做一做_利用图形的平移、旋转和轴对称设计图案
- 格式:ppt
- 大小:414.50 KB
- 文档页数:1
利用图形的平移、旋转、轴对称设计图案教学设计思想:对于本节的内容,教师可以先向学生展示生活中的一些精美图案,引起学生的兴趣,通过分析它们的形成过程,来学会如何独立的设计图案。
在整体教学中,教师起到的是引导的作用,要以学生为主体,学生应该多动手、动脑子,细心认真的观察各个图案,分析每个图形的构成。
教学目标:1、经历对典型图片的赏析,发展空间概念,增强审美意识。
2、灵活运用图形的平移、旋转、轴对称进行图案设计,体验平移、旋转、轴对称在现实生活中的应用,积累数学活动经验。
知识与技能能灵活运用轴对称、平移和旋转的组合进行简单的图案设计。
过程与方法经历对图案进行观察、分析、欣赏等过程,感受这些图案与变换的关系;多动手、动脑,细心认真观察,分析每个图形的构成。
情感态度价值观在设计图案的过程中,感受变换在现实生活中的作用。
教学重点:分析、欣赏生活中的一些美丽的图案,知道它们的形成过程,并会设计一些美丽的图案。
教学难点:利用平移、旋转、对称,自己设计一些美丽的图案。
教学方法:引导式。
教学安排:1课时。
教具准备:幻灯片。
教学过程:一、复习引入1.帮助学生复习平移、旋转和中心对称的定义和性质;2.中心对称与轴对称的区别和联系;教师:利用图形的平移、旋转和轴对称可以设计出许多美丽的图案,我们先来介绍一个概念:我们将图形的平移、旋转和轴对称统称为图形变换。
二、新课讲授问题1:P128试着做做回顾平移、旋转的知识问题2:P128观察与思考体会一些复杂图案可由一些简单图形通过多次轴对称和旋转变化行成。
问题3:P129做一做教师可以进行必要的提示和补充,让学生自己选择图案进行图案设计。
鼓励学生勤思考,看看还可以设计出哪些图案。
三、课堂总结本节的重点难点是分析、欣赏生活中一些美丽的图案,知道它们的形成过程,并逐步学会利用平移、旋转、对称,自己设计一些美丽的图案,易错点就是观察图形不细,找不到或找错“基本图形”。
板书设计:。
16.5 利用图形的平移、旋转和轴对称设计图案同步训练 2024-2025学年冀教版数学八年级上册一、单选题1.将图中所示的图案平移后得到的图案是()A.B.C.D.2.“玉兔”在月球表面行走的动力主要来自太阳光能,要使接收太阳光能最多,就要使光线垂直照射在太阳光板上.某一时刻太阳光的照射角度如图所示,要使得此时接收的光能最多,那么太阳光板绕支点A逆时针旋转的最小角度为()A.44°B.46°C.36°D.54°3.在平面内,由图1经过两次图形变换后得到图2,下列说法错误的是()A.只需经过两次轴对称变换B.只需经过两次中心对称变换C.先经过轴对称变换,再进行中心对称变换D.先经过中心对称变换,再进行轴对称变换4.七巧板是我们祖先的一项卓越创造,被西方人誉为“东方魔板”.已知如图所示的“正方形”是由七块七巧板拼成的正方形(相同的板规定序号相同).现从七巧板取出四块(序号可以相同)拼成一个小正方形(无空隙不重叠),则无法拼成的序号为()A.②②②B.②②②C.②②②D.②②②5.彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是().A.B.C.D.6.如图,为保持原图的模样,应选哪一块拼在图案的空白处()A.A B.B C.C D.D7.已知正△ABC的中心为O,边长为1.将其沿直线l向右不滑动的翻滚一周时,其中心O 经过的路径长是()A.43√3πB.23√3πC.4πD.2π二、填空题8.将点A绕另一个点O旋转一周,点A在旋转过程中所经过的路线是.9.一个数字映在镜子里的像如图所示,则这个数字是.10.如图所示,在正方形网格中,图②经过变换可以得到图②;图②是由图②经过旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”).11.已知点A(a,−1),B(2,b),若点A、B关于y轴对称,则a+b的值为.12.右图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“ ”的交通标志(不画图案,只填含义).13.以如图(1)(以O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图(2)的有(只填序号,多填或错填得0分,少填个酌情给分).②只要向右平移1个单位;②先以直线AB为对称轴进行翻折,再向右平移1个单位;②先绕着点O旋转180°,再向右平移一个单位;②绕着OB的中点旋转180°即可.三、解答题14.在日常生产生活中,我们常会见到一些由旋转形成的美丽的图案.观察下列的两幅图(图(1)和图(2)),你能说出他们是由什么基本图形绕中心旋转180°设计出来的吗?15.构成如图所示中每个图形的一个基本图形是什么?它们是如何由基本图形变换而成的?16.请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:;特征2:.(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).17.(1)如图1,大圆面积为5,请应用旋转知识,画图说明空白部分的面积.(2)如图2,大正方形边长为9个单位长,阴影部分的宽为1个单位长,请应用平移知识,画图说明空白部分的面积.18.旋转知识结构图19.如图,在6×8方格纸中有直线l,点A,B,C都在格点上,按要求画多边形...,使它的顶点都在方格的格点上,点A,B,C在边上(包括顶点).(1)在图1中画一个轴对称图形,使直线l是对称轴;(2)在图2中画一个中心对称图形(非矩形),使直线l平分它的面积.。
(教案)利用图形的平移,旋转和轴对称设计图案教学目标1、能够按要求作出简单平面图形通过轴对称后的图形.[来源:1ZXXK]2、观赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计.3、体会轴对称在现实生活中的广泛应用和丰富的文化价值.教学重点点A关于l的轴对称点的画法,补全有关轴对称图形的操作技能,设计轴对称图形.[来源:Z*xx*k ]教学难点把握有关画图的技能及设计轴对称图形.教材分析本课时学习内容是在学生差不多关注到生活中的轴对称现象和对轴对称性质有一定认识基础上展开的.能够按要求作出简单平面图形通过轴对称后的图形,利用轴对称设计图案是本课时的较高要求.发觉周围的轴对称图案,体会轴对称的应用价值和增强学生审美乐趣,是本课时任务之一.前两项目标属于知识与技能层次,要专门好的把握,后者引导学生认真体会,渗透理念.教学建议本课时提早布置学生搜集周围的轴对称图案标志等,使学生在搜集的过程中体会轴对称在现实生活中的广泛应用和丰富的文化价值,增强学生审美乐趣.[来源:Zxxk ]采纳激情导入能够使学生感受数学与日常生活的紧密联系,体会数学的应用价值,从而激发学生的求知欲和学习的热情、教学时教师可再收集一些贴近学生实际生活的图案,如商标、会徽、车标等以丰富感知.作简单平面图形通过轴对称后的图形,其关键就在于把握图形专门点,将问题转化为找点关于对称轴的对称点的问题.另外,在我们已知线段的一条对称轴是线段的垂直平分线的的基础上,专门容易明白线段的两个端点关于线段的垂直平分线对称,由此得到画点关于对称轴的对称点的方法.在布置预习任务时,可突出表达转化思想,例如:让学生摸索补全轴对称图形的关键是什么?想一想如何画出点A关于l的对称点等问题.鼓舞学生采纳扎眼,印墨迹,折叠,剪纸,画图等不同方法参与图案设计.关于创意专门的优秀作品进行展现,激发学生学数学用数学的爱好.教学过程一、引入新课下列标志分别是绿色食品标志、中国环境标志、国家免检产品标志,请同学们观看、观赏它们,尝试说出这些标志的含义,并判定它们是否是轴对称图形.它们是如何样设计的?二、明确目标本节课我们就来尝试补全轴对称图形和设计一些创意专门的轴对称图案,再次领会轴对称的奇异魅力.三、完成目标[来源:学,科,网Z,X,X,K]小组设计一名优秀作品进行班级展现.(鼓舞学生大胆想象,采纳多种形式进行轴对称图案的设计)四、知识升华完成教材练习、习题.[来源:1ZXXK]课堂小结这节课你有什么收成?。
运用平移、对称和旋转设计图案答案典题探究例1.艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.考点:运用平移、对称和旋转设计图案.分析:根据运用平移、对称和旋转设计图案专题的内容进行填空.解答:解:艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.故答案为:平移,对称,旋转.点评:此题考查了运用平移、对称和旋转设计图案.例2.如图的图形是如何得到的?考点:运用平移、对称和旋转设计图案.分析:第一个图形的脸是正立的,嘴巴在下,第二个图形是横向的,说明第二个图形是由第一个图形绕下巴顺时针旋转90°得到,第三个图形与第二个图形方向相同,说明第三个图形是由第二个图形向右平移得到的,第四个图形是倒立的,是由第三个图形顺时针旋转90°得到的.解答:解:第一个图形顺时针旋转90°得到第二个图形,第二个图形向右平移得到第三个图形,第三个图形顺时针旋转90°得到第四的图形;点评:本题是考查图形变换,由旋转、平移.旋转、平移后的图形与原图形大小,形状不变,只是位置变了.例3.(1)图中长方形四个顶点的位置是:A(6,8),B(8,8),C(6,5),D(8,5);(2)把长方形向右平移3格,画出平移后的图形,平移后的长方形四个顶点用数对表示分别是A1(9,8),B1(11,8),C1(9,5),D1(11,5)(3)把长方形绕D点顺时针旋转90度,画出旋转后的图形,旋转后的长方形四个顶点用数对表示分别是A2(11,7),B2(11,5),C2(8,7),D2(8,5).考点:运用平移、对称和旋转设计图案.分析:利用画图工具,复制,平移3个格,得到把长方形向右平移3格的长方形A1B1C1D1,把长方形绕D点顺时针旋转90度的图形A2B2C2D2,数一数,就可以填上各个位置的坐标.解答:解:A(6,8)B(8,8)C(6,5)D(8,5);A1(9,8)B1(11,8)C1(9,5)D1(11,5);A2(11,7)B2(11,5)C2(8,7)D2(8,5).点评:此题考查了运用平移、对称和旋转设计图案.例4.用多个三角形设计一个美丽的图案.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:以三角形的一个顶点为中心,顺时针旋转90度、180度、270度即可.解答:解:作图如下:点评:本题考查的是利用平移、对称及旋转设计图案.演练方阵A档(巩固专练)一.选择题(共12小题)1.下列图形中()是利用旋转设计而成的.A.B.C.考点:运用平移、对称和旋转设计图案.分析:利用旋转设计而成的图形应有一个旋转点,图形旋转后的形状和大小不变;因此得解.解答:解:A、有一个旋转点,有一个形状和大小不变的图形菱形,因此A是利用菱形向右绕右顶点旋转90°、180°、270°而形成的;B、小图形有大小的变化,因此不是利用旋转设计而成的;C、菱形图形的大小形状虽然不变,但没有一个旋转点,它是菱形平移3次而形成的.故选:A.点评:图形旋转后的大小和形状不变是判断这个图形是否是通过旋转形成的基本方法.2.把正方形的右边剪去一块补到上面(如图),得到的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:把正方形的右边剪去一块,正方形缺失是右边,据此排除答案A和C.又因为剪去的部分是补到上面,答案D补到了下面,排除D,所以选B.解答:解:把正方形的右边剪去一块补到上面,只有C符合题意.故选:B.点评:解答此题最好的办法是动手操作一下,即可以解决问题,又锻炼动手操作能力.3.在如图所示的四个图案中既包含图形的旋转,又有图形的轴对称设计的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形的特点结合轴对称图形和中心对称图形的概念解答.解答:解:A、不是对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既有轴对称,又有旋转,符合题意.故选:D.点评:此题考查了旋转的概念以及轴对称图形的概念:直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.把一个图形绕某一点旋转一定角度后得到另一个图形,叫做旋转变换.4.如图的图形中,()是由旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.分析:根据对称和旋转设计图案的方法可知,A、B是完全重合的,而C不能,只能用旋转得到,从而可以进行选择.解答:解:由对称和旋转设计图案的方法可知,A、B是对折后是完全重合的,而C不能,只能用旋转得到,故选:C.点评:此题考查了利用对称和旋转设计图案.5.如图是由☆经过()变换得到的.A.平移B.旋转C.对称考点:运用平移、对称和旋转设计图案.分析:平移就是水平移动,大小和形状不变;旋转除了大小和形状不变外,还要有一个绕点;对称形成的图形要能找到一条对称轴.据此得解.解答:解:图形中有5个五角星并排在一条直线上,因此是由☆经过平移变换得到的.故选:A.点评:此题考查了运用平移、对称和旋转设计图案,锻炼了学生的空间想象力和创新思维能力.6.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.7.(•河西区模拟)下面()图形旋转会形成圆柱.A.B.C.考点:运用平移、对称和旋转设计图案.分析:一个长方形沿一条直线旋转就会成为一个圆柱.解答:解:选项中只有A是长方形旋转;故选:A.点评:本题是判断平面图形经过旋转后大图形,长方形旋转后是圆柱,半圆旋转后是球体,三角形旋转后是圆椎.8.已知一个半圆,下面()这种方式不能将半圆变成圆.A.平移B.翻折C.旋转考点:运用平移、对称和旋转设计图案.分析:一个半圆,如果以它的直径为轴翻折,会得到一个新的半圆,这个半圆由于是已知半圆翻成的,它的直径与已知半圆相等,这两个半圆是以已知半圆的直径所在的直线为对称轴的轴对称图形,两个半圆正好组成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°,都会得到一个与原半圆直径相等的半圆,这个半圆与原半圆能组成一个圆;一个半圆,平移后得到的半圆虽然与原半圆的直径相等,但平移后的半圆与原半圆的半圆弧总是在一个方向,这两个半圆不能组成一个圆.解答:解:一个已知半圆,以直径为轴翻转后的图形与已知半圆能变成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°后的图形与已知半圆能变成一个圆;一个已知半圆,平移后得到的半圆,已知半圆方向相同,与已知半圆不能变成一个圆;故选:A点评:本题主要是考查运用平移、轴对称设计图案.9.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移4次,复制下图案,即可得到左图.解答:解:采用平移的方法,平移4次,复制下图案,即可得到左图.故答案为:A.点评:此题考查了运用平移、对称和旋转设计图案.10.如图是由经过()变换得到了.A.旋转B.平移C.对称考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移5次,复制下图案,即可得到右图.解答:解:采用平移的方法,平移5次,复制下图案,即可得到左图.故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.11.将图形顺时针旋转90°,得到的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:利用画图工具,逐个分析由原图旋转多少度得到的,如下图所示,即可得解.解答:解:4个选项各是由原图如何旋转得到的:通过画图分析,A符合题意;故选:A.点评:此题考查了运用平移、对称和旋转设计图案.12.下列图案每一幅都是由一个基本图形变化得到的.其中没有运用旋转规律得到的图案是()A.B.C.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断.解答:解:图形1可由一个基本“花瓣”绕其中心经过4次旋转,每次旋转90°得到;图形2可由一个基本“不规则5边形”绕其中心经过4次旋转,每次旋转90°得到;图形3可由一个基本图形三角形经过平移得到;其中没有运用旋转规律得到的图案是C;故选:C.点评:本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.二.填空题(共1小题)13.图B是由图A 经过旋转变换得到的图案,图b是由图a经过平移变换得到的图案.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据题意,通过观察图形,(1)可知图形A和图形B中心对称,所以图形B是由图形A顺时针旋转180度得到的.(2)图形a经过平移变换得到图形b,即图形b是由图形a平移得到的.解答:解:(1)图形B是由图形A顺时针旋转180度得到的.(2)图形b是由图形a平移得到的.故答案为:旋转;平移.点评:本题主要考查几何图形的变换,关键在于认真分析图形,找到它们是怎么变换的.三.解答题(共1小题)14.下面图形是经过什么方式变换得来的?填一填.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移的意义,上图是由一个图形经过两次平移得到的;根据图形旋转的意义,左下图是由一个图形绕某点顺时针(或逆时针)旋转5个60°而成的;根据轴对称的意义,右下图是由一个图形经过轴对称得到的.解答:解:上图经过平移得到的;左下图是经过旋转得到的;右下图是经过轴对称得到的.故答案为:点评:本题是考查图形平移的意义、旋转的意义、轴对称的意义.小学阶段图形变包括图形的平移、旋转、轴对称.灵活去用可设计出很多精美的图案.B档(提升精练)一.选择题(共15小题)1.(•邗江区模拟)下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是.()A.平行四边形B.长方形C.圆考点:运用平移、对称和旋转设计图案.分析:把平行四边形转化成长方形的方法有三种:第一种是沿着平行四边形的顶点作的高剪开,通过平移拼出长方形;第二种是沿着平行四边形中间任意一高剪开;第三种是沿平行四边形两端的两个顶点作的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形;我们在硬纸板上画一个圆,把圆分成若干等分,剪开后用这些近似的等腰三角形的小纸片拼一拼,就可以拼成一个近似的平行四边形,如果分的分数越多,每一份会越细,拼成的图形就会越接近长方形;长方形的长等于圆周长的一半,即c/2,宽等于圆的半径r,因为长方形的面积=长×宽,所以圆的面积s=c×r÷2 又因为c=2πr 所以s=πr2.解答:解:通过以上分析,平行四边形和圆的面积计算公式都是平移或旋转得到的,只有长方形利用小正方形拼组得到的;故选:B.点评:此题考查了运用平移、对称和旋转设计图案.2.下列图片中,哪些是由图片①分别经过平移和旋转得到的()A.③和④B.③和②C.②和④D.④和③考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:解答此题的关键是:由平移的定义和旋转的性质进行判断.解答:解:图(1)沿一直线平移可得到(3),顺时针旋转可得到(4).故选A.点评:解答此题要明确平移和旋转的性质:(1)①经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;②平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.3.图是由经过()变换得到的.A.平移B.对称C.平移或对称考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:如图,是经过一个图形平移得到的.解答:解:图是由经过平移变换得到的.故选:A.点评:此题是考查运用平移设计图案.平移就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.平移不改变图形的形状和大小,只改变位置.4.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.5.由图形A到图形C是怎样的旋转过程.()A.A顺时针旋转90°得到图CB.A逆时针旋转180°得到图CC.A逆时针旋转90°得到图B,再逆时针旋转90°得到图C考点:运用平移、对称和旋转设计图案.专题:平面图形的认识与计算.分析:把一个图形绕着某一点转动一个角度的图形变换叫做旋转,旋转的要素是旋转方向,旋转中心,旋转角度.据此可对每个选项进行分析.解答:解:A.图A绕点“O”顺时针旋转90°得到图B,得不到图C,故错误.B.图A绕点“O”逆时针旋转180°得到图C.正确.C.图A绕点“O”逆时针旋转90°得到图D,得不到图B,所以错误.故选:B.点评:本题主要考查了学生对旋转知识的掌握情况.6.把下面的图A绕中心点顺时针旋转90度后再向下平移四个格得到图形是()A.A、B.B、C.C、D.D、考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察图形,图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,据此即可选择.解答:解::图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,故选:C.点评:本题重点是考查的平移、旋转.关键弄清旋转一定度数时笑脸的特征及平移的格数.7.如图,甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,则丙的转向为()A.顺时针B.逆时针C.先顺后逆D.不能确定考点:运用平移、对称和旋转设计图案.分析:通过画图,皮带的转向的一致性,可以判断出每个轮子的转向,由此得解.解答:解:甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,丁是逆时针,则丙的转向为顺时针,乙是顺时针.故选:A.点评:此题考查了运用平移、对称和旋转设计图案.8.钟面上,时针从“8”起逆时针旋转90°后,时针应该指着()A.3B.12 C.5考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:钟面上有12个数字,这12个数字把一个周角平均分成了12份,一个周角是360°,每份是360°÷12=30°,即两个相邻数字间的度数是30°,时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”,解答:解:如图,表盘上时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”;故选:C.点评:解答本题主要掌握钟面上的12个数字把一个周角平均分成了12份,每份是360°÷12=30°,即个相邻数字间的度数是30°.9.下列图案中,()是由图案的一部分经过旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据平移,旋转,轴对称的定义即可作出判断.解答:解:图形A是平移得到的,图形C是平移得到的,只有图形B是旋转得到的;故选:B.点评:本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.10.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120˚,旋转二次得到右边的图形.下列图形中,不能通过上述方式得到的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:根据旋转的概念以及图甲、图乙演示所体现的规律来判断.解答:解:根据旋转的概念和上述规律知:A、旋转120°得到;B、旋转180°得到;C、是轴对称图形,也是中心对称图形,旋转180°得到;D、不能通过旋转得到.故选:D.点评:此题不仅考查了旋转的概念,更考查了同学们的规律探索能力.11.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察国旗上的小五角星可知:国旗上的小五角星绕中心点进行旋转一定的角度,可以互相得到,据此即可解答.解答:解:四个小五角星通过旋转可以得到.故选:C.点评:本题考查旋转与平移的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;关键是要找到旋转中心.12.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△COD B.△OAB C.△OAF D.△OEF考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:平移前后图形的大小、形状都不改变,由此可以判断由△OBC平移得到的三角形.解答:解:A、△COD方向发生了变化,不属于平移得到;故本选项错误;B、△OAB方向发生了变化,不属于平移得到,故本选项错误;C、△OAF属于平移得到;故本选项正确;D、△OEF方向发生了变化,不属于平移得到;故本选项错误;故选:C.点评:平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.)13.如图是按照一定的规律排列起来的,请按这一规律在“?”处画出适当的图形.(考点:运用平移、对称和旋转设计图案.分析:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,由此得解.解答:解:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,所以第3面旗帜上应是3颗星星,所以“?”处图形应为C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.14.根据下图的变化规律,在空白处填上适当的图形()A.B.C.考点:运用平移、对称和旋转设计图案.分析:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.因此得解.解答:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.所以,“?”处应填C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.认真观察找出规律,是解决此题的关键.15.(•顺德区模拟)如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A.B.C.考点:运用平移、对称和旋转设计图案.分析:找一张纸,裁一个正方形,上折,右折,沿虚线剪开,然后把余下的部分展开,即可得解.解答:解:经过实践,两次折叠后沿虚线剪开,图形展开,即可得解,图形是B的图形;故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.二.填空题(共12小题)16.一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.√.(判断对错)考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移、旋转、轴对称的特征,可以将一个简单的图案,通过这些变化,形成一个较复杂的图形.如,可以将一个图案通过平移形成壁报的花边、将一个梅花瓣通过四次旋转形成一朵梅花、把纸折叠,通过轴对称剪出一个图形的一半,展开后就是一个完整的图案.解答:解:一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.故答案为:√.点评:本题主要是考查平移、旋转、轴对称的意义及特征.利用这些变化可以将一个简的图案变成一个较复杂的图形.17.图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法将该图形绕O点顺时针依次旋转90゜、180゜、270゜,你会得到一个什么样的立体图形?考点:运用平移、对称和旋转设计图案.专题:作图题;图形与变换.分析:根据旋转图形的特征,这个图形绕点O顺时针旋转90°、180°,270°,点0的位置不动,其余各部分均绕点O顺时针旋转90゜、180゜、270゜,得到的是一个星星图案.解答:解:根据分析画图如下:故答案为:点评:本题是考查运用图形旋转设计图案.关键是旋转的角度要准确.18.我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案.考点:运用平移、对称和旋转设计图案.分析:我们学过的图形变换由平移、旋转、轴对称,利用这此基本方法,可以将一个图图形通过这些方法来设计精美的图案.解答:解:我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案;故答案为:平移,旋转,轴对称.点评:本题是回顾小学阶段学习的图形变换方法.19.利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案.…√.(判断对错)考点:运用平移、对称和旋转设计图案.分析:规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列.一般来说,构成一个镶嵌图形的基本单元是多边形或类似的常规形状,例如经常在地板上使用的方瓦.利用平移、对称、旋转变换可以设计许多美丽的镶嵌图案.解答:解:例如蜜蜂的蜂窝就是正六边形的平移、旋转、对称的典型图案;如下图所示,利用平移、对称和旋转变换设计的许多美丽的镶嵌图案:故答案为:√.点评:此题考查了运用平移、对称和旋转设计图案.20.在方格图中设计一个你喜欢的图案,并写出你设计的图案占整幅图的多少?考点:运用平移、对称和旋转设计图案.专题:作图题.分析:根据旋转图形的特征,在图中画一等腰三角形,绕一底角(点O)顺(或逆)时针旋转90°,再旋转90°,再旋转90°即可得到一个美丽的图案;每个三角形占1格,四个三角形占1×4=4格,图中共有10×5=50格,据此可求出图案占整幅图的多少.解答:解:由分析画图如下:(1×4)÷(10×5)=4÷50=;所设计的图案占整幅图的.。
利用图形的平移、旋转和轴对称设计图案【教学目标】1.亲历认识图形的平移、旋转和轴对称的探索过程,体验分析归纳得出利用图形的平移、旋转和轴对称设计图案的方法,进一步发展学生的探究、交流能力。
2.掌握图形的平移、旋转和轴对称在现实生活中的应用。
3.熟练运用图形的平移、旋转和轴对称设计简单图案设计。
【教学重难点】重点:掌握图形的平移、旋转和轴对称在现实生活中的应用。
难点:熟练运用图形的平移、旋转和轴对称设计简单图案设计。
【教学过程】一、直接引入师:今天这节课我们主要学习利用图形的平移、旋转和轴对称设计图案,这节课的主要内容有认识图形的平移、旋转和轴对称,利用认识图形的平移、旋转和轴对称设计图案,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。
二、讲授新课(1)教师引导学生在预习的基础上了解图形的平移、旋转和轴对称的内容,形成初步感知。
(2)首先,我们先来学习利用图形的平移、旋转和轴对称,它的具体内容是平移:由一个图形改变为另一个图形,在改变的过程中,原图形上所有的点都向同一个方向运动,并且运动相等的距离,这样的图形改变叫做图形的平移变换,简称平移。
平移不改变图形的形状、大小和方向,连接对应点的线段平行且相等。
旋转:由一个图形改变为另一个图形,在改变的过程中,原图形上的所有点都绕一个固定的点,按同一个方向转动同一个角度,这样的图形改变叫做图形的旋转变换,简称旋转。
这个固定的点叫旋转中心。
旋转不改变图形的大小和形状,对应点到旋转中心的距离相等。
对应点与旋转中心的连线所成的角度等于旋转的角度。
轴对称变换:由一个图形变为另一个图形,使这两个图形关于某条直线成轴对称,这样的图形改变叫做图形的轴对称变换,也叫反射变换,经变换所得的新图形叫做原图形的像。
它是如何在题目中应用的呢?我们通过一道例题来具体说明。
例1.如图,四幅图中甲图变换为乙图的所用的图形变换是(1)________;(2)________;(3)________;(4)________。