选修平面直角坐标系
- 格式:ppt
- 大小:923.00 KB
- 文档页数:35
1.1平面直角坐标系一、教学目标 (一)核心素养通过这节课学习,能根据问题的几何特征选择建立适当的平面直角坐标系,在数学建模过程中体会坐标法的思想. (二)学习目标1.根据问题的几何特征建立适当的平面直角坐标系. 2.通过实例概括坐标伸缩变换公式.3.了解利用坐标伸缩变换公式研究平面图形伸缩变化情况,体会坐标法思想. (三)学习重点1.根据几何特征选择坐标系. 2.坐标法思想.3.平面直角坐标系中的伸缩变换. (四)学习难点1.适当直角坐标系的选择.2.对伸缩变换中点的对应关系的理解. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第2页至第7页,填空:设点),(y x P 是平面直角坐标系中的任意一点,在变换φ:的作用下,点),(y x P 对应到点),(y x P ''',称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.预习自测(1)如何由正弦曲线y =sin x 经伸缩变换得到y =12sin 12x 的图象() A .将横坐标压缩为原来的12,纵坐标也压缩为原来的12 B .将横坐标压缩为原来的12,纵坐标伸长为原来的2倍 C .将横坐标伸长为原来的2倍,纵坐标也伸长为原来的2倍 D .将横坐标伸长为原来的2倍,纵坐标压缩为原来的12【知识点】伸缩变换【解题过程】将正弦曲线y =sin x 的横坐标伸长为原来的2倍得到x y 21sin =,再由x y 21sin =的图像的横坐标不变,纵坐标压缩为原来的21即可得y =12sin 12x 的图像. 【思路点拨】可根据三角函数的知识求解 【答案】D(2)在平面直角坐标系中,B A ,两点分别在x 轴、y 轴上滑动,且|AB|=4,则AB 中点P 的轨迹方程为________. 【知识点】点轨迹方程【数学思想】函数与方程的思想【解题过程】422=+y .端点的坐标关系,最后代入整理即可. 【答案】422=+y x .(3)在平面直角坐标系中,方程142=+y x 对应的图形经过伸缩变换⎩⎨⎧='='y y xx 42后得到的图形对应的方程是()A .0142=-'+'y xB .01=-'+'y xC .014=-'+'y xD .0116=-'+'y x 【知识点】伸缩变换【解题过程】将⎩⎨⎧='='y y x x 42经过变形得⎪⎩⎪⎨⎧'='=y y x x 4121代入到方程142=+y x ,整理得01=-'+'y x【思路点拨】通过对伸缩变换公式的变形为⎪⎪⎩⎪⎪⎨⎧'=''=y y x x μλ11,在代入原图形对应的方程,从而得到变形后的图形对应的方程. 【答案】B(4)将圆122=+y x 上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C 对应的方程为________. 【知识点】伸缩变换 【数学思想】【解题思路】设),(11y x 为圆上任意一点,在已知变换下变为曲线C 上对应的点为),(y x ,依题意,得⎩⎨⎧==112y y x x ,而12121=+y x ,得1)2(22=+y x ,所以曲线C 的方程为1422=+y x .【思路点拨】将问题转化为伸缩变换问题,再由伸缩变换公式求解【答案】1422=+y x(二)课堂设计 1.知识回顾(1)平面直角坐标系的作用:使平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现了数与形的结合.(2)坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究他的性质与其他几何图形的关系. 2.问题探究探究一结合实例,感受坐标法思想★例1某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚4s.已知各观测点到中心的距离都是1020m.试确定巨响发生的位置.(假定声音传播的速度为340m/s ,各观测点均在同一平面上.) ●活动①实际问题抽象转化为数学问题我们将正东、正西、正北的三个观测点分别记为C B A ,,,爆炸点记为P .由于C B ,同时听到由点P 发出的响声,因此PC PB =,所以点P 在线段BC 的垂直平分线l 上,由于点A 听到的响声比C B ,晚s 4,所以AB PB PA <=⨯=-13603404,说明点P 在以点B A ,为焦点的双曲线Γ上,所以点P 在直线l 与双曲线Γ的交点.【知识点】平面直角坐标系,双曲线定义 【数学思想】数形结合,转化与化归 【解题过程】解:以信息中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系. 设C B A ,,分别是东、西、北观测点,则)1020,0(),0,1020(),0,1020(C B A - 于是直线l 的方程为x y -=设双曲线Γ的方程是)0,0(12222>>=-b a by a x由已知得222234056801020,1020,680⨯=-===b c a ,于是双曲线Γ的方程是134056802222=⨯-y x将x y -=代入上述方程,解得5680,5680 =±=y x ,由已知,响声在双曲线Γ的左半支上,所以)5680,5680(-P ,10680=OP所以巨响发生在接报中心的西偏北 45距中心m 10680处. 【思路点拨】建立坐标系,把实际问题转化为数学问题. 【答案】巨响发生在接报中心的西偏北 45距中心m 10680处.同类训练 由甲导弹驱逐舰、乙导弹驱逐舰、丙综合补给舰组成的护航编队奔赴某海域执行护航任务,对商船进行护航.某日,甲舰在乙舰正东6 km 处,丙舰在乙舰北偏西30°,相距4 km.某时刻甲舰发现商船的某种求救信号.由于乙、丙两舰比甲舰距商船远,因此4 s 后乙、丙两舰才同时发现这一信号,此信号的传播速度为1 km/s.若甲舰赶赴救援,行进的方位角应是多少? 【知识点】平面直角坐标系的应用 【数学思想】坐标法思想【解题过程】设A ,B ,C ,P 分别表示甲舰、乙舰、丙舰和商船.如图所示,以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立直角坐标系,则A (3,0),B (-3,0),C (-5,23).∵|PB |=|PC |,∴点P 在线段BC 的垂直平分线上. k BC =-3,线段BC 的中点D (-4,3), ∴直线PD 的方程为y -3=13(x +4).① 又|PB |-|P A |=4,∴点P 在以A ,B 为焦点的双曲线的右支上, 双曲线方程为x 24-y 25=1(x ≥2). ②联立①②,解得P 点坐标为(8,53), ∴k P A =538-3= 3.因此甲舰行进的方位角为北偏东30°.【思路点拨】本题的关键在于确定商船相对于甲舰的相对位置,因此不妨用点A 、B 、C 表示甲舰、乙舰、丙舰,建立适当坐标系,求出商船与甲舰的坐标,问题可解. 【答案】甲舰行进的方位角为北偏东30°.【设计意图】从生活实例到数学问题,体会坐标法的提炼、抽象过程. ●活动②归纳梳理、理解提升通过实例,合理建立坐标系是解决此类问题的关键,如果坐标系建立得合理,可以简化我们的计算,并且使问题的结论清晰明了、具体形象,那么利用坐标法解决问题的基本步骤是什么呢?坐标法解决几何问题的“三部曲”:第一步:建立适当的坐标系,用坐标和方程表示问题中涉与的几何元素,将几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论.●活动③学以致用,理论实践例2 已知△ABC 的三边c b a ,,满足2225a c b =+ , BE,CF 分别为边AC,AB 上的中线, 建立适当的平面直角坐标系探究BE 与CF 的位置关系.A BCO y xF E【知识点】平面直角坐标系,轨迹方程 【数学思想】数形结合 【解题过程】解: 如图, 以△ABC 的顶点A 为原点O, 边AB 所在的直线为x 轴, 建立直角坐标系. 由已知, 点A,B,F 的坐标分别为)0,2()0,(),0,0(c F c B A ,设点C 的坐标为),(y x ,点E 的坐标为)2,2(yx .由2225a c b =+可得2225BC AB AC =+即[]22222)(5y c x c y x +-=++,整理得05222222=-++cx c y x因为),2(),2,2(y x cCF y c x BE --=-=所以0)5222(41222=-++-=•cx c y x CF BE由此,BE 与CF 相互垂直.【思路点拨】建立坐标系,把实际问题转化为数学问题. 【答案】BE 与CF 相互垂直.同类训练 已知正三角形ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值.【知识点】平面直角坐标系 【数学思想】数形结合思想【解题过程】 如右图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立直角坐标系,则A (0,23 a ),B (-2a ,0),C (2a ,0).设P (x ,y ),则|P A |2+|PB |2+|PC |2 =x 2+(y -23 a )2+(x +2a )2+y 2+(x -2a)2+y 2 =3x 2+3y 2-3ay +452a =3x 2+3(y -63a )2+a 2≥a 2,当且仅当x =0,y =63a 时,等号成立,∴所求最小值为a 2,此时P 点坐标为P (0,63a ),是正三角形AB C 的中心. 【思路点拨】建立适当的平面直角坐标系,把几何问题转化为代数问题,从而简化问题 【答案】所求最小值为a 2,此时P 点坐标为P (0,63a ),是正三角形AB C 的中心 【设计意图】通过把平面几何的问题转化为代数问题,认识坐标法思想的优势. 探究二探究平面直角坐标系中的伸缩变换 ●活动①温故知新、提炼概念在三角函数图像的学习中,我们研究过下面一些问题:你还能分析出由正弦曲线x y sin =怎样得到曲线x y 2sin =吗?在由正弦曲线x y sin =上任取一点),(y x P ,保持纵坐标y 不变,将横坐标x 缩为原来的21,就的到曲线x y 2sin =.从坐标系中的点的对应关系出发,你认为“保持纵坐标y 不变,将横坐标x 缩为原来的21”的实质是什么?(讨论)即,设),(y x P 为平面直角坐标系中任意一点,保持纵坐标y 不变,将横坐标x 缩为原来的21,得到点),(y x P ''',则⎪⎩⎪⎨⎧='='yy xx 21①我们把①式叫做平面直角坐标系中的一个坐标压缩变换.【设计意图】通过对三角函数图像的变换的回顾,为后面一般图形的伸缩变换表示做好铺垫. ●活动②温故知新、提炼概念那么如何由正弦曲线x y sin =怎样得到曲线x y sin 3=呢?在由正弦曲线x y sin =上任取一点),(y x P ,保持横坐标x 不变,将纵坐标y 伸长为原来的3倍,就的到曲线x y sin 3=.从坐标系中的点的对应关系出发,你认为“保持横坐标x 不变,将纵坐标y 伸长为原来的3倍”的实质是什么?(讨论)即,设),(y x P 为平面直角坐标系中任意一点,保持横坐标x 不变,将纵坐标y 伸长为原来的3倍,得到点),(y x P ''',则⎩⎨⎧='='y y x x 3②我们把②式叫做平面直角坐标系中的一个坐标伸长变换.【设计意图】通过对三角函数图像的变换的回顾,为后面一般图形的伸缩变换表示做好铺垫. ●活动③巩固理解、提炼概念同理,由正弦曲线x y sin =怎样得到曲线x y 2sin 3=呢?这个可以认为是是上述两个的“合成”,即先保持纵坐标y 不变,将横坐标x 缩为原来的21,再保持横坐标x 不变,将纵坐标y 伸长为原来的3倍,就可得曲线x y 2sin 3=.类比上述情况,即:设平面直角坐标系中任意一点),(y x P 经过上述变换后为点),(y x P ''',那么⎪⎩⎪⎨⎧='='yy x x 321③ 我们把③式叫做平面直角坐标系中的坐标伸缩变换. 一般地,设),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>•='>•=')0()0(:μμλλϕy y x x 的作用下,点),(y x P 对应点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.【设计意图】通过对前面的总结,发现一般情况,从而得出伸缩变换的概念. 活动④巩固基础,检查反馈例3 在同一平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎪⎩⎪⎨⎧='='yy xx 2131后的图形.⑴14922=+y x ;⑵1121822=-y x ⑶x y 22= 【知识点】伸缩变换.【数学思想】转化与化归的思想【解题过程】.⑴由伸缩变换⎪⎩⎪⎨⎧='='y y x x 2131得⎩⎨⎧'='=y y x x 23代入14922=+y x ,得到经过伸缩变换后的图形方程为122='+'y x同理可得⑵式经过伸缩变换后的图形方程为13222='-'y x⑶式经过伸缩变换后的图形方程为x y '='232 【思路点拨】通过对伸缩变换公式的变形为⎪⎪⎩⎪⎪⎨⎧'=''=y y x x μλ11,在代入原图形对应的方程,从而得到变形后的图形对应的方程.同类训练在平面直角坐标系中, 求方程032=+y x 所对应的图形经过伸缩变换⎩⎨⎧='='y y xx 32后的图形对应的方程为.【知识点】坐标的伸缩变换. 【数学思想】转化与化归思想【解题过程】由伸缩变换⎩⎨⎧='='y y x x 32得⎪⎩⎪⎨⎧'='=y y x x 321代入032=+y x ,得到经过伸缩变换后的图形方程为0='+'y x【思路点拨】伸缩变换公式的应用. 【答案】0='+'y x●活动⑤强化提升、灵活应用例4在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧='='yy x x 3后,曲线C 变为曲线9922='-'y x ,求曲线C 的方程.【知识点】伸缩变换逆向应用.【解题过程】将伸缩变换⎩⎨⎧='='y y x x 3代入曲线9922='-'y x 得到曲线C 对应的方程为122=-y x 【思路点拨】伸缩变换公式的应用. 【答案】122=-y x .同类训练在同一平面直角坐标系中,经过伸缩变换⎪⎩⎪⎨⎧='='y y x x 312后,曲线C 变为曲线1922='+'y x ,求曲线C 的方程. 【知识点】伸缩变换逆向应用.【解题过程】将伸缩变换⎪⎩⎪⎨⎧='='y y x x 312代入曲线1922='+'y x 得到曲线C 对应的方程为1422=+y x 【思路点拨】伸缩变换公式的应用. 【答案】1422=+y x . 3.课堂总结 知识梳理(1)坐标法解决几何问题的“三部曲”:第一步:建立适当的坐标系,用坐标和方程表示问题中涉与的几何元素,将几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论.(2)建系时,根据几何特点选择适当的直角坐标系:第一:如果图形有对称中心,可以选对称中心为坐标原点;第二:如果图形有对称轴,可以选择对称轴为坐标轴;第三:使图形上的特殊点尽可能多的在坐标轴上.(3)一般地,设),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>•='>•=')0()0(:μμλλϕy y x x 的作用下,点),(y x P 对应点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 重难点归纳(1)坐标法是在坐标系的基础上,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.它是解析几何中最基本的研究方法.(2)在坐标伸缩变换的作用下,可以实现平面图形的伸缩.因此,平面图形的伸缩变换可以用坐标伸缩变换来表示. (三)课后作业 基础型自主突破1.已知f 1(x )=cos x ,f 2(x )=cos ωx (ω>0),f 2(x )的图象可以看作是把f 1(x )的图象在其所在的坐标系中的横坐标压缩到原来的31倍(纵坐标不变)而得到的,则ω为( )A.21B.2C.3D.31 【知识点】三角函数图像,伸缩变换公式.【解题过程】:∵1,3,x x y y ⎧'=⎪⎨⎪'=⎩∴3,.x x y y '=⎧⎨'=⎩将其代入y =cos x ,得到y '=cos3x ',即f 2(x )=cos3x . 【思路点拨】函数y =cos ωx ,x ∈R (其中ω>0,ω≠1)的图象,可以看作把余弦曲线上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的ω1倍(纵坐标不变)而得到.应用时谨防出错. 【答案】C2.曲线122=+y x 经过φ: ⎩⎨⎧='='yy xx 43变换后得到的新曲线的方程是().A .14322='+'y xB .191622='+'y xC .116922='+'y x D .116922='+'y x【知识点】伸缩变换公式与应用.【解题过程】曲线122=+y x 经过φ: ⎩⎨⎧='='y y x x 43变换后,即⎪⎩⎪⎨⎧'='=y y x x 4131代入到圆的方程,可得116922='+'y x 即所求新曲线的方程为116922='+'y x . 【思路点拨】将y x ,表示出来,代入到原方程即可得到新曲线的方程. 【答案】D .3.将一个圆作伸缩变换后所得到的图形不可能是() A.椭圆 B.比原来大的圆 C.比原来小的圆 D.双曲线【知识点】伸缩变换的应用.【解题过程】由伸缩变换的公式可知不可能得到的图形是双曲线,只能是圆或者椭圆. 【思路点拨】将伸缩变换的公式进行变形可得. 【答案】D4. 将点(2,3)变成点(3,2)的伸缩变换是()A .2332x'x y'y ⎧=⎪⎪⎨⎪=⎪⎩B .3223x'x y'y ⎧=⎪⎪⎨⎪=⎪⎩C .x'y y'x =⎧⎨=⎩D .11x'x y'y =+⎧⎨=-⎩【知识点】伸缩变换公式与应用.【解题过程】设此变换为,,x'x y'y λμ=⎧⎨=⎩则3,22,3x'x y'y λμ⎧==⎪⎪⎨⎪==⎪⎩所以所求变换为3,22,3x'x y'y ⎧=⎪⎪⎨⎪=⎪⎩【思路点拨】将伸缩变换公式进行变形得到. 【答案】B .5.已知函数=)(x f 22(1)1(1)1,x x -++++则)(x f 的最小值为__________. 【知识点】平面直角坐标系的应用. 【数学思想】数形结合的思想【解题过程】f (x )可看作是平面直角坐标系下x 轴上一点(x,0)到两定点(-1,1)和(1,1)的距离之和,结合图形可得,f (x )的最小值为2.【思路点拨】利用代数式的几何意义来处理. 【答案】22.6.在同一平面直角坐标系中,经过伸缩变换5,3x x y y '=⎧⎨'=⎩后,曲线C 变为曲线322='+'y x ,则曲线C 的方程为________. 【知识点】伸缩变换公式应用.【解题过程】将伸缩变换5,3x x y y '=⎧⎨'=⎩代入322='+'y x ,得392522=+y x .【思路点拨】灵活应用伸缩变换公式. 【答案】392522=+y x . 能力型师生共研7.设曲线C 对应的方程为)0,0(12222>>=-b a b y a x ,曲线C 经过伸缩变换⎩⎨⎧>•='>•=')0()0(:μμλλϕy y x x 后得到曲线C ',则曲线C '为() A .双曲线B .椭圆C .抛物线D .随μλ,的系数不同曲线也不同【知识点】双曲线,伸缩变换.【解题过程】将变换,,x'x y'y λμ=⎧⎨=⎩转化为⎪⎪⎩⎪⎪⎨⎧'='=y y x x μλ11代入双曲线方程得)0,0(1222222>>='-'b a b y a x μλ,所以曲线C '为双曲线.【思路点拨】伸缩变换公式的应用以与双曲线定义. 【答案】A .8.在同一平面直角坐标系中,将曲线01283622=+--x y x 变成曲线03422=+'-'-'x y x ,求满足条件的伸缩变换.【知识点】伸缩变换公式应用.【解题过程】解:x 2-36y 2-8x +12=0可化为24()2x --9y 2=1.① x ′2-y ′2-4x ′+3=0可化为(x ′-2)2-y ′2=1.②比较①②,可得42,23,x x y y -⎧'-=⎪⎨⎪'=⎩即,23.xx y y ⎧'=⎪⎨⎪'=⎩ 所以将曲线x 2-36y 2-8x +12=0上所有点的横坐标变为原来的12,纵坐标变为原来的3倍,就可得到曲线x ′2-y ′2-4x ′+3=0的图象. 【思路点拨】灵活应用伸缩变换公式.【答案】,23.xx y y ⎧'=⎪⎨⎪'=⎩.探究型多维突破9.△ABC 的顶点A 固定,点A 的对边BC 的长是2a ,边BC 上的高的长是b ,边BC 沿一条直线移动,求△ABC 外心的轨迹方程. 【知识点】平面直角坐标系的应用,轨迹方程. 【数学思想】数形结合【解题过程】解:以边BC 所在的定直线为x 轴,过A 作x 轴的垂线为y 轴,建立直角坐标系,则点A 的坐标为(0,b ). 设△ABC 的外心为M (x ,y ).取BC 的中点N ,则MN ⊥BC ,即MN 是BC 的垂直平分线. ∵|BC |=2a ,∴|BN |=a ,|MN |=|y |. 又M 是△ABC 的外心,∴|MA |=|MB |. 又|MA |=x 2+y -b2,|MB |=|MN |2+|BN |2=y 2+a 2,∴x 2+y -b2=y 2+a 2,化简,得所求的轨迹方程为x 2-2by +b 2-a 2=0.【思路点拨】选择恰当的坐标系,坐标系如果选择得恰当,可使解题过程简化,减少计算量. 【答案】02222=-+-a b by x .自助餐1.将正弦曲线y =sin x 作如下变换:⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,得到的曲线方程为( ).A .y ′=3sin 12x ′B .y ′=13sin 2x ′ C .y ′=12sin 2x ′ D .y ′=3sin 2x ′ 【知识点】三角函数图形、伸缩变换. 【解题过程】将⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,转化为⎪⎩⎪⎨⎧'='=y y x x 312代入y =sin x 可得【思路点拨】将伸缩变换公式进行变形后再应用. 【答案】D2.将曲线F (x ,y )=0上的点的横坐标伸长到原来的2倍,纵坐标缩短到原来的13,得到的曲线方程为( )A .F ⎝ ⎛⎭⎪⎫x 2,3y =0B .F ⎝ ⎛⎭⎪⎫2x ,y 3=0 C .F ⎝ ⎛⎭⎪⎫3x ,y 2=0 D .F ⎝ ⎛⎭⎪⎫x 3,2y =0【知识点】伸缩变换.【解题过程】设(x ,y )经过伸缩变换变为(x ′,y ′), ∴⎩⎪⎨⎪⎧x ′=2x ,y ′=13y ,则⎩⎪⎨⎪⎧x =12x ′,y =3y ′,代入F (x ,y )=0得F ⎝ ⎛⎭⎪⎫12x ′,3y ′=0..【思路点拨】正确使用伸缩变换公式. 【答案】A3.双曲线C:16422=-y x 经过⎩⎨⎧='='yy x x 23:ϕ变换后所得曲线C '的焦点坐标为________.【知识点】双曲线的性质、伸缩变换.【解题过程】 将变换⎩⎨⎧='='y y x x 23ϕ变形为⎪⎩⎪⎨⎧'='=y y x x 231代入曲线C 中得:116922=-y x ,所有焦点坐标为)0,5(或)0,5(-.【思路点拨】先将曲线C '的方程求解,在根据双曲线的性质求焦点坐标. 【答案】)0,5(或)0,5(-.4.在同一平面直角坐标系中,曲线369422=+y x 经过伸缩变换ϕ后变成曲线1222='+'y x ,则伸缩变换ϕ为________. 【知识点】伸缩变换公式.【解题过程】将369422=+y x 变形为14922=+y x 与1222='+'y x 比较可得⎪⎪⎩⎪⎪⎨⎧='='yy x x 2231. 【思路点拨】对伸缩变换公式进行适当的变形.【答案】⎪⎪⎩⎪⎪⎨⎧='='y y x x 2231. 5.如图所示,A ,B ,C 是三个观察站,A 在B 的正东,两地相距6 km ,C 在B 的北偏西30°,两地相距4 km ,在某一时刻,A 观察站发现某种信号,并知道该信号的传播速度为1 km/s,4 s 后B ,C 两个观察站同时发现这种信号,在以过A ,B 两点的直线为x 轴,以AB 的垂直平分线为y 轴建立的平面直角坐标系中,指出发出这种信号的P 的坐标.【知识点】双曲线的定义、直角坐标系. 【数学思想】坐标法思想.【解题过程】解:设点P 的坐标为(x ,y ),则A (3,0),B (-3,0),C (-5,23). 因为|PB |=|PC |,所以点P 在BC 的中垂线上. 因为k BC =-3,BC 的中点D (-4,3),所以直线PD的方程为y-3=13(x+4).①又因为|PB|-|P A|=4,所以点P必在以A,B为焦点的双曲线的右支上,双曲线方程为x24-y25=1(x≥2).②联立①②,解得x=8或x=-3211(舍去),所以y=5 3.所以点P的坐标为(8,53).【思路点拨】根据实际问题建立合适的直角坐标系,转为数学问题.【答案】(8,53).。
坐标系与参数方程 知识点(一)坐标系1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ=≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ=≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或(2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=. 5.圆与直线一般极坐标方程(1)圆的极坐标方程若圆的圆心为 00(,)M ρθ,半径为r ,求圆的极坐标方程。