第三章天文观测方法
- 格式:ppt
- 大小:372.00 KB
- 文档页数:53
物理学中的天文观测技术知识点天文观测是物理学中的重要领域,它为我们揭示了宇宙的奥秘和物质运动的规律。
在物理学中,天文观测技术是实践和研究天文学的基础,掌握这些技术知识对于深入理解宇宙和发展物理学具有重要意义。
本文将介绍一些物理学中的天文观测技术知识点。
一、天文望远镜天文望远镜是进行天文观测的基本工具。
它可以放大远处天体的图像,使我们能够更清晰地观察星体的性质和特征。
天文望远镜根据其工作原理和观测范围的不同分为光学望远镜和射电望远镜两大类。
光学望远镜利用透镜或反射镜将光线聚焦,形成放大的图像。
光学望远镜通常用于观测可见光波段的天体,如恒星、行星、星系等。
其中,折射望远镜使用透镜,反射望远镜使用反射镜。
射电望远镜用于接收并放大天体发出的射电波,以研究宇宙中的高能物理现象和星体的电磁辐射。
射电望远镜利用抛物面或拼接筒状反射器接收射电波,并通过信号处理和数据分析得到相关的天文数据。
二、天文观测技术1. 视差测量视差是指地球在绕太阳公转时,观测同一个天体在不同时刻所看到的视觉位置的差异。
视差测量可以用于确定天体的距离。
通过观测天体在地球公转周期中的位置变化,计算出其视差,再结合地球和太阳的距离,即可得到天体的距离。
2. 天体测量天体测量是指对天体的位置、亮度和运动状态等进行精确测量和观测。
其中,位置测量可以通过确定天体在天球上的赤经和赤纬来实现。
亮度测量可以通过采集天体的光子数量来计算。
运动状态可以通过测量天体的径向速度和横向速度来确定。
3. 光谱分析光谱分析是指将星光或其他电磁波通过光栅或分光器进行分离和测量的过程。
通过对天体的光谱进行分析,可以获得有关星体成分、温度、速度等重要信息。
光谱分析被广泛应用于行星大气层研究、恒星结构分析和宇宙膨胀等课题中。
4. 天体成像天体成像是指对天体的图像进行拍摄和处理,以获得有关天体的详细信息。
天体成像技术广泛应用于研究星系结构、星体表面特征和行星环境等领域。
常用的天体成像技术包括长时间曝光摄影、干涉成像和阵列成像等。
天塔之光课程设计一、课程目标知识目标:1. 让学生掌握天文学基础知识,理解地球自转与公转的基本原理,以及其对天塔之光现象的影响。
2. 使学生了解天塔之光的形成原因、观测时间及地点,并能运用相关术语描述这一现象。
3. 帮助学生掌握科学探究方法,通过实际观测和分析,理解天文学研究的实证性和系统性。
技能目标:1. 培养学生运用所学知识解决实际问题的能力,如制定观测计划、分析观测数据等。
2. 提高学生的观察能力,学会使用望远镜等观测工具,并掌握基本的天文观测技巧。
3. 培养学生的团队合作精神,学会在小组讨论中分享观点、倾听他人意见,共同完成探究任务。
情感态度价值观目标:1. 培养学生对天文学的兴趣,激发他们探索宇宙奥秘的欲望。
2. 增强学生的环保意识,让他们认识到保护地球环境对于天文观测的重要性。
3. 培养学生尊重科学、严谨求实的态度,树立正确的科学观和价值观。
课程性质:本课程为自然科学类课程,以实践探究为主,注重培养学生的动手操作能力和科学思维。
学生特点:四年级学生具备一定的观察和思考能力,对新鲜事物充满好奇心,但需引导他们进行有序、系统的探究。
教学要求:结合学生特点,采用启发式教学,引导学生主动探究,注重理论与实践相结合,提高学生的综合素养。
在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。
二、教学内容1. 天文学基础知识:地球自转与公转原理,天体运行规律,天塔之光现象的定义及分类。
相关教材章节:第一章《宇宙与地球》,第三节《地球的自转与公转》。
2. 天塔之光的形成原因:太阳光照射地球大气层时的折射与散射,大气层中的气体成分对天塔之光的影响。
相关教材章节:第二章《大气与天气》,第一节《大气层的基本结构》。
3. 天塔之光的观测时间、地点及方法:介绍在不同季节、时间及地点观测天塔之光的最佳条件,教学如何使用望远镜等观测工具。
相关教材章节:第三章《天文观测方法》,第二节《望远镜及其使用方法》。
天文观测基础知识(望远镜入门)第一章天文观测基础知识第一节天球和天球坐标1、天球:天穹:人们所能直接观测到的地平之上的半个球形天空。
天球:以地心为球心半径为任意的假想球体,表示天体视运动的辅助工具。
(P1)由于天球球心的不同分为:观测者天球、地心天球、日心天球。
黄道黄道是太阳周年视运动的轨迹,实际上是地球公转轨道所在平面与天球相交的大圆,这个平面是黄道面。
2、天球坐标系(1)、地平坐标系基本要点:基圈:地平圈;始圈:午圈;原点:南点;纬度:高度:天体相对于地平圈的方向和角距离。
(解释度量及天顶距)经度:方位:天体所在的地平经圈相对于午圈的方向和角距离。
(0°到360°,自南点向西沿地平圈度量)。
(2)、第一赤道坐标系(也称时角坐标系)基本要点:基圈:天赤道;始圈:午圈;原点:上点;纬度:赤纬:天体相对于天赤道的方向和角距离。
(解释度量及极距)经度:时角:天体所在的时圈相对于上点(午圈)的方向和角距离。
自上点沿天赤道向西度量(为使天体的时角“与时俱增”)。
上、西、下、东为0时、6时、12时、18时。
(3)、第二赤道坐标系基本要点:基圈:天赤道始圈:春分圈;原点:春分点;纬度:赤纬;(与第一赤道坐标相同)经度:赤经:天体所在的时圈相对于春分点的方向和角距离。
自春分点沿天赤向东度量。
(4)、黄道坐标系基本要点:基圈:黄道;始圈:无名圈;(过春分点的黄经圈)原点:春分点;纬度:黄纬:天体相对于黄道的方向和角距离。
(解释度量)经度:黄经:天体所在的黄经圈相对于春分点的方向和角距离。
自春分点沿黄道向东度量(为使太阳的黄经“与日俱增”)。
(5)各天球坐标系的区别和联系仰极高度=天顶赤纬=当地纬度天体赤经+天体当时时角=当时恒星时第二节天体的视运动与四季星空1、天体的周日视运动所谓天体的周日视运动是指所有天体以一天为周期的自东向西运动。
天体周日视运动的轨迹叫做周日平行圈,简称周日圈。
恒隐星和恒显星2、太阳的周年视运动太阳的周年视运动是指因地球公转而引起的太阳在恒星背景上的运动轨迹(路线):即黄道方向:自西向东周期:与地球公转周期相同,约为365天。
第三章:探索宇宙第一节:我们居住的地球1、 能证明地球是一个球体的现象是:远处的帆船的船身比桅杆先消失,月食时,月球的缺损面是圆弧形。
2、 通过观察太空拍摄的地球照片,我们知道:黄色的区域是陆地,白色的区域是白云,蓝色的区域是海洋。
3、 通过现代科技测量知道:地球是一个两极稍扁,赤道略鼓的球体。
它的赤道半径是6378千米,两极方向的半径比赤道短21千米左右,为6357千米,仅差0.33%,因此赤道看上去是很圆的。
它的赤道周长是4万千米。
第二节:地球与地球仪赤道:在南北两极中间,与两极等距,并且与所有的经线垂直的线叫赤道。
地图1、 地图是以各种不同的图式符号,将地球表面的事物按一定的比例缩小后表现在纸上的图形。
2、 地图的三要素(地图的基本“语言”)为:比例尺、方向和图例。
3、 比例尺:表示的是实际距离在地图上的缩小程度------------即比例=4、 地图方向的表示法有三种:经纬网定向法、指向标定向法、一般定向法。
5、 图例:地图上用不同的图示符号表示不同的地理事物。
第三节:太阳和月球一、太阳实际距离图上距离1、太阳的有关数据:直径:140万千米(地球赤道直径:12742千米)约为地球直径的109倍表面温度:6000,中心温度达1500万日地平均距离:1.5亿千米2、太阳表面的结构:从内到外:光球层、色球层和日冕太阳黑子(光球层)3、太阳的活动:太阳表面的各种变化-------------------------- 耀斑(色球层)日珥(色球层)4、太阳黑子:太阳表面的许多黑色的斑点,其实它是太阳表面由于温度较低而显得较暗的气体斑块。
它的大小和多少往往作为衡量太阳活动强弱的标志。
太阳黑子的活动具有周期性,其周期为11年,黑子数最多的那一年称太阳活动峰年,黑子数极少的那一年称太阳活动谷年。
国际上规定从1755年起算的黑子周期为第1周,1998年开始为第23周。
5、耀斑:太阳表面有时会出现一些突然增亮的斑块,叫耀斑,耀斑爆发时会释放巨大能量。
第三章天文必备:天文望远镜【天文望远镜】【工作原理】天文望远镜是一种令人惊奇的仪器,它可以使远处的目标看起来很近。
为了更好地理解天文望远镜的工作原理,我们先考虑一下这样一个问题:为什么用裸眼看不到远方的目标呢?例如,为什么用裸眼看不到50米处的硬币呢?答案很简单:因为远方的目标在视网膜上的呈像没有占据足够的位置。
如果您有一双很大的眼睛,可以聚集到更多由远方目标发出的光并且在您的视网膜上形成明亮的像,那么,您就可以看到这个目标。
望远镜的两个光学件就可以帮助您将这一假设变为现实:物镜,它可以把远方目标发出的光会聚到焦点上(在焦点上呈像);目镜,它把物镜焦点上的像放大,使之在您的视网膜上呈像。
这和放大镜的原理一样,它把小的物体放大后在您的视网膜上呈像,这样小的物体看起来就变大了。
天文望远镜的主要部件是:主镜筒、物镜、目镜。
主镜筒的作用是:固定物镜,使之与目镜保持恰当的距离;阻止灰尘、湿气和干扰像质的杂光。
物镜的作用是聚光和在焦点处呈像。
目镜的作用是把物镜焦点处的像放大后在您的视网膜上呈像。
【种类】按照光学结构的不同天文望远镜可分为许多不同的种类,但比较常用的是两种:折射式天文望远镜(用光学透镜做物镜)和反射式天文望远镜(用曲面反光镜做物镜)。
尽管两者可以达到一样的效果,但它们的光学结构是完全不同的。
折射式天文望远镜:折射式天文望远镜通常采用两片或多片镀膜透镜组合而成的消色差物镜。
一般来讲,制作大口径(100mm以上)的组合透镜是非常困难的,所以常见的折射式天文望远镜的口径都不超过100mm。
反射式天文望远镜:反射式天文望远镜的物镜是一曲面反射镜(主镜)。
在物镜的光路上放置了一个呈45度倾斜的小平面反光镜(副镜)以把物镜反射的光线转向镜筒一侧的目镜。
反射式天文望远镜相对比较容易做到大的通光口径。
这就意味着反射式天文望远镜可以有很强的聚光能力,可以用以观测昏暗的深空目标,以及用以天文拍照。
【光学性能】天文观测者应根据观测目的的不同来选用不同的天文望远镜。
天文学的观测方法天文学是一门研究天体现象的科学,它包括观测、计算和理论等方面。
观测是天文学的基础,通过观测可以获取天文现象的数据,进而揭示宇宙的奥秘。
本文将介绍和探讨天文学的观测方法,包括目视观测、望远镜观测、射电观测等多种方式。
一、目视观测目视观测是最早也是最简单的一种天文观测方法。
古代人们通过肉眼观测天体运动和位置,记录天象的出现和消失,从而制作日晷、日历等测时仪器。
目视观测虽然缺乏精确的数据支持,但对于观测天象的周期性和规律性具有重要意义,为后世的观测提供了基础。
二、望远镜观测望远镜观测是利用望远镜等光学仪器观测天体的方法。
望远镜的发明极大地提高了天文观测的精度和范围,人类可以观测到更遥远、更模糊的天体,揭示了更多宇宙的秘密。
现代天文望远镜有地面望远镜和空间望远镜两大类,它们尤其在观测远离地球的天体时发挥着重要作用。
三、射电观测射电观测是通过收集和分析来自天体的射电波段的信号来研究宇宙的观测方法。
射电望远镜可以观测到一些其他波段观测不到的现象,如射电脉冲星、射电星系等。
射电观测在揭示宇宙宏观结构和暗物质等方面具有独特的价值,是天文学中的重要分支。
四、其他观测方法除了目视观测、望远镜观测和射电观测外,天文学还采用了很多其他观测方法,如红外观测、紫外观测、X射线观测等。
这些方法在观测不同波段的天体时各有优势,可以为天文学研究提供更全面和深入的数据支持。
总结天文学的观测方法日益丰富和多样,不同的观测方法互相配合,共同揭示着宇宙的奥秘。
未来随着科技的不断进步和观测技术的不断发展,天文学的观测方法将更加精密和高效,为人类认识宇宙提供更多可能性。
愿我们共同探索宇宙,探求星辰之谜。
精锐教育学科教师辅导讲义讲义编号学员编号:年级:七年级课时数:3学员姓名:辅导科目:科学学科教师:程月玲课题第三章地球与宇宙第1节我们居住的地球第2节地球仪和地图第3节太阳和月球第4节观测太空授课日期及时段教学目的1.了解我们居住的地球。
2.认识地球仪和地图。
3.了解太阳和月球。
4.初步认识著名星座和恒星,掌握观测星空的基本方法和技能。
教学内容【课前检测】1如果乘船出海,看到的港口灯塔会()A.塔顶先从视野中消失B.塔基先从视野中消失C.塔顶和塔基会突然从视野中消失D.塔顶和塔基会慢慢变小,然后消失2、下列各点属于东半球北半球的是()A.东经112°南纬30° B.东经170°南纬50°C.西经15°北纬70° D.西经100°赤道0°3、关于不同纬度的纬线的特点,下列叙述正确的是()A 形状不同 B纬度越高,长度越长C 长度不同 D长度都与经线相同4.太阳是一个由炽热气体组成的球体,太阳大气层从里到外可分为3层,依次是()A.日核、光球层、色球层 B.光球层、色球层、日冕层C.太阳黑子、色球层、日冕层 D.太阳黑子、耀斑、色球层5.在现代天文观察中,也常用星座中最亮的星构成的图形来认识星座,下列图形中,大熊星座是()答案:1-5:B C C B A【知识梳理】一.我们居住的地球提出问题:我们居住的地球是什么样的形状?建立猜想:猜想1.3000多年前,古代中国人的“盘氏开天辟地”,提出了天圆地方的“盖天说”;猜想2.古代印度人心目中的大地是个圆盾,由站在乌龟背上的三头的大象驮着。
猜想3.古代巴比伦人想象大地是个空心山;猜想4.古代埃及人认为天像一块穹窿形的天花板,地像一个方盒;猜想5.地球是个球体。
验证猜想:1.在海边看离岸的船,先是船身隐没,然后才是桅帆。
2.在陆地上旅行的人,如果向北走去,一些星星就会在南方的地平线上消失,另外一些星星却在北方的地平线上出现。
第三章 天文定位原理测者与天球上的测者天顶一一对应,测者天顶与天体之间通过天体顶距相关联,天体顶距与天体高度互为余角,天体高度又可以通过解算天文三角形获得。
本章将基于上述关系,阐述海上利用天文方法测定舰位(简称天文定位)的基本原理。
第一节 天文定位基本原理天文定位与陆标定位中的距离定位原理很相似,都是通过获得两个以上的舰位圆确定舰位,两者的差异在于所用的参照物标和获取舰位圆的途径互不相同。
一、天文舰位圆1.天文舰位圆的定义由天球及其基准点线圆的定义可知,天球基准点线圆与地球基准点线圆具有相互投影的关系,其中,测者天顶与测者的地理位置相互投影、一一对应。
鉴于此,确定测者在地球表面上的地理位置,可以通过测定测者天顶在天球球面上的位置来实现。
图3-1-1即为天球基准点线圆与地球基准点线圆相互投影关系图。
图中,G Z 为格林天顶,N G SP Z P 为格林午圈,二者是地球上的格林尼治天文台及其经线(即0︒经度线)在天球球面上的投影;B 为测者所测天体, NSPBP 为该天体的时圈,天体B 在天球上的位置,由观测瞬间的天体格林半圆时角(G t )和天体赤纬(δ)所确定。
如图3-1-1所示,设天体B 的顶距z 已知,则根据顶距的定义——天体方位圈上从测者天顶度量到天体中心的弧长,即可在天球球面上,以天体为中心,以顶距为球面半径作出一个小圆 123Z Z Z 。
显然,测者天顶必定位于这个小圆上,这个小圆也因此被称为测者的天顶位置圆。
将天顶位置圆 123Z Z Z 投影到地球表面,可得到小圆 123M M M ,显然,因测者天顶与测者的地理位置相互投影、一一对应,测者的地理位置必定位于这个小圆上。
航海上将包含测者地理位置的圆称为舰位圆,考虑特殊性,称上述通过天文方法获得的舰位圆为天文舰位圆。
2.天文舰位圆的圆心分析图3-1-1,显然,天文舰位圆的圆心即天体B 在地球表面上的投影点b 。
在天文航海中,这一点被称为天体的地理位置,若所测的天体为太阳,则又称之为日下点;若所测的天体为月亮,则又称之为月下点;若所测的天体为行星或恒星,则又称之为星下点。