泵轮油液冲击涡轮的力FB经涡轮冲击导轮导轮不能反转或固定不动形成反作用力FD作用在涡轮上.蜗轮得到的力FT=FB+FD就是导轮的增扭作用1.功用液力变矩器位于发动机和机械变速器之间,以自动变速器油〔ATF〕为工作介质,主要完成以下功用:〔1〕传递转矩.发动机的转矩通过液力变矩器的主动元件,再通过ATF传给液力变矩器的从动元件,最后传给变速器.〔2〕无级变速.根据工况的不同,液力变矩器可以在一定范围内实现转速和转矩的无级变化.〔3〕自动离合.液力变矩器由于采用ATF传递动力,当踩下制动踏板时,发动机也不会熄火,此时相当于离合器别离;当抬起制动踏板时,汽车可以起步,此时相当于离合器接合.〔4〕驱动油泵.ATF在工作的时候需要油泵提供一定的压力,而油泵一般是由液力变矩器壳体驱动的.同时由于采用ATF传递动力,液力变矩器的动力传递柔和,且能预防传动系过载.2.组成如图4-6所示,液力变矩器通常由泵轮、涡轮和导轮三个元件组成,称为三元件液力变矩器.也有的采用两个导轮,那么称为四元件液力变矩器. 液力变矩器总成封在一个钢制壳体〔变矩器壳体〕中,内部充满ATF.液力变矩器壳体通过螺栓与发动机曲轴后端的飞轮连接,与发动机曲轴一起旋转. 泵轮位于液力变矩器的后部,与变矩器壳体连在一起. 涡轮位于泵轮前,通过带花键的从动轴向后面的机械变速器输出动力.导轮位于泵轮与涡轮之间,通过单向离合器支承在固定套管上,使得导轮只能单向旋转〔顺时针旋转〕.泵轮、涡轮和导轮上都带有叶片,液力变矩器装配好后形成环形内腔,其间充满ATF 液力变矩器的工作原理1 .动力的传递液力变矩器工作时,壳体内充满ATF,发动机带动壳体旋转,壳体带动泵轮旋转,泵轮的叶片将ATF带动起来,并冲击到涡轮的叶片;如果作用在涡轮叶片上冲击力大于作用在涡轮上阻力,涡轮将开始转动,并使机械变速器的输入轴一起转动.由涡轮叶片流出的ATF经过导轮后再流回到泵轮,形成如图4-7所示的循环流动.具体来说,上述ATF的循环流动是两种运动的合运动.当液力变矩器工作,泵轮旋转时,泵轮叶片带动ATF旋转起来,ATF绕着泵轮轴线作圆周运动;同样随着涡轮的旋转,ATF也绕着涡轮轴线作圆周运动. 旋转起来的ATF在离心力的作用下,沿着泵轮和涡轮的叶片从内缘流向外缘.当泵轮转速大于涡轮转速时,泵轮叶片外缘的液压大于涡轮外缘的液压.因此,ATF油在作圆周运动的同时,在上述压差的作用下由泵轮流向涡轮,再流向导轮,最后返回泵轮,形成在液力变矩器环形腔内的循环运动.2.转矩的放大在泵轮与涡轮的转速差较大的情况下,由涡轮甩出的ATF以逆时针方向冲击导轮叶片,如图4-8所示,此时导轮是固定不动的,由于导轮上装有单向离合器,它可以预防导轮逆时针转动.导轮的叶片形状使得ATF的流向改变为顺时针方向流回泵轮,即与泵轮的旋转方向相同.泵轮将来自发动机和从涡轮回流的能量一起传递给涡轮,使涡轮输出转矩增大.液力变矩器的转矩放大倍数一般为2.2左右.液力变矩器的变矩特性只有在泵轮与涡轮转速相差较大的情况下才成立,随着涡轮转速的不断提升,从涡轮回流的ATF油会按顺时针方向冲击导轮.假设导轮仍然固定不动,ATF油将会产生涡流,阻碍其自身的运动.为此绝大多数液力变矩器在导轮机构中增设了单向离合器,也称自由轮机构.当涡轮与泵轮转速相差较大时,单向离合器处于锁止状态,导轮不能转动.当涡轮转速到达泵轮转速的85%〜90%时,单向离合器导通,导轮空转,不起导流的作用,液力变矩器的输出转矩不能增加,只能等于泵轮的转矩,此时称为偶合状态液力变矩器的工作原理可以通过一对风扇的工作来描述.如图4-9所示,将风扇A通电,将气流吹动起来,并使未通电的电扇B也转动起来,此时动力由电扇A传递到电扇Bo为了实现转矩的放大,在两台电扇的反面加上一条空气通道,使穿过风扇B的气流通过空气通道的导向,从电扇A的反面流回,这会增强电扇A吹动的气流,使吹向电扇B的转矩增加. 即电扇A相当于泵轮,电扇B相当于涡轮,空气通道相当于导轮,空气相当于ATE液力变矩器的液流如图4-10所示,由图可以看出,涡轮回流的ATF油经过导轮叶片后改变流动方向,与泵轮旋转方向相同,从而使液力变矩器具有转矩放大的功用.3.无级变速从上面的分析我们可以得出这样的结论:随着涡轮转速的逐渐提升, 涡轮输出的转矩要逐渐下降,而且这种变化是连续的.同样,如果涡轮上的负荷增加了,涡轮的转速要下降,而涡轮输出的转矩增加正好适应负荷的增加 2.锁止离合器锁止离合器简称TCC是英文Torque Converter Clutch的缩写.锁止离合器可以将泵轮和涡轮直接连接起来,即将发动机与机械变速器直接连接起来,这样减少液力变矩器在高速比时的能量损耗,提升了传动效率,提升汽车在正常行驶时的燃油经济性,并预防ATF油过热.锁止离合器接合时,进入液力变矩器中的ATF按图4—15a〕所示的方向流动,使锁止活塞向前移动,压紧在液力变矩器壳体上,通过摩擦力矩使二者一起转动.此时发动机的动力经液力变矩器壳体、锁止活塞、扭转减振器、涡轮轮毂传给后面的机械变速器,相当于将泵轮和涡轮刚性连在一起,传动效率为100%常见的单向离合器有楔块式和滚柱式两种结构形式.楔块式单向离合器如图4—12所示,由内座圈、外座圈、楔块、保持架等组成.导轮与外座圈连为一体,内座圈与固定套管刚性连接,不能转动.当导轮带动外座圈逆时针转动时,外座圈带动楔块逆时针转动,楔块的长径与内、外座圈接触,如图4—12a〕所示由于长径长度大于内、外座圈之间的距离,所以外座圈被卡住而不能转动.当导轮带动外座圈顺时针转动时,外座圈带动楔块顺时针转动,楔块的短径与内、外座圈接触,如图 4 —12b〕所示由于短径长度小于内、外座圈之间的距离,所以外座圈可以自由转动图4-1Z楔块式单向离合器a〕不可转动匕〕可以转动①楔块结构d〕楔块式单向离合器1 -内座圈2-楔块3-外座圈4-保持架楔块的作用一般用于离合器锁紧、逆止作用,例如外圈相对于内圈沿逆时针方向转动时,楔块被推动发生倾斜,在内、外围之间让出一定空间,因而不会锁止离合器.换言之,图示楔块式单向离合器在任何时候都允许其外圈相对于内圈沿逆时针方向旋转,或允许其内圈相对于外围沿顺时针方向旋转.然而,假设外圈试图相对于内圈沿顺时针方向转动时,楔块因几何形状的缘故,将卡在内、外圈之间无法活动,从而将两者锁死在一起. 这就是说,一旦楔块卡住内、外圈,那么单向离合器出现锁止, 使外圈无法相对于内圈按顺时针方向旋转,或内圈相对于外圈按逆时针方向旋转.在汽车液力变矩器导轮的轴上为什么要装单向离合器液力变扭器所以能变扭,就是比液力耦合器多了一个固定的导轮机构.但是从传动特性看, 涡轮与泵论转速差较大时变扭器效率大于耦合器,当涡轮转速接近泵论时变扭器效率迅速下降,低于耦合器效率.所以采用一个自由轮斜面滚柱锁销机构,也就是你所说的单向离合器,其工作原理也就是一种超越离合器.在两轮传动比大时导轮固定不动,充分利用变扭器效率, 在传动比小时导轮随涡轮转动,成为耦合器,目的是提升液力变扭器的工作效率.变矩器的导轮中间为什么设置单向离合器当变矩器涡轮和泵轮转数相等, 泵轮的油液除了驱动涡轮旋转外, 已没有剩余能量,油液流动角度也变到了最小点, 涡轮返回的油液冲向了导轮的反面.在导轮上安装单向离合器,负责锁止左转,当油液冲击固定在单向离合器上导轮的反面时,导轮便开始旋转,这是个临界点,在这临界点之前为变矩工况,临界点之后为偶合工况.。
第2章液力变矩器结构原理2.1 液力变矩器的作用及其结构就汽车上广泛采用的三元件综合式液力变矩器而言,它有一个工作腔,其中有三个叶片,即泵轮、涡轮和导轮。
泵轮与发动机曲轴相联接,把输入的机械能转变为自动变速器油的能量,使油液的动量矩增加,其作用类似离心泵的叶轮,所以称其为泵轮。
涡轮与自动变速器中的行星齿轮变速器输入轴相联接,将自动变速器油的能量转变为机械能输出,涡轮因其使油液的动量矩减小,作用类似于水涡轮,故被称为涡轮。
导轮不转动时,变速器壳体的反作用扭矩通过它作用于自动变速器油,使油液的动量矩改变,换言之,导轮在液力变矩器中起导向作用,使自涡轮流出的油液改变方向后流向导轮,形成液体循环,所以称其为导轮。
液力变矩器的作用主要有:a)自动无级变矩、变速。
液力变矩器的涡轮扭矩,能随着汽车行驶中负荷扭矩的增大而自动增大,同时,涡轮转速自动降低;而当负荷扭矩减小时,涡轮扭矩随之自动减小,同时,涡轮转速自动升高。
b)自动离合。
液力变矩器可借助于传递或不传递发动机发出的扭矩至行星齿轮变速器,起自动离合器的作用,从而在使用自动变速器的汽车上,取消了传统的螺旋弹簧式或膜片弹簧式离合器,大大减轻了驾驶员的负担。
c)减振隔振。
由于液力变矩器是通过液力作用进行偶合传动的装置,主、从动件之间无直接的机械传动关系,所以能通过自动变速器油的阻尼作用,减小发动机的扭振,并隔离这种扭转振动向底盘传动系统的传递,从而提高汽车发动机和底盘传动系统的使用寿命。
d)使发动机转动平稳。
由于工作时内部充满自动变速器油液的液力变矩器具有较大的转动质量,完全可以起到传统的飞轮使发动机转动平稳的作用,所以在装用自动变速器的汽车上,取消了发动机飞轮。
为实现扭矩的传递,仅在发动机曲轴与液力变矩器之间,安装一柔性联接板或驱动端盖。
e)过载保护。
当汽车行驶工况突然变化,出现过负荷时,使用液力变矩器,可以对发动机起保护作用。
f)发动机制动。
在汽车下长坡行驶时,可以通过液力变矩器的偶合传动,利用发动机的泵气损失来进行制动。
第2单元汽车自动变速器及检修A2变矩器单元目标熟悉变矩器构造 熟悉变矩器工作原理 了解变矩器的诊断检查方法单元目录概述 组成结构 工作原理 传动效率 锁止离合器 诊断检查 单元总结概述变矩器能够在发动机和变速器之间提供平稳传递扭矩的液力连接变矩器通过液力传动增大输出扭矩,使汽车具有良好的起步和加速性能变矩器锁止离合器结合可以消除液力传动过程中的动力损失,提高汽车高速行驶时的燃油经济性变矩器还能够驱动变速器油泵,产生所需的变速器工作油压组成结构变矩器有四个主要的组成部件,分别是泵轮、涡轮、导轮和锁止离合器。
泵轮通过油流驱动涡轮,流出涡轮的油流通过导轮调整方向后再作用到泵轮。
从涡轮出来的油流旋转方向与泵轮相反,冲击导轮叶片前端,导轮的单向离合器使导轮的叶片保持固定,从而改变从涡轮出来的油流的旋转方向,变成与泵轮同向旋转,以帮助泵轮旋转实现增大输出扭矩。
车辆起步和低速驶时离开涡轮的油流冲击到导轮叶片的后侧,于是单向离合器不再保持导轮的叶片固定,导轮将自由旋转,以防止油流改变旋转方向阻碍泵轮运转。
车辆高速行驶时传动效率失速点(涡轮与泵轮的转速比为零)时获得最大的扭矩比,但传动效率为零随着涡轮与泵轮的转速比逐渐增加,扭矩比逐渐下降,而变矩器传动效率则逐渐增大当涡轮与泵轮的转速比超过0.8后,变矩器作为液力耦合器发挥作用锁止离合器车辆在特定的前进档位行驶,达到一定的车速后,可通过油压将压盘与变矩器端盖壳体压在一起,从而在发动机和变速器之间实现机械连接,提高传动效率。
锁止离合器速或减速行驶时,锁止离合器处于分离状态,变矩器采用液力传动。
外观检查迹检查壳体是否有损伤及变形 查看所有的螺纹是否有损伤 检查变矩器毂是否有磨损检查是否过热(表面发蓝)确保变矩器内部清洁 将检测工具安装到变矩器上 使导轮单向离合器的外圈固定 用手通过检测工具适当旋转导轮单向离合器的内圈应能顺时针自由转动内圈,而逆时针转动时则应锁止。
TIP 导轮单向离合器检查单元总结谢谢。
【课题】2.2 液力传动装置
【教学目标】
知识目标:
(1)了解液力变矩器和液力耦合器的工作原理;
(2)掌握液力变矩器和液力耦合器的结构组成和作用。
能力目标:
通过液力传动装置的学习,培养学生对自动挡汽车基本知识的掌握。
情感目标:通过学习液力传动装置,.增长学生对液力传动装置应用的认识,从而提高对自动变速器的学习兴趣。
【教学重点】
液力变矩器和液力耦合器的结构组成和作用。
【教学难点】
液力变矩器和液力耦合器的工作原理。
【教学设计】
(1)通过液力传动导入液力传动装置;
(2)引导学生理解液力耦合器和液力变矩器的区别和各自特点;
(3)针对液力耦合器的工作原理和特点,分析学习液力变矩器的特点和工作原理,进而学习液力传动装置知识;
(4)通过课后练习,巩固知识.
(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.
【教学备品】
教学课件和实物
【课时安排】
4课时.(90分钟)
【教学过程】。
课题二 液力变矩器任务实施液力传动装置是通过液体的循环流动,实现能量的变换,从而在两构件间传递动力。
液力耦合器能够实现主动轴和从动轴间的柔和接合,在理论上能将主动轴的转矩大小不变地传递给从动轴。
液力耦合器是先于液力变矩器出现的液力传动装置。
液力耦合器其结构件少,便于建立对液体运动和作用原理的认识。
所以先介绍液力耦合器的结构与传动原理。
液力耦合器是依靠液体的运动传递动力,传动元件间没有机械连接。
液力耦合器的传动与元件的结构有关,更重要的是结构决定液体运动。
充分了解耦合器的结构和液体运动的一些特性,是理解耦合器工作原理的首要任务。
一 液力耦合器的结构液力耦合器的结构如图1-2-1所示。
耦合器主要由三个元件,即两个直径、结构基本相同的工作轮和壳体组成,工作轮上排列有从中心向外辐射状的叶。
工作轮安装于封闭的壳体内,壳体内充有一定量的液体。
工作轮通过学习目标:◆知识目标1.理解液体传动的基本原理。
2.理解液体动能所做的功。
3.了解液力耦合器与液力变矩器内液体的运动。
4.掌握变矩器的基本结构5.掌握液力变矩器的增矩原理。
◆能力目标掌握液力变矩器检测的基本方法。
模块一 电控液力自动变速器花键与输入、输出轴连接。
图1-2-1液力耦合器由发动机曲轴驱动的工作轮是耦合器主动元件,称为泵轮。
与变速器输入轴相连的工作轮是耦合器被动元件,称为涡轮。
两工作轮装合后相对之间约有3~4mm的间隙,封闭的壳体内装有占空腔容积85%的液体。
装合后的耦合器沿轴线剖开的纵断面,相对叶片及壳体呈圆形,称为循环圆,如图1-2-2所示。
循环圆是构成液体运动与实现动力传递的主要区域。
图1-2-2 液力耦合器中的循环圆二液力耦合器的工作过程由结构可知,液力耦合器的两个工作轮没有刚性连接,动力传递完全取决于其内部液体的运动。
当发动机驱动泵轮转动时,泵轮上的叶片推动液体同方向转动,将发动机的机械能转变为液体的动能,运动的液体冲击在相对位置的涡轮叶片上,使涡轮随之转动,又将液体的动能转变为机械能对变速器输出。