城市轨道车辆制动系统
- 格式:ppt
- 大小:3.60 MB
- 文档页数:74
城市轨道交通车辆制动方式一、引言城市轨道交通作为现代城市公共交通的重要组成部分,其安全性和稳定性是保证运营质量的关键因素之一。
而车辆制动作为车辆控制系统中的重要组成部分,对于保证列车的安全运行起着至关重要的作用。
本文将从城市轨道交通车辆制动方式入手,详细介绍城市轨道交通车辆制动方式及其特点。
二、电阻制动电阻制动是城市轨道交通常用的一种制动方式。
它是利用列车牵引系统中装有电阻器,在列车行驶过程中通过改变电路连接方式,使电能转化为热能而达到减速目的。
这种制动方式具有以下特点:1. 制动效果稳定可靠:由于电阻器可以根据列车运行状态进行调整,因此可以实现精确控制列车速度。
2. 制动过程平稳:由于电阻器可以逐渐降低输出功率,因此可以实现平滑减速。
3. 能量回收效果差:由于电能转化为热能而散失掉了大量能量,因此不能实现能量回收。
三、空气制动空气制动是城市轨道交通常用的一种制动方式。
它是利用列车牵引系统中的压缩空气,通过控制空气压力来控制列车的制动力。
这种制动方式具有以下特点:1. 制动效果稳定可靠:由于空气制动可以实现精确控制列车速度,因此具有较高的稳定性和可靠性。
2. 制动过程平稳:由于空气制动可以逐渐降低输出压力,因此可以实现平滑减速。
3. 能量回收效果差:由于空气制动不能实现能量回收,因此在长时间停车时会浪费大量能量。
四、电磁吸盘制动电磁吸盘制动是城市轨道交通常用的一种辅助制动方式。
它是利用列车底部装有的电磁吸盘,在紧急情况下通过控制电磁吸盘工作来实现快速停车。
这种制动方式具有以下特点:1. 制动效果强劲:由于电磁吸盘可以产生很大的吸力,因此可以在紧急情况下迅速停车。
2. 制动过程突然:由于电磁吸盘制动是一种紧急制动方式,因此制动过程会比较突然。
3. 能量回收效果好:由于电磁吸盘可以将列车的动能转化为电能进行回收利用,因此具有较好的能量回收效果。
五、再生制动再生制动是城市轨道交通常用的一种能量回收方式。
城轨车辆制动方式按照制动时列车动能的转移方式不同城轨车辆的制动主要可以分为摩擦制动和电制动。
一,摩擦制动通过摩擦副的摩擦将列车的运动动能转变为热能,逸散于大气,从而产生制动作用。
城轨车辆常用的摩擦制动方式主要有闸瓦制动,盘形制动和轨道电磁制动。
(一)闸瓦制动闸瓦制动又称为踏面制动,它是最常见的一种制动方式。
制动时闸瓦压紧车轮,车轮与闸瓦发生摩擦,将列车的运动动能通过车轮与闸瓦间的摩擦转变为热能,逸散于空气中。
在车轮与闸瓦这一对摩擦副中,由于车轮主要承担着车辆行走功能,因此其他材料不能随便改变。
要改善闸瓦制动的性能,只能通过改变闸瓦材料的方法。
目前城轨车俩中大多数采用合成闸瓦。
但合成闸瓦的导热性较差,因此也有采用导热性能良好,且具有良好的摩擦性能的粉末冶金闸瓦。
在闸瓦制动中,当制动功率较大时,产生的热量来不及逸散到大气,而在闸瓦与车轮踏面上积聚,使他们的温度升高,摩擦力下降,严重时会导致闸瓦熔化和轮毂松弛等,因此,在闸瓦制动时,对制动功率有限制。
(二)盘形制动)盘形制动有轴盘式和轮盘式之分,一般采用轴盘式,当轮对中间由于牵引电机等设备使制动盘安装发生困难时,可采用轮盘式。
制动时,制动缸通过制动夹钳使闸片夹紧制动盘,使闸片与制动盘间产生摩擦,把列车的动能转变为热能,热能通过制动盘与闸片逸散于大气。
(三)轨道电磁制动轨道电磁制动也叫磁轨制动。
是一种传统的制动方式,这种制动方式是在转向架前后两轮之间安装包升降风缸,风缸顶端装有两个电磁铁,电磁铁包括电磁铁靴和摩擦板,电磁铁悬挂安装在距轨道面适当高度处,制动时电磁铁落下,并接通励磁电源使之产生电磁吸力,电磁铁吸附在钢轨上,列车的动能通过磨耗板与钢轨的摩擦转化为热能,逸散于大气。
轨道电磁制动可得到较大的制动力,因此常被用作于紧急制动时的一种补充制动,这种制动不受轮轨间黏着系数的限制,能在保证旅客舒适性条件下有效地缩短制动距离。
当磨耗板与轨道摩擦产生的热量多,对钢轨的磨损也很严重。
城市轨道交通车辆电空制动系统技术要求1 通用要求1.1 一般要求单节车辆采用动力转向架和非动力转向架配置或者牵引系统采用架控方式进行牵引控制的列车宜采用架控制动系统。
电空制动系统应按一列车或一个单元进行系统设计,车辆及相关系统之间接口、功能应匹配,且应避免相互干扰。
整个系统设计应具有完整性并符合故障导向安全原则。
电空制动系统应采用模块化设计,零部件应尽量集中布置,并应具有互换性,主要部件之间应留有维护空间。
电空制动系统的紧急制动的安全性应按GB/T 21562的SIL4等级进行设计,常用制动和防滑控制功能的安全性应按GB/T 21562的SIL2等级进行设计。
电空制动系统管路及其配套的管接头等部件宜采用不锈钢材质,风缸应进行防锈、防腐处理。
电空制动系统不应产生或含有对人体有毒有害的物质。
车体外部安装的制动设备,电气连接器防护等级应满足GB/T 4208—2017中IP65的要求,风源系统电机防护等级应满足IP54的要求,速度传感器防护等级应满足IP68的要求,连接器应满足IP67要求,其它部件防护等级应至少满足IP55的要求。
电空制动系统应设有与列车总线通信的多功能车辆总线(MVB)、控制器局域网(CAN)或以太网等的网络接口。
电空制动系统应能连续调节和控制制动力。
电空制动系统应具有保证运行的列车减速或停车的能力,应满足列车在规定条件下的制动减速度和制动距离要求。
电空制动系统应具有保证静止列车不溜逸的能力。
电空制动系统应能与牵引系统的电制动相互配合实现电空混合制动。
电空制动系统应能充分利用车轮与轨道之间的黏着条件,应能充分发挥制动能力。
电空制动系统应能在司机控制器、ATO或ATP等的操纵下对列车进行阶段或一次性的制动与缓解控制。
电空制动系统正常工作压力范围宜为750kPa~900kPa或800kPa~950kPa,最高工作压力不应大于1000kPa。
当电空制动系统总风管(缸)空气压力降到低于某一压力值时,列车应自动采取导向安全的措施保障列车运行安全。
城市轨道交通车辆的制动模式城市轨道交通是一种快速、高效的公共交通工具,其安全性是保证城市交通运行的关键。
而车辆的制动系统就是保障城市轨道交通安全的一个重要组成部分。
本文将介绍城市轨道交通车辆的制动模式。
一、电制动电制动是城市轨道交通车辆的主要制动方式之一。
电制动是通过电机逆变器控制车辆电机的电流,使车辆产生制动力,从而实现制动的过程。
在电制动中,车辆电机的电流变成负值,电机产生制动力,将车辆减速甚至停下来。
电制动具有制动平稳、制动距离短、制动效率高等优点。
二、空气制动空气制动是城市轨道交通车辆的另一种主要制动方式。
空气制动通过控制车辆的空气制动系统,将车辆制动盘与车轮接触,产生制动力从而实现制动的过程。
空气制动具有制动力大、制动效率高、制动距离短的优点。
但由于空气制动需要耗费空气制动缸内的压缩空气,因此其制动距离和制动平稳性都会受到影响。
三、再生制动再生制动是城市轨道交通车辆的一种辅助制动方式。
再生制动通过逆变器控制电机的电流,将旋转的车轮所带动的电机转换成电能,并将这些电能反馈给车辆的电源系统,从而实现制动的过程。
再生制动具有制动平稳、制动距离短、不会消耗太多能量的优点。
四、紧急制动紧急制动是城市轨道交通车辆的一种应急制动方式。
紧急制动可以通过手柄或按钮等操作,使车辆的制动系统立即切断牵引电源,同时加紧空气制动或电制动以实现制动的过程。
紧急制动具有制动力大、制动距离短、制动效率高等特点,但也容易产生车轮滑动,增加制动距离和制动平稳性的难度。
城市轨道交通车辆的制动模式有电制动、空气制动、再生制动和紧急制动等多种方式。
在实际运行中,不同的制动模式可以根据车辆的具体情况和运行状态进行选择,以保证城市轨道交通的安全、高效运行。
城市轨道交通车辆制动系统摘要:我国城市轨道交通行业的大规模发展全面带动了装备制造业及产业链的发展和技术升级。
按照国家发改委《增强制造业核心竞争力三年行动计划》和《关于加强城市轨道交通车辆投资项目监管有关事项的通知》要求,应积极开展城轨装备标准制修订,发展团体标准和企业标准,完善城轨装备标准规范,加快构建中国城轨装备标准体系。
作为城轨交通车辆关键核心装备的制动系统,有必要建立技术标准体系,以更好地推进制动系统统型产品开发,提高产品的通用性与互换性,满足制动系统产品设计、制造和运用需求。
关键词:城轨交通车辆;制动系统;标准现状;标准体系1我国城轨交通车辆制动系统技术现状目前地铁车辆、轻轨车辆、有轨电车在国内均已批量运用,中低速磁浮车辆、市域快速车辆、单轨车辆也逐步扩大应用。
制动系统是城轨交通车辆的核心系统,组成较为复杂,以地铁列车为例,每列地铁列车制动系统通常由五六十种部件组成,且技术领域跨度大,涵盖了气动控制、计算机控制、机械驱动、摩擦材料、密封等技术,不同的城轨交通车辆采用的制动技术也有所不同,有的甚至差异较大。
绝大部分地铁车辆、轻轨车辆和市域快速车辆采用微机控制直通电空制动系统,主要由制动控制系统(也称为制动控制装置)、基础制动装置、风源装置、防滑装置、辅助设备及管路供风部件等组成。
制动控制装置分为车控和架控2种形式,主要由电子制动控制单元、中继阀、空重车阀、紧急阀、电磁阀、压力传感器等组成。
大部分城轨车辆基础制动采用踏面制动方式,主要包括单元制动器和闸瓦;100km/h及以上速度等级的大部分地铁车辆、轻轨车辆等采用盘形基础制动装置,主要由夹钳单元、制动盘、闸片组成,多采用铸铁制动盘和合成闸片。
风源装置分为主空压机组成和辅助空压机组成,主要包括空压机和干燥器,大部分采用活塞式或螺杆式空压机和双塔吸附式干燥器,部分采用膜式干燥器,主空压机组成为全列车用风设备提供压缩空气,辅助空压机组成为升弓设备提供压缩空气。
地铁车辆制动系统关键技术分析地铁车辆是一种城市公共交通工具,其制动系统是车辆安全运行的关键技术之一。
地铁车辆制动系统的性能和稳定性直接影响着乘客出行的安全和舒适性。
本文将对地铁车辆制动系统的关键技术进行分析,包括制动原理、制动器、制动控制系统等方面,希望能为读者对地铁车辆制动系统有更深入的了解。
一、地铁车辆制动原理地铁车辆制动原理主要包括机械制动和电气制动两种方式。
机械制动是指通过制动器施加摩擦力来减速或停止车辆的运动,而电气制动则是利用电力控制来实现车辆的制动。
机械制动包括摩擦制动和液压制动两种形式。
摩擦制动是利用制动盘和制动片之间的摩擦来产生制动力,通过制动杆和制动摩擦板的相对运动来实现车辆的制动。
液压制动则是通过液压传动系统将制动力传递到车轮上,实现车辆的制动。
电气制动主要包括再生制动和感应制动两种方式。
再生制动是指通过逆变器将车辆的动能转换为电能,再将其馈回给供电系统,以实现减速和停车的目的。
而感应制动则是通过感应电机的电磁力来实现制动。
制动器是地铁车辆制动系统的核心组成部分,主要负责产生制动力,并将其传递到车轮上。
地铁车辆制动器一般包括摩擦制动器和液压制动器两种。
摩擦制动器通常采用制动盘和制动片的摩擦方式来产生制动力,具有制动力大、响应速度快的优点。
制动盘和制动片的材料选择和制动力的分配是影响摩擦制动器性能的重要因素。
摩擦制动器还需要考虑制动热量的散热和制动噪音的控制等问题。
液压制动器则是通过液压传动系统将制动力传递到车轮上,具有制动力平稳、可调性好的特点。
液压制动器的设计需要考虑液压系统的工作稳定性、密封性以及系统的响应速度和故障诊断等方面的问题。
机械制动控制系统一般采用机械传动方式将制动信号传递到制动器,所以需要考虑传动系统的可靠性和灵敏度。
电气制动控制系统则需要考虑电气控制单元的稳定性和精度,以及电气信号的传输和转换等问题。
地铁车辆制动控制系统还需要考虑制动力的分配和调节、制动辅助系统的设计以及制动系统的故障诊断和处理等方面的问题。
城市轨道车辆制动控制系统故障分析及排查策略摘要:介绍了城市轨道车辆制动控制系统的基本原理和控制方法,结合苏州轨道交通3号线电客车的具体情况,讨论了不同部件的主要故障表现形式,提出了此类故障的正线应急处理方法,提供了排查此类故障的基本策略,对典型故障的改进提出了相关方法,为降低制动控制系统故障影响提供了相关思路。
关键词:制动控制系统;EP2002阀;传感器;电磁阀;压力开关1 引言城市轨道车辆制动系统主要由车辆风源系统、制动控制系统和基础制动单元组成,其中制动控制系统负责列车制动的施加与缓解控制。
目前苏州轨道交通3号线电客车采用德国克诺尔公司所提供的EP2002制动控制系统,其主要设备为EP2002网关阀、EP2002智能阀和辅助控制单元。
作为制动系统的控制核心,制动控制系统设备的可靠与否直接影响制动系统性能的好坏,制动控制系统内任一部件的故障,均会对列车运行产生一定的影响,严重时可引发列车制动功能失效。
本文介绍制动控制系统的主要部件的功能原理,选取部分典型故障来进行分析讨论,研究其故障发生的原因,为类似部件故障处理提供一定参考。
2 EP2002阀EP2002阀主要分为网关阀(G阀)和智能阀(S阀),网关阀可以执行智能阀的所有功能,包括常用制动控制、紧急制动、防滑控制等,此外网关阀还能执行制动管理功能并提供制动系统和列车控制系统的接口功能。
(1)EP2002阀原理EP2002阀对制动缸压力的控制借助于先导电磁阀对活塞阀INLET和VENT的开启/关闭组合动作最终实现,BSR(制动风缸)压力作为先导压力,通过电磁阀通断控制INLET及VENT活塞阀的动作,实现制动施加、制动保持及制动缓解等不同状态组合。
图1:EP2002阀原理图如图1所示,BCP2处于工作状态,BSR压力经过一次调节、二次调节和称重后,通过关闭的Remote Release(远程缓解)电磁阀进入活塞阀,同时EP2002内部控制Axle1 Vent MV失电、Axle1 Hold MV得电、Axle2 Hold MV失电和Axle2 Vent MV失电,使得制动压力通过link阀进入转向架的两根轴,实现制动的施加。
地铁车辆制动系统常见故障处理与分析摘要:对于目前的城市轨道交通运营而言,车辆制动系统长期以来不仅是影响车辆运营安全的重要因素。
随着地铁车辆软硬件的不断优化和安全系数的不断提高,制动性能也成为列车牵引和车辆运行速度的重要限制因素。
随着城市人口的不断扩大、轨道交通网络的不断延伸和车辆使用寿命的增加,轨道交通车辆制动系统的故障率也在逐渐增加。
关键词:地铁车辆;制动系统;故障处理;措施1制动系统功能及构成城市轨道交通地铁车辆制动系统一般采用架控式,在ATO、ATP和司机控制器的控制下,对列车的单相或相态制动和缓解做出响应,并以列车为单元,采用硬线和网络冗余来管理制动力。
主要有紧急制动、常用制动、快速制动、驻车制动等制动方式,其中:常用制动主要用于控制或调整列车运行过程中的车速,包括进站过程。
常用制动优先采用电阻制动,制动力不足时用空气补充制动力;紧急制动是指车辆快速停车时施加的制动,在正常行驶过程中不会施加。
由于紧急制动采用“失电制动、通电缓解”的设计原则,考虑到停电、断弓、断钩等紧急和意外情况,仅采用空气制动;快速制动主要由司机控制器触发,使列车尽快停车,所需的制动力控制方式与常用制动相同;停车制动器主要用于车库,以防止车辆在长期停车时滑动。
它由驾驶员控制台上的按钮控制。
驻车制动器在弹簧力的作用下接合,释放由压缩空气释放。
空气制动作为车辆制动系统的重要组成部分,其性能直接影响到车辆正线的运行。
空气制动系统主要由供气设备(空气压缩机组、空气干燥器和气缸)、制动控制部分(EP2002阀)和执行部分(闸瓦制动装置)组成。
作为车辆制动控制的核心部件,制动控制单元EP2002阀安装在其控制的转向架附近,集成了各种压力传感器、气动阀组件和制动控制管理电子设备,用于控制相应转向架的车轮防滑保护、紧急制动、常用制动等功能。
2地铁车辆制动系统故障处理措施2.1故障预测技术车载PHM单元主要针对存在早期征兆的故障进行预警,将预警结果发送至地面平台进行进一步分析,在车载PHM单元运算能力范围内实现在线故障预测功能,复杂预警模型放置地面PHM系统实现其功能,故障预测的结果与车辆日常检修维护周期相结合,逐步实现定期修到状态修的过渡。
城市轨道交通制动系统1. 引言城市轨道交通成为现代城市中不可或缺的交通方式之一。
为了确保轨道交通的运行安全和顺畅,制动系统起到了至关重要的作用。
本文将介绍城市轨道交通制动系统的基本原理、组成部分和运行方式。
2. 制动系统的基本原理城市轨道交通的制动系统主要依靠摩擦力来减速列车。
当制动系统施加力使车轮和轨道接触产生摩擦力时,列车的运动能量将会转化为热能而减速。
制动系统的基本原理是通过施加摩擦力来阻滞列车的运动,并将运动能量转化为热能来减速。
3. 制动系统的组成部分城市轨道交通的制动系统一般由以下几个主要组成部分构成:3.1 制动盘制动盘是由特殊材料制成的转动部件,安装在轮轴上。
当制动系统施加力时,制动盘会与制动片接触,通过摩擦产生制动力。
3.2 制动片制动片是制动系统的主要摩擦元件,通常由高温耐磨材料制成。
制动片和制动盘之间的摩擦产生制动力,实现列车的减速和停车。
3.3 制动装置制动装置是控制制动片与制动盘接触的装置。
它由制动机构、传动装置和控制系统组成。
制动机构用于施加力使制动片与制动盘接触,传动装置用于传递制动力,而控制系统用于控制制动力的施加和释放。
3.4 减速器减速器是将列车的高速旋转转换为适合制动系统工作的合适速度的装置。
它通常由齿轮传动系统组成,通过传动装置将高速旋转转换为低速旋转,然后由制动系统实施制动。
4. 制动系统的运行方式城市轨道交通的制动系统通常有以下几种运行方式:4.1 机械制动机械制动是通过物理力量使制动片与制动盘接触来实现制动效果。
例如,手动刹车系统就是一种常见的机械制动系统,司机通过踩下踏板来使制动片与制动盘接触以减速列车。
4.2 电子制动电子制动是通过电子设备来控制制动系统的工作。
例如,列车制动系统与列车控制系统相连,当列车控制系统检测到需要减速或停车时,它会向制动系统发送信号,制动系统便会施加制动力。
4.3 辅助制动辅助制动是指在列车制动过程中,通过其他手段来帮助制动系统减速。
城市轨道交通系统制动概述随着城市化的进步,城市轨道交通系统的重要性愈发突出。
制动作为城市轨道交通系统中至关重要的一部分,对保证乘客的安全和乘坐的舒适性起着至关重要的作用。
本文将就城市轨道交通系统制动的概述进行论述。
一、制动系统的概念与分类在城市轨道交通系统中,制动系统起到了控制列车速度和停车的作用。
它由制动装置、制动操纵装置和制动电气设备组成。
根据不同的工作原理,制动系统可以分为摩擦制动系统和电力制动系统。
1. 摩擦制动系统摩擦制动系统是制动系统中应用最广泛的一种。
它通过摩擦片与车轮之间的摩擦力来产生制动力,从而减速列车并将其停下来。
这种制动系统具有制动力大、反应灵敏等特点。
2. 电力制动系统电力制动系统利用电能将动能转化为热能,并通过辅助冷却系统散热。
这种制动系统具有制动效果稳定、不易受外界环境影响等特点。
二、制动原理与工作过程城市轨道交通系统的制动原理和工作过程可以简化为以下几个步骤:首先,操纵员通过制动操纵装置发出制动指令。
对于摩擦制动系统,指令将通过操作机械装置将摩擦片压紧车轮,从而产生摩擦力。
对于电力制动系统,指令将通过控制电路将电能传送到电制动单元,产生电磁力。
其次,制动装置根据指令产生的力对车轮施加制动力。
通过摩擦或电磁力的作用,制动装置将车轮逐渐减速,从而逐渐减小列车的速度。
最后,列车根据制动装置施加的制动力来减速和停车。
当制动力达到一定程度时,列车将完全停止。
同时,制动系统需要确保列车在制动过程中的稳定性和安全性,以保证乘客的安全。
三、制动系统的发展趋势随着技术的不断进步和需求的不断增长,城市轨道交通系统制动系统也在不断发展和革新。
以下是一些制动系统的发展趋势:1. 精准控制现代城市轨道交通系统制动系统需要具备精准的控制能力,以确保列车在不同情况下的减速和停车。
这包括根据列车负载的变化、不同天气条件和路面状态等因素进行制动力的调整。
2. 节能环保为了减少对环境的影响并提高能源利用效率,制动系统应朝着节能环保的方向发展。
城市轨道交通车辆(地铁)刹车调研报告一、制动系统简介地铁刹车称为制动。
列车制动分为电制动和机械制动,电制动又分为再生制动和电阻制动;机械制动又称为气制动。
1、电制动:电机正转就是消耗电能牵引列车动作,电能转化为动能。
在再生制动时,电机就作为发电机反转,把动能转化为电能再通过列车的牵引逆变系统把这些电能逆变为电网一样的电输送到电网供其他车使用;电阻制动:在电网的电压达到上限了,列车电机产生的电能就不再输送到电网,而是通过列车的制动电阻把这些电能消耗掉。
2、机械制动:当前面的电制动满足不了列车进站的制动停车时,因为速度较小的时候再生制动的制动率较低。
这时机械制动就补充进来,把列车停稳。
就是使用压缩空气使闸瓦贴在轮对踏面上(或闸片贴在制动盘上),通过摩擦来制动;停放制动:列车停稳后施加的,类似汽车的手刹,保证列车在停车过不溜车。
二、城市轨道交通常用的摩擦制动方式1、闸瓦制动(1)闸瓦制动组成:制动缸、活塞杆、基础制动装置、闸瓦和车轮。
(2)闸瓦制动中每个动车或拖车转向架上各有四个闸瓦组成,其中两个闸瓦装有附加弹簧制动器,起到停放制动的作用。
(3)闸瓦按材质可分为铸铁闸瓦和合成闸瓦两类。
铸铁闸瓦:已有100多年使用历史,早期是灰铸铁闸瓦,含磷量约0.2%左右,摩擦系数随速度的提高而迅速下降,耐磨性也很差。
改用中磷闸瓦(含磷量0.7%~1.0%)可以改善性能,但在制动时容易产生火花引起火灾。
高磷闸瓦(含磷量2.5%以上)产生的火花少,比较安全,但质脆容易断裂,浇铸时须添装钢制瓦背。
高磷铸铁闸瓦的使用,日益普遍。
合成闸瓦,又称非金属闸瓦:是用石棉及其他填料以树脂或橡胶作为粘合剂混合后热压而成。
合成闸瓦也要用钢背加强。
合成闸瓦于1907年首先在伦敦地铁车辆上使用。
50年代以来,应用日益普遍。
优点:1、摩擦性能可按需要进行调整。
2、耐磨性能好,使用寿命长。
3、对轮对踏面的磨耗小,可延长车轮使用寿命。
4、质量轻。