当前位置:文档之家› 行星的观测方法

行星的观测方法

行星的观测方法
行星的观测方法

行星的观测方法

观测水星

观察水星的最佳时候是在日出之前越50分钟,或日落后50分钟。当我们朝最靠近太阳的行星——水星看的时候,我们也就是朝太阳的方向看。需要牢记的是不要直接看太阳。

若用望远镜看水星没,则可以选择水星在其轨道上处于太阳一侧或另一侧离太阳最远(答距)时,并在日出前或日落后搜寻到它。天文历书会告诉你,这个所谓的“大距”究竟是在太阳的西边(右边)还是东边(左边)。若是在西边,则可以在清晨观测,;若是在东边,则可以在黄昏观测。知道了日期,又知道了在太阳的哪一侧搜寻,还应该尽可能挑一个地平线没有东西阻隔的地点。搜寻水星要在离太阳升起或落下处大约一柞宽的位置。你将会看到一个小小的发出淡红色光的星星。

在其被太阳光淹没之前,你大概可以观测他2个星期。6个星期之后,它又会在相对的距角处重新出现。

观测金星

金星的轨道比水星的要大。当进行处于西方(在太阳之又)或东方(在太阳之左)的最大距角时,看起来它距太阳比水星星距太阳远一倍。金星是天空中最亮的天体之一,观察它的最佳时间可能是当太恰好位于地平线以下的时候。必须注意,千万不能用眼睛直接看太阳。太阳落山金星随后落下,此时它位于太阳之左;太阳升起前,金星首先升起,此时它位于太阳之右。

你很容易分辨出金星来,它明亮而略呈黄色。当金星呈大“新月”形时,用双筒望远镜观测它是最合适的。此时金星位于最大距角点与下合点之间。在下合点时金星位于地球与太阳之间,我们便看不到它了,注意调好望远镜的焦距,使之能观察遥远的物体。

观测火星

当地球位于火星与太阳之间时,称为火星冲日。这是观测火星的好时机。当太阳西下,火星正从东方升起,火星整晚都在地平线以之上,探索它的最佳时刻就是太阳刚刚西下以后,火星每2年零两个月冲日一次,可是,对于观看火星来说,有些冲日比其他冲日更要优越。最好观察的时节在夏末,每过15~17年才会有这样理想的观察时机。上一次这样的观察时机发生在2003年。然而,凭借优良的望远镜和火星那与众不同的红色光芒的照耀,我们大多数年份可以观察到它。一架放大功能极佳的望远镜可以显示出火星极地上的一块白斑。由于火星季节性的气温变化,白斑会在几周的时间会增大或者消融。

观测木星

木星每隔13个月便与地球处于冲的位置,你通过双筒观剧镜和望远镜就可很容易看到它。利用望远镜你甚至可能看到几个或全部4个伽利略卫星。木星通过黄道星座需一年时间,而沿轨道饶太阳运行一圈需12年时间,从隶书上可查到木星处于哪个星座。

木星非常明亮,比最明亮的恒星天狼星要亮3倍。用星图很容易找到木星。木星放射着稳定的黄色光芒。伽利略卫星在木星赤道平面的细线状区域内运行,在他们的运行轨道上呈现为亮点状。

一架放大20倍的望远镜,可使你看到木星略呈扁圆形,若想看到木星大气层的亮带,则需要一个放大倍数高得多的望远镜。

观测土星

由于土星距离地球非常遥远,所以不容易找到它。但只要你碰到它,就不会认错。土星看上去同邻近的亮的恒星没有显著的区别,所以望远镜越好,看的越清楚,当然你用一个不错的双筒望远镜也能看见它的环。

如果土星的环向我们倾斜,我们观察起来便可以看的更清楚。这种情况15年发生一次,在土星30年的公转周期中,有2次。1988年,土星的环看得最清楚,上一次发生在2003年。在1995~1996年期间,土星环的边朝着地球,所以几乎看不见。天文年历将告诉你,在不同的年份和季节,在天空的什么部位可以找到土星。

土星处于冲的位置时最亮。当环的边朝着地球时,可以找到土星最大的卫星,如土卫六、土卫五、土卫三及土卫四的条件最好,当然,这要求你至少拥有一架60mm的折射望远镜。

观测外层行星

天王星、海王星

在上实际整个90年代,天王星和海王星都可以在人马座观测到。用一本天文年历便可以找出你要观察的那一天它们在天空中出现的位置。

天王星应该能与周围的恒星相区别,用放大倍率为40倍的望远镜便可以看到圆盘状的天王星,而不是星光闪烁的光点。天文杂志经常会按月给出这些距离遥远的行星的详细位置。

用业余望远镜是不可能看到海王星的圆盘状形象的。除非你用的是主镜直径为60mm的高质量望远镜。海王星看起来比天王星暗淡。

冥王星(小行星)太小也太遥远,没有大型望远镜是看不到它的。

人类发现系外行星的七种途径

自从1992年第一颗围绕恒星运转的系外行星被发现后,天文学家们已陆续确认了超过800个地球的“同类”。那么,他们是如何取得这些成果的呢?现有的技术手段可谓各有利弊,美国太空网日前专门针对科学家找寻系外行星时主要采用的7种技术方法,逐一予以解读。 方法一:天体测量学 天体测量学,主要通过精密追踪一颗恒星在天空中运行轨迹的变化,来确定受其引力拖曳的行星所在。这与径向速度法的原理很类似,只不过天体测量学并不涉及恒星光芒中的多普勒频移。 天体测量学可不是从1992年才开始为人所用的。它其实是搜寻系外行星最古老,并且起初也是最常用的方法——早期都是以肉眼和手写来记录的。但在近几十年历史中,科学家们在应用该方法发现行星的过程中取得的成果寥寥,且常富于争议。2010年10月发现的HD 176051b,是目前唯一一颗已经确认的、借由天体测量方法发现的系外行星。 不过,即将于2013年10月发射升空的欧洲空间局(ESO)“盖亚”项目(Gaia,即第二个天体测量卫星),或许可以令这种古老的方式告别自己寒酸的过往。该卫星将在5年任务期间将测绘银河系之内以及附近区域的10亿颗恒星,确定它们的亮度、光谱特征以及三维位置和运动情况。除此之外,三维星图还将帮助人们揭开银河系组分、起源与演化的秘密。 而据研究人员估计,“新”的天体测量学有望帮助他们找到数万颗新的系外行星。 方法二:利用狭义相对论 这是人类宇宙探索“技术库”里增添的一个新手段。作为新的研究方法,它指导天文学家们去关注恒星的亮度因行星运动而发生的变化——后者的引力作用引发相对论效应,导致组成光的光子以能量的形式“堆积”,并集中于恒星运动的方向。 其实,运用该方法来寻找行星,在理论上提出已逾10年。但直到最近,开普勒-76b (Kepler-76b)行星的发现,才算正式应用了这种方法。开普勒-76b是距离地球2000光年外天鹅座一颗质量大约是木星两倍的太阳系外行星,作为第一颗应用爱因斯坦的狭义相对论发现的系外行星,它得到一个别名:“爱因斯坦的行星”,这也使它变得声名远扬。 这一成果的真实性,随后已被径向速度法所证实。与其他已有的行星定位方法相比,“狭义相对论”法既有着自己的优势也存在一些不足,但它让人们相信,随着科学家对这一理论掌握得日臻成熟,会有更多此类发现不断出现。 方法三:脉冲星计时法 这种方法特别适用于发现围绕脉冲星运动的行星。所谓脉冲星,是由恒星衰亡后的残余形成的密度极高的星体。它在高速自转的同时,会发射出强烈脉冲——且由于一颗脉冲星的自转本质上是非常稳定的,所以这种辐射因为自转而非常规律。 脉冲星计时法最初并不是设计来检测行星的,但是因为它的灵敏度很高,所以能比其他

必修二《行星的运动》教案

★课题 6.1 行星的运动 ★教学目标 (一)知识与技能: 1.知道地心说和日心说的基本内容。 2.学习开普勒三大定律,能用三大定律解决问题。 3.了解人类对行星的认识过程是漫长复杂的,真是来 之不易的。 (二)过程与方法: 4.体会精确的观察记录在科学研究中的重要地位。 5.对过对开普勒三定律的学习了解天体运动的规律。 (三)情感态度与价值观: 6.通过托勒密、哥白尼、第谷·布拉赫、开普勒等几 位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。 7.了解伽利略等科学家为科学献身的精神,学习前人 对问题一丝不苟、孜孜以求的精神。 ★重难点: 掌握天体运动的演变过程; 熟记开普勒三定律. ★课时安排:1课时 ★新课引入:同学们,在前面的学习中我们已经学习了运动学\静力学及动力学的基本知识并且用这些知识研究了地面上物体的运动,现在我们就放开视野,从今天开始我们来研究天空中的运动:天体运动。首先是太阳系行星的运动. 研究天体的运动是从古到今科学研究的永恒主题。关于行星的运动,历史上有两种对立的说法,这是历史上牺牲最大的科学争论。

★新课教学 一、地心说 1、地心说:认为地球是宇宙中心,任何星球都围绕地球旋转。 2、代表人物:托勒密(公元90——168年) 3、存在条件:第一符合人们的日常经验,第二人们多信奉宗教神学,认为地球是宇宙中心。 但: 随着观测精度的不断提高,地心说算出的行星位置偏离观测位置越来越大 二、日心说 1、日心说:太阳是静止不动的,地球和其他行星都绕太阳运动 2、代表人物:哥白尼(1473——1543) 3、存在条件:地心说解释天体运动不仅复杂,而且许多问题都不能解释。而用日心说,许多天体运动的问题不但能解决,而且还变得特别简单。 进入高中物理的第一节课就学了参考系的选择,我们知道运动的描述是相对的,从表面上看,两学说只不过是参考系的改变.但大家要注意,这是一两千年前的争论,运动描述的相对性是物理学发展后,一非常现代的科学观点,它们所谓的静止是绝对静止,就像我们还没读书,没学物理时认为地面是绝对静止的,其它物体相对地面的在动叫做运动的物体,地心说的观点就是地球绝对静止,日心说的观点就是太阳绝对静止.现在看来古代的两种学说都不完善,地心说和日心说的共同点:天体的运动都是匀速圆周运动。因为太阳、地球等天体都是运动的(运动是绝对的),鉴于当时对自然科学的认识能力,日心说比地心说更先进,在太阳系中我们认为太阳是静止的 师:“日心说”所以能够战胜“地心说”是因为好多“地心说”不能解析的现象“日心说”则能说明,也就是说,“日心说”比“地心说”更科学、更接近事实.例如:若地球不动,昼夜交替是太阳绕地球运动形成的.那么,每

地下管线探测技术与探测方法

地下管线探测技术与探测方法 文章来自赣州宇辉仪器设备有限公司https://www.doczj.com/doc/583059759.html, 中心议题: 地下管线探测技术与探测方法 解决方案: 地下管线探查 地下管线测量 利用地下管线信息系统 1、地下管线探测技术简介 地下管线探测技术已应用多年。早在第二次世界大战末,人们为了寻找战争遗留的地雷和其他未爆炸物而试图将物探技术应用于实际,但当时只有一些常规物探方法,由于分辨率低、抗干扰能力差,效果不大。进入20世纪80年代末,研制者们采用新型磁敏元件、新型滤波技术、天线技术、电子计算机技术使这类仪器的信噪比、精度和分辨率大大提高,且更加轻便和易于操作,实现了高精度、高分辨率。又由于计算机软件技术的开发,使得探测数据能够通过计算机进行处理,从而形成了一项适用技术。 1.1、地下管线探查 地下管线探查是指应用地球物理勘探的方法对地下管线进行定位、定走向、定埋深。它的原理是:地下管线的存在会改变天然的或人为产生的地球物理场的分布,即产生异常。研究这些异常的形态、分布、形状可获得地下管线位置的有关资料。常用的地下管线探测方法有两种: (1)充电法。对地下管线施加直流电,在地面上观察电磁场的异常,以确定地下管线所在的位置,这种方法的特点是仪器轻便、方法简单、定位精度高,在地下管线密集的区域有较好的分辨率,但使用条件必须有可供充电的出露点,在地层电阻串低时效果差。 (2)电磁感应法。是观察地下管线在一次电磁场作用下,利用发射线圈产生的电磁场对金属管线感应所产生的二次电磁场的变化规律以确定地下管线的位置,这种方法的特点是不需出露点,在地下管线比较少的情况下效果好。

为克服这些缺点,国外已研制出具有仪器输出阻抗与被测管线阻抗自动区分信号的探测仪,可最大限度地避免被测管线的电磁信号受周围环境的干扰。可见,地下管线探测技术理论、仪器装备、电算解释应属物探理论及技术范畴,但又不同于常规的工程物探;应用领域应属于工程测量,又与常规的工程测量不一样,它是运用物探的原理对地下隐蔽体进行准确测量的技术。 1.2、地下管线测量 地下管线测量是指对管线点的地面标志进行平面位置和高程连测;计算管线点的坐标和高程、测定地下管线有关的地面附属设施和测量地下管线的带状地形图,编制成果表。 地下管线测量一般包括以下内容:控制测量,已有地下管线测量,地下管线定线与竣工测量,测量成果的检查验收。控制测量应在城市的等级控制网基础上布设,其方法为现有的成熟的测量方法均可采用。如电磁波导线,静态、快速静态和动态GPS测量。管线点的平面位置和高程测量可采用GPS测量、导线串联法或极坐标法等。 1.3、地下管线信息系统 地下管线信息系统是地下管线探测的重要组成部分,可以是采用各种技术和手段,探明查清地下管线的空间位置、基本特征和属性,以电子数据形式存储在计算机能处理的介质上,实现信息的计算机管理。地下管线信息管理系统功能实用、信息规范、运行稳定,信息现势性好,技术先进。 地下管线信息系统应具备下列功能: (1)地形图库管理功能; (2)管线数据输入与编辑功能; (3)管线数据检查功能; (4)管线信息查询、统计功能; (5)管线信息分析功能;

地下管线探测技术方案()

XX工程地下管线探测技术方案 1 工作目的与内容 为保证XX工程施工安全,需对河道穿越中国石化金嘉湖管道(浙苏成品油管道)、中国石油西气东输天然气管道、国防光缆段管线分布情况进行探测,本次工作拟查明河道两侧各30m范围内三根管线的平面位置、走向、埋深等。测区位于平湖市南湖区新丰镇乌桥村附近,管线大致分布情况见图1。 图1 工程位置及管线分布示意图 2 施工依据与技术要求 2.1 施工依据 1、甲方提供的探测范围; 2、工区或附近控制点坐标,不少于3个; 3、河道穿越管线段两侧各1km范围内中国石化金嘉湖管道(浙苏成品油管道)、中国石油西气东输天然气管道、国防光缆检测桩各一个。 2.2 执行规范 1、《城市地下管线探测技术规程》(CJJ61-2003); 2、《城市工程地球物理探测规范》(CJJ7-2007); 3、《城市测量规范》(CJJ/T 8-2011); 4、《工程测量规范》(GB50026-2007); 5、《浙江省GPS-RTK测量技术规定》(试行)(ZCB 001-2008)。 2.3 探测精度要求 地下管线探测的精度应符合下列规定: 1、地下管线隐蔽管线点的探查精度需满足下表(表1)要求。

表1 隐蔽管线点探查精度要求 注:h为地下管线的中心埋深,单位为cm,当h<100cm时则以100cm带入计算。 2、地下管线点的测量精度:平面位置中误差m s不得大于±5cm(相对于邻近控制点),高程测量中误差m h不得大于±3cm(相对于邻近高程点)。 3 管线调查方法 3.1 工作流程 本工程主要涉及地下管线探测、地下管线点测量、管线图编绘等环节。首先,根据委托方提供的现有管线资料,在实地查看现状地下管线(管道)走向及埋深情况,选择合适路段开展方法有效性试验,拟采用电磁法进行探查,并辅助以现场调查、钎探法以及局部开挖等方法进行验证;其次,根据方法试验成果选择物探工作参数,对工区内管线进行探测,并实地标识管线特征点,编号并记录其属性。管线点测量拟采用RTK或全站仪,首先用GPS卫星定位系统在首级控制点的基础上,布设E级GPS点,再用全站仪布设图根导线并测量各管线特征点的三维坐标。 3.2 探查方法 3.2.1 基本原理 金属地下管线探测一般采用频率域电磁法进行探测,具有仪器轻便、快捷、准确等特点。根据电磁感应原理,在金属管线上方(或附近)放置有交变电流的发射线圈,线圈受交变电流的作用产生交变电磁场并向周围传播,该电磁场称为“一次场”。因穿过金属管线的“一次场”磁通量的大小、方向不断变化,使金属管线产生感应电流,其大小正比于磁通量的变化率,频率与“一次场”相同。同理,该感应电流在其周围产生频率相同的感应电磁场,即“二次场”。通过接收装置在一定距离外接收“二次

太阳系行星介绍

水星(英语:Mercury,拉丁语:Mercurius)是太阳系八大行星最内侧也是最小的一颗行星,也是离太阳最近 的行星。水星是一颗类地行星,由于其非常靠近太阳,所以只会出现在凌晨成为晨星,或是黄昏出现作为昏星。除 非有日食,否则在阳光的照耀下通常是看不见水星的。 内部构造 水星是太阳系内与地球相似的4颗类地行星之一,有着与地球一样的岩石个体。它是太阳系中最小的行星,在赤道的半径是2,439.7公里。水星由大约70%的金属和30%的硅酸盐材料组成,水星的密度是5.427克/cm3,在太阳系中是第二高的,仅次于地球的5.515克/cm3。 地形地貌 美国发射的“水手10号”在1974年3月、9月和1975年3月探测了水星,并向地面发回5000多张照片,为我们了解水星提供了珍贵的信息。从照片上我们看出,水星的外貌酷似月球,有许多大小不一的环形山,还有辐射纹、平原、裂谷、盆地等地形。水星的表面很像月球,满布着环形山、大平原、盆地、辐射纹和断崖。1976年,国际天文学联合会开始为水星上的环形山命名。 水星表面上有着星罗棋布的大大小小的环形山,既有高山,也有平原,还有令人胆寒的悬崖峭壁。据统计,水星上的环形山有上千个,这些环形山比月亮上的环形山的坡度平缓些。 水星表面平均温度约452K,变化范围从90-700K,是温差最大的行星。白天太阳光直射处温度高达427℃,夜晚太阳照不到时,温度降低到-173℃。可以比较一下地球,地球上的度温变化只有11K(这里只是太阳辐射能量,不考虑“季节”,“天气”)。水星的表面的日照比地球强8.9 倍,总共辐照度有9126.6W/㎡。 令人惊讶地是,在1992年所进行的雷达观察显示,水星的北极有冰。一般相信这些冰存在于阳光永无法照射到的环形山底部,由于彗星的撞击或行星内部的气体冒出表面而积累的。由于没有大气调节,这些地方的温度一直维持在华氏零下280度(约合-173℃)左右。 大气层 水星上有极稀薄的大气,大气压小于2×10百帕,大气中含有氦、氢、氧、碳、氩、氖、氙等元素。由于大气非常稀薄,水星的表面白天和夜晚的温度相差很大,实际上水星大气中的气体分子与水星表面相撞的频密程度比它们之间互相相撞要高。出于这些原因,水星应被视为是没有大气的。 水星的大气非常少,主要成份为氦(42%)、汽化钠(42%)和氧(15%),而且在白天气温非常高,平均地表温度为179℃,最高为427℃,最低为零下173℃,因此水星上看来不可能存在水;但1991年科学家在水星的北极发现了一个不同寻常的亮点,造成这个亮点的可能是在地表或地下的冰。水星上真的有可能存在冰吗?由于水星的轨道比较特殊,在它的北极,太阳始终只在地平线上徘徊。在一些陨石坑内部,可能由于永远见不到阳光而使温度降至零下161℃以下。这样低的温度就有可能凝固从行星内部释放出来的气体,或积存从太空来的冰。 真正发现水星有冰 2014年,美国航天局派往水星的探测器信使号,早前传来的照片中,却发现北极地区一个陨石坑附近有冰的存在,是首次真正发现水星有冰。 学者早于两年前已透过间接的分析指水星上存在着冰,但这次则是首次直接看到。专家估计冰块有数以十米厚,但亦可能延伸至坑洞内。虽然水星围绕太阳转一圈需时58个地球日,几乎整个大地都被阳光照射,但水星的极地则永远无法被太阳照到,温度低得有机会让冰形成。

搜寻太阳系外行星的方法

搜寻太阳系外行星的方法 人类对于太阳系外行星探测与研究的兴趣和热情逐渐高涨,投入也逐年加大。据非官方统计,目前世界科技发达国家如欧美在天文学领域大约有1/3的财力、物力和人才投入到这个领域,探索这些神秘的”新世界”(The New World)也成为美国下一个十年重点发展的天文学研究项目之一。在这样的大背景下,我们如能利用力所能及的条件,开展一些可行的太阳系外行星的探测与性质研究,无疑是很有意义和价值的。 探测新的太阳系外行星并研究其重要物理性质如质量、半径、密度、轨道特征等的技术方法主要有以下几种: 1.天体测量法 天体测量法是搜寻系外行星最早期的方法。在双星系统中,两星围绕着共同的质心转动,每颗星的轨迹都是周期性的。如果双星中一颗恒星很亮,而另一颗伴星太暗难以观测,那么我们可以用观测到的亮星的周期性摆动轨迹的天体测量资料,利用牛顿的引力定律和开普勒定律来推算出暗伴星的轨道及质量。如果由摆动轨迹推算出伴星的质量远小于恒星的质量下限,那么这颗暗伴星就很可能是行星。这种方法虽然原理简单,但由于恒星位置的摆动太过微小,实际观测是非常困难的。所以这种方法更适于离我们更近的、轨道面近于垂直视线且轨道半径大的恒星-行星系统。 2.直接摄像法 顾名思义,直接摄像法即从行星反射其主恒星的光来观测行星,利用大口径或空间望远镜高分辨率高对比度成像仪及星冕仪对太阳系外行星进行直接成像。但由于行星比其环绕的主恒星暗得多而不容易观测,且由于恒星-行星视角距很小而难于分辨。难度很高,中小口径望远镜无法实现。 3.视向速度法 如果双星的轨道面并不垂直于我们的视线,而是呈一定角度,由于两颗恒星围绕公共质心旋转且位于公共质心的两侧,当它们依次周期性地向我们走进和走远.由于多普勒效应,当一颗恒星向我们走近时,光谱线紫移;当它远离时,光谱线红移。从恒星光谱线的位移可以推算其视向速度。当前是发现及研究太阳系外行星系统的主要方法,已发现的500多颗系外行星中有400多颗为此种方法所发现。但此方法的实现需要高精度的高分辨率光谱仪设备和较大口径的望远镜,难度较高。 4.微引力透镜法 利用背景恒星发出的星光受前景行星引力影响发生偏转(爱因斯坦的广义相

管线探测仪的探测方法

管线探测仪的探测方法 摘要:地下管线是城市基础设施的重要组成部分,为了准确、快速、高效的进行管线探测,就应该根据地下管线的具体情况,选择不同的方法以保证探测结果的正确性。 关键词:接收机、发射机、电磁感应、频率、功率 地下管线是指铺设于地下的给水、排水(雨水、污水)、燃气、电力、通讯、热力、工业等管线。它们是城市基础设施的重要组成部分,是城市规划、建设、管理的重要基础信息。 现在地下管线探测中最便捷、高效、常用的方法是电磁法,它的依据是电磁感应定律。通过接收机在地面上测定地下管线在发射机一次场作用下被激发而产生的二次场的变化来判断地下管线的空间位置。通常情况下,单一直管线被激发产生的二次场,可看成是无限长直导线产生的电磁场。接收机就是依据这种电磁场变化来进行管线定位、定深。在没有其它管线场的干扰情况下,所测得的数据非常准确。但当被探测管线周围有其他金属管线或还存有其他交变电磁场源时,接收机的观测读数是多个场综合影响的结果。这样其定位、定深可能会带来误差或造成错误。 为了准确、快速、高效的进行管线探测,就应该根据地下管线的具体情况,选择不同的方法。管线探测仪的探测方法有以下几种: 一、感应探测法 1、发射机摆放的不同状态下激发管线的情况 1) 发射机平放 发射机平放时,发射机内的发射线圈面与地面垂直,对地下金属管线进行水平发射,它能使发射机正下方的管线,被激发产生最强的二次磁场。2) 发射机侧放发射机侧放时,发射机内的发射线圈面与地面平行,对地下金属管线进行垂直发射,此时位于发射机正下方的管线不被激发,该管线不产生二次场,当其旁边有平行管线时,被激发产生二次场将会有较大的读数。 3) 发射机倾斜45度放置 当平行管线间距较小,不宜采用平放,而采用侧放,探测效果也不十分理想时,可采用倾斜放置,目的是达到既能抑制干扰管线的二次场,又能增强要探测管线的二次场。 2、信号夹钳法

中学生科学小知识介绍八大行星是哪八大

中学生科学小知识介绍八大行星是哪八大中学生科学小知识介绍八大行星 八大行星其实指的就是在太阳系中的;水星、金星、地球、火星、木星、土星、天王星、海王星,这颗八行星,而其中只有地球、火星、木星、土星、天王星、海王星这六颗行星有自己的卫星。 我给你一一介绍认识,那么就先从水星开始吧,水星是最接近太阳的,它也是太阳系中最小最轻的行星。常和太阳同时出没。早在公元前3000年的苏美尔时代,我们的祖先便发现了水星,在水星上温差是整个太阳系中最大的,温度变化的范围为90到700。相比之下,金星的温度略高些,但更为稳定。金星在史前就已被人所知晓。它是在太阳系除了太阳外,它是最亮的一颗的。金星是一颗内层行星,从地球用望远镜观察它的话,会发现它有位相变化。告诉你在金星上大气压力为90个标准大气压(相当于地球海洋深1千米处的压力)人一上去就是死啊,大气大多由二氧化碳组成的,金星表面温度大约在400度,你知道吗温度超过了740开时(足以使铅条熔化)。金星表面自然比水星表面热,虽然金星比水星离太阳要远两倍。 火星这或许是由于它鲜红的颜色外表而得来的;火星有时被称为“红色行星”。火星是在史前时代为人类所知。由于它被认为是太阳系中人类最好的住所(除地球外),它受到科幻小说家们的喜爱。火星的两极永久地被固态二氧化碳(干冰)覆盖着。这个冰罩的结构是层叠式的,它是由冰层与变化着的二氧化碳层轮流叠加而成。在北部的夏天,二氧化碳完全升华,留下剩余的冰水层。由于南部的二氧化碳从没有完全消失过,所以我们无法知道在南部的冰层下是否也存在着冰水

层。这种现象的原因还不知道,但或许是由于火星赤道面与其运行轨道之间的夹角的长期变化引起气候的变化造成的。或许在火星表面下较深处也有水存在。这种因季节变化而产生的两极覆盖层的变化使火星的气压改变了25%左右。 木星在太阳系中是最大的一颗除了太阳,是所有其他的7颗行星总和质量的2.5倍,是地球的318倍,体积为地球的1316倍。所以被人们被称为“行星之王”。木星表面的云层是多彩的可能是由于大气中化学成分的微妙差异及其作用造成的,可能其中混入了硫的混合物,造就了五彩缤纷的视觉效果,色彩的变化与云层的高度有关:最低处为蓝色,跟着是棕色与白色,最高处为红色。我们只能通过高处云层的洞才能看到低处的云层。 土星它是太阳系上密度最小的行星,甚至它可以浮在水上。通过小型的望远镜观察也能明显地发现土星是一个扁球体。它赤道的直径比两极的直径大大约10%。这其实是因为它快速的自转和流质地表的结果。其他的气态行星也是扁球体,不过没有这样明显。还有土星是最疏松的一颗行星,它的比重比水星的还要小。但是与木星一样,土星是由大约75%的氢气和25%的氦气以及少量的水,甲烷,氨气和一些类似岩石的物质组成。这些组成类似形成太阳系时,太阳星云物质的组成。而且土星内部和木星一样,由一个岩石核心,一个具有金属性的液态氢层和一个氢分子层,同时还存在少量的各式各样的冰。 天王星的体积比海王星大,质量却比海王星的小。大多数的行星总是围绕着几乎与黄道面垂直的轴线自转,可天王星的轴线却几乎平行于黄道面。在卫星旅行者2号探测的那段时间里,天王星的南极几乎是接受太阳直射的。这一奇特的事实表明天王星两极地区所得到来自太阳的能量比其赤道地区所得到的要高。然而天王星的赤道地区仍比两极地区热,这其中的原因还不为人知。

2018星海求知_天文学的奥秘期末考试题答案

一、单选题(题数:30,共分) 1 开普勒探测器主要观测的是下列哪一块天空区域( )() A、 天鹅座与天鹰座之间的区域 B、 天蝎座与天鹰座之间的区域 C、 牛郎、天津四以及织女包围起来的三角区域 D、 天蝎座与天琴座之间的区域 正确答案: C 2 引起潮涨潮落最主要的天体是( )。() A、 太阳 B、 水星

C、 月亮 D、 金星 正确答案: C 3 下列哪个星系是棒旋星系( )() A、 室女座M87,E1型 B、 玉夫座NGC300,Sa型 C、 长蛇座M83,Sa型 D、 时钟座NGC1512,SBa型 正确答案: D 我的答案:D 4 球状星团与疏散星团的不同之处不包括()。()

A、 形态 B、 在星系中的分布空间 C、 恒星成员的普遍年龄 D、 所属的恒星集合的等级 正确答案: D 5 关于“凌日”,下列说法错误的是( )。() A、 在太阳系八大行星中,只有金星和水星才有可能发生凌日 B、 水星凌日是可以用肉眼观测到的 C、 水星凌日的周期是100年出现13次

D、 金星凌日的周期是100多年出现2次 正确答案: B 6 以下关于哈勃关系的陈述,不正确的是()。() A、 哈勃常数的单位是1/s B、 天体不分远近,退行速度一样 C、 越远的天体退行速度越快 D、 退行速度由测量光谱线的红移而算出 正确答案: B 1828年德国的维勒用无机物合成了( )。() 分 A、 氨基酸

B、 有机物 C、 蛋白质 D、 DNA 正确答案: B 8 下列物质或天体,不属于暗物质的是()。() A、 星际气体 B、 中微子 C、 黑洞 D、 中子星

太阳系成员简介

太阳在浩瀚的宇宙中谈不上有什么特殊性。组成银河系的有大约两千亿颗恒星,而太阳只是其中中等大小的一颗。太阳已的年龄有五十亿岁,正处在它一生中的中年时期。作为太阳系的中心,地球上所有生物的生长都直接或间接地需要它所提供的光和热。太阳内核的温度高达摄氏一千五百万度,在那儿发生着氢-氦核聚变反应。核聚变反应每秒钟要消耗掉约五百万吨的物质,并转换成能量以光子的形式释放出来。这些光子从太阳中心到达太阳表面要花一百多万年。光子从太阳中心出发后先要经过辐射带,沿途在与原子微粒的碰撞丢失能量。 水星距太阳五千八百万公里,是太阳系中和太阳最近的行星。水星没有卫星,它的体积在太阳系中列倒数第二位,仅比冥王星大。因为水星与太阳非常接近,所以它的白昼地表温度可高达摄氏四百二十七度;而到晚上又骤降至摄氏零下一百七十三度。 美国水手10号探测器发回的近距离水星图片。这是水星的一个半球,上北下南。 金星分别在早晨和黄昏出现在天空,古代占星家一直认为存在着两颗这样的行星,于是分别将它们称为“晨星”和“昏星”。在英语中,金星——“维纳斯”是古罗马的女神,像征着爱情与美丽。而一直以来,金星都被卷曲的云层笼罩在神秘的面纱中。 地球(我们的家):地球这颗有着广阔天空和蓝色海洋的行星始终给人以坚实巨大的感觉。而在宇宙中,地球给人的印象却并非如此:这个在一层薄薄而脆弱的大气笼罩下的星球并不见得有多大。在太空中,地球的特征是明显的:漆黑的太空、蓝色海洋、棕绿色的大块陆地和白色的云层。地球是太阳的从里往外数第三颗行星,距太阳大约有 150000000 公里。地球每 365.256 天绕太阳运行一圈,每 23.9345 小时自转一圈。它的直径为 12756 公里,只比金星大了一百多公里。人们梦想能在太空中旅行,能欣赏宇宙的奇观。而从某种意义上说,我们都是太空旅行者。我们的宇宙飞船是地球,飞行速度是每小时 108000 公里。 火星是地球的近邻。它与地球有许多相同的特征。它们都有卫星,都有移动的沙丘、大风扬起的沙尘暴,南北两极都有白色的冰冠,只不过火星的冰冠是由干冰组成的。火星每24小时37分自转一周,它的自转轴倾角是25度,与地球相差无几。 木星,太阳系九大行星中最大的一颗,按离太阳由近及远的次序为第五颗。中国古代就认识到木星约12年运行一周天,而把周天分成十二份,称十二次,木星每年行经一次,用木星所在的星次可以纪年,因此木星被称为岁星。是天空中的第三亮星,最亮时达-2.4等,只有金星和冲日时的火星比它亮。木星有众多的卫星,

地下管线探测技术与探测设备

城市地下管线探测技术与探测设备 2012年8月 摘要:本文分析了地下管线探测的特点及其工作原则,阐述了目前城市地下管线探测主要技术方法、特点及其工作原理,介绍了地下管线探测相关设备。随着我国城市建设现代化的发展,地下管线探测工程也越来越多,特别是大量非金属管线的使用对于地下管线探测技术提出了更高的要求,进行地下管线探测技术研究是一个长期的问题。 关键词:管线探测技术;电磁法;探地雷达;管线仪 1 引言 地下管线是城市最重要基础的设施,长期以来,它担负着传输信息,输送能量及排放废液的工作。它是城市赖以生存与发展的基础和保障,是保障城市功能正常发挥和人民安居乐业的神经和血管,因此被称为城市的地下生命线。但是由于种种原因,我国许多城市的地下管网分布资料不全,管线档案管理不规。近年来,随着城市建设飞速发展,在施工过程中因损坏管线而引起的停水、停电、人员伤亡等重大事故在许多城市屡见不鲜。因此探测地下管线对于城市的正常运营和改扩建具有重要的意义。 2 我国地下管线探测技术发展简介 使用物探方法进行地下管线探测我国开始于上世纪80年代末期。在此之前,获取地下管线资料的手段主要以向管线权属单位搜集已有的管线资料和开经调查为主,这时期获取的管线资料准确性、全面性都比较差。 进入90年代,我国的地下管线探测技术得到迅速的发展,在地下管线普查工程中逐步使用了“外业一体化”的作业模式和探测技术,一批专业化的探测公

司相继成立,国许多大中型城市相继开展了城市地下管线普查工作。1994年原冶金部组织制订的《地下管线电磁法探测规程》YB/I9027—94和1995年颁布实施的行业标准《城市地下管线探测技术规程》CJJ61—94,推动了城市地下管线探测技术开始走向规化,标志着以物探技术为基础的城市地下管线探测技术开始走向标准化和应用推广阶段。1996年成立了原建设部科技委地下管线管理技术专业委员会,为我国地下管线探测技术的发展和应用做了大量的工作。 进入2l世纪以来,随着数字化测绘技术以及计算机技术的发展与应用,“外业一体化”探测技术得到了较快发展和应用推广。这一时期我国许多城市均采用“外业一体化”探测技术组织进行了地下管线普查,提高了探测作业的工作效率,保证了普查工作成果的质量。2003年修订后的行业标准《城市地下管线探测技术规)CJJ61—2003,系统总结了“外业一体化”技术经验和成果,为规和统一技术的应用推广起到重要作用。 3 地下管线探测的特点和基本原则 3.1 地下管线探测的特点 (1)工作环境复杂,地下管线探测不仅受管线本身材质影响,同时也受到当地的埋设状况等地质条件影响; (2)地下管线种类繁多,主要有:给水管、排水管、燃气管、电力电缆和路灯电缆、电讯电缆、供热管道、人防通道等。由管线所形成的物理场的种类和变化较大; (3)对探测设备具有较高的要求,必须满足规程的需要。既要经济实用,能够对管线进行连续追踪,快速、准确定位、定深;同时要具备多种频率,适用不同的工作环境,有较高的分辨率和较强的抗干扰性能。

太阳系介绍

太阳系Solar System 一、太阳系的组成The composition of the solar system 太阳系由太阳、行星和其他物质组成。 The solar system is made up of the sun, the planets, and other objects. 四个较小的内行星,水星,金星,地球和火星,是陆地行星,主要由岩石和金属组成。 The four smaller inner planets, Mercury, Venus, Earth and Mars, are terrestrial planets, being primarily composed of rock and metal. 四个外行星都是巨大的行星,木星和土星是两个最大的气态巨星,主要由氢和氦组成。两个最外层的行星,天王星和海王星,都是冰巨星。 The four outer planets are giant planets. The two largest, Jupiter and Saturn, are gas giants, being composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are ice giants.

二、太阳与行星的尺寸比较Size comparison of the Sun and the planets 太阳直径相当于地球直径的109倍,体积大约是地球的130万倍,其质量大约是地球的330000(33万)倍。 The diameter of the sun is 109 times the diameter of the earth, its volume is about 1 million 300 thousand times that of the earth, its mass is about 330 thousand times that of the earth. 太阳系的八个行星尺寸由大到小是木星、土星、天王星、海王星、地球、金星、

星海求知:天文学的奥秘2018考试

星海求知:天文学的奥秘 成绩: 91.0分 一、单选题(题数:40,共 40.0 分) 1黑洞视界大小与以下哪个名词有关()(1.0分)1.0 分 A、 史瓦西半径 B、 钱德拉塞卡极限 C、 奥本海默极限 D、 洛希极限 我的答案:A 2梅西耶星表收录的天体不包括()。(1.0分)1.0 分 A、 星云 B、 星团 C、 星系 D、 彗星 我的答案:D 3以下传统黄道十二星座中,中文名称与天文学所用的星座名称一致的是()。(1.0分)1.0 分A、 水瓶 B、 处女 C、 射手 D、 双子 我的答案:D 4关于奇点,下列说法错误的是( )。(1.0分)1.0 分 A、 时空曲率无穷大 B、 体积为0 C、 温度无限小 D、 密度无限大

我的答案:C 5以下哪个星云不可能是恒星的诞生场所()(1.0分)1.0 分 A、 猎户座大星云 B、 鹰状星云 C、 天琴座行星状星云 D、 玫瑰星云 我的答案:C 6人类对UFO的猜测和认识不包括(1.0分)1.0 分 A、 可能是敌对国家的秘密武器 B、 可能是地球以外的天体到访 C、 结果是各种大气、生物、人造天体现象 D、 肯定是存在外星人的确凿证据 我的答案:D 7黑洞、白洞和虫洞当中,目前可以视为已经有观测证据的是()。(1.0分)1.0 分A、 黑洞 B、 白洞 C、 虫洞 D、 都没有 我的答案:A 8活动星系核的质量至少应该是太阳质量的多少倍()(1.0分)1.0 分 A、 10 B、 1000 C、 1000000 D、 1000000000.0 我的答案:C 9下列哪个选项是生命存在所需的最基础物质( )(1.0分)1.0 分 A、 液态水

太阳系外行星列表

公转的恒星所属星座赤经赤纬距离(ly) 恒星光谱行星行星质量(×木星质量) 轨道周期(天) 离恒星平均距离(AU) 轨道离心率轨道倾角(度) 发现年份 WASP-1 仙女座00h 20m 40s +31°59′24″1031 F7V WASP-1b 0.89 2.51997 0.0382 0 83.9 2006 υ仙女座仙女座01h 36m 48s +41°24′20″43.9 F8V υ仙女座b 0.687–1.37 4.617113 0.0595 0.023 >30 1996 HD 17156 仙后座02h 49m 44s +71°45′12″255.2 G0 HD 17156b 3.111 21.21725 0.1594 0.6717 88.23 2007 ε波江座波江座03h 32m 55s ?09°27′29″10.5 K2V ε波江座b 1.55 2502 3.39 0.702 30.1 2000 XO-2 天猫座07h 48m 07s +50°13′33″486 K0V XO-2b 0.57 2.615838 0.0369 0 >88.58 2007 OGLE-TR-211 船底座10h 40m 15s ?62°27′20″5300 F OGLE-TR-211b 1.03 3.67724 0.051 0 >87.2 2007 OGLE-TR-132 船底座10h 50m 34s ?61°57′25″7110 F OGLE-TR-132b 1.14 1.689868 0.0306 0 85 2003 OGLE-TR-113 船底座10h 52m 24s ?61°26′48″1800 K OGLE-TR-113b 1.32 1.4324757 0.0229 0 89.4 2004 OGLE-TR-111 船底座10h 53m 1s ?61°24′20″5000 G or K OGLE-TR-111b 0.53 4.01610 0.047 0 88.1 2002 TW 长蛇座长蛇座11h 1m 52s ?34°52′17″176 K8V TW 长蛇座 b 9.8 0.041 3.56 0.04 7 2007 OGLE-TR-182 船底座11h 09m 19s -61°05′43″12700 G OGLE-TR-182b 1.01 3.9791 0.051 0 85.7 2007 格利泽436 狮子座11h 42m 11s +26°42′23″33.48 M2.5 格利泽436b 0.0673 2.64385 0.0291 0.150 86.5 2004 2M1207 半人马座12h 07m 33s ?39°32′54″173 M8 2M1207b 3.3 620000 41 2004 PSR B1257+12 室女座13h 00m 03s +12°40′57″980 pulsar PSR B1257+12B 0.014 66.5419 0.36 0.0186 53 1992 PSR B1257+12 室女座13h 00m 03s +12°40′57″980 pulsar PSR B1257+12C 0.012 98.2114 0.46 0.0252 47 1992 GSC 03466-00819 大熊座13h 44m 23s +48°01′43″457 K HAT-P-3b 0.61 2.899703 0.03894 0 87.24 2007 BD+36°2593 牧夫座15h 19m 58s +36°13′47″1010 F HAT-P-4b 0.68 3.056536 0.0446 0 89.9 2007 Lupus-TR-3 豺狼座15h 30m 19s ?42°58′46″8950 K1V Lupus-TR-3b 0.81 3.91405 0.0464 0 88.3 2007 XO-1 北冕座16h 02m 12s +28°10′11″600 G1V XO-1b 0.9 3.941534 0.0488 0 87.7 2006 HD 147506 武仙座16h 20m 36s +41°02′53″440 F8 HAT-P-2b 9.04 5.63341 0.0685 0.520 90 2007 HD 149026 武仙座16h 30m 29s +38°20′50″257 G0IV HD 149026 b 0.36 2.8766 0.042 0 85.3 2005 OGLE-TR-10 人马座17h 51m 28s ?29°52′34″5000 G or K OGLE-TR-10 b 0.63 3.10129 0.04162 0 84.5 2002 GSC 03089-00929 武仙座17h 52m 07s +37°32′46″1300 G TrES-3 1.92 1.30619 0.0226 0 82.15 2007 GSC 02620-00648 武仙座17h 53m 13s +37°12′42″1400 F TrES-4 0.84 3.553945 0.0488 0 82.81 2007 OGLE-TR-56 人马座17h 56m 35s ?29°32′21″4892 G OGLE-TR-56b 1.29 1.211909 0.0225 0 78.8 2003 SWEEPS-04 人马座17h 58m 54s ?29°11′21″6500 SWEEPS-04b <3.8 4.2 0.055 >87 2006 SWEEPS-11 人马座17h 59m 03s ?29°11′54″6500 SWEEPS-11b 9.7 1.796 0.03 >84 2006 OGLE 2003-BLG-235L 人马座18h 05m 16s ?28°53′42″19000 K OGLE 2003-BLG-235 Lb 2.6 4.3 2004 GSC 02634-01087 天琴座18h 17m 37s +36°37′16″1110 G HAT-P-5b 1.06 2.788491 0.04075 0 86.75 2007 GSC 02652-01324 天琴座19h 04m 09s +36°37′57″512 K0V TrES-1 0.61 3.030065 0.0393 0.135 88.2 2004 GSC 03549-02811 天龙座19h 07m 14s +49°18′59″718 G0V TrES-2 1.28 2.47063 0.0367 0 83.9 2006 HD 189733 狐狸座20h 00m 43s +22°42′39″62.9 K1–K2 HD 189733 b 1.15 2.219 0.0313 0.00 85.3 2005 WASP-2 海豚座20h 30m 54s +06°25′46″493 K1V WASP-2b 0.88 2.152226 0.0307 0 87 2006 HD 209458 飞马座22h 03m 10s +18°53′04″154 G0V HD 209458 b 0.69 3.52474541 0.045 0.00 86.1 1999 ADS 16402 B 蝎虎座22h 57m 47s +38°40′30″453 G0V HAT-P-1b 0.59 4.46529 0.0551 0 85.9 2006 WASP-4 凤凰座23h 34m 15s ?42°03′41″851 G7V WASP-4b 1.2704 1.3382277 0.0230 0 87.54 2007 GSC 03239-00992 仙女座23h 39m 06s +42°27′58″650 F HAT-P-6b 1.057 3.852985 0.05235 0 85.51 2007

系外行星探测方法

系外行星探测方法 系外行星是围绕太阳以外恒星运行的行星或行星系统。太阳以外的恒星距离地球都比较远,例如距离地球最近的南门二(被称为比邻星)到地球的距离也达4.22光年,比太阳远27万多倍!因此,探测系外行星很不容易。系外行星的探测方法分为两类:地面观测和空间探测。早期探测都在地面进行,使用的方法是天文观测中常用的方法。 天体测量法精确测量恒星在天空的位置及观测其位置随时间的变动。如果恒星周围有一颗行星,则行星引力将使恒星在一条微小的圆形轨道上出现移动。利用这种方法,需要观测数年乃至数十年才能得出结果。 视向速度法此方法与天体测量法相似,即利用恒星在行星引力作用下在一条微小的圆形轨道上的移动。但是,此方法是运用多普勒效应测出恒星在观测者视线方向上的运动速度,测量原理是恒星光谱线的“红移”或“蓝移”(请参见相关链接:《多普勒效应与“红移”》)。这个方法是迄今为止在地面寻找系外行星方面用得最多的一种。 凌日法当金星或水星从太阳与地球之间穿过,把太阳表面光线挡住,使太阳表面出现一个黑点时,就出现金星凌日或水星凌日现象。同样,系外行星从其母恒星前面穿过,

从而遮挡母恒星表面光线时,也会出现“凌日”现象。对这种现象进行观测,就可以发现系外行星的存在。使用“凌日法”可估计行星直径。“凌日法”与“视向速度法”联用,有助于估计行星的真实质量。然而,行星从其母恒星和地球之间穿过时,其光度减弱程度与母恒星及行星大小有关,一般情况下光度减弱都不大,例如HD 209458的光度只下降了1.7%,这样的光度变化很难测量出来。 脉冲计时法脉冲星是一种旋转速度特别快、具有极其稳定的旋转周期的星。这种星的发现本身就是天文学上的新成果,更何况在它周围发现了围着它旋转的行星,因而这一方法倍受关注。脉冲星是超新星爆发以后留在原地的超高密度的中子星,能发射出极有规律的快速电磁脉冲。这种天体与其他天体一样,转动速度也可受绕其转动的行星影响,因此,通过测量其脉冲的变动,就可以估计其行星性质。与其他方法相比,这个方法灵敏度极高,能测量出只相当于0.1个地球质量的行星和行星系统内彼此之间的引力扰动。用这种方法可以得到有关行星本身、行星轨道等多方面的资料。但由于脉冲星稀少,用这种方法不容易发现大量行星。再者,脉冲星附近有极强的高能辐射,因而它们周围很难有生命存在。 引力微透镜法引力微透镜是引力透镜的一种。所谓引力透镜,是指远方星球的光线经过大质量天体附近时发生改

相关主题
文本预览
相关文档 最新文档