城市轨道交通制动系统
- 格式:ppt
- 大小:5.80 MB
- 文档页数:44
城市轨道交通车辆的制动模式城市轨道交通是一种快速、高效的公共交通工具,其安全性是保证城市交通运行的关键。
而车辆的制动系统就是保障城市轨道交通安全的一个重要组成部分。
本文将介绍城市轨道交通车辆的制动模式。
一、电制动电制动是城市轨道交通车辆的主要制动方式之一。
电制动是通过电机逆变器控制车辆电机的电流,使车辆产生制动力,从而实现制动的过程。
在电制动中,车辆电机的电流变成负值,电机产生制动力,将车辆减速甚至停下来。
电制动具有制动平稳、制动距离短、制动效率高等优点。
二、空气制动空气制动是城市轨道交通车辆的另一种主要制动方式。
空气制动通过控制车辆的空气制动系统,将车辆制动盘与车轮接触,产生制动力从而实现制动的过程。
空气制动具有制动力大、制动效率高、制动距离短的优点。
但由于空气制动需要耗费空气制动缸内的压缩空气,因此其制动距离和制动平稳性都会受到影响。
三、再生制动再生制动是城市轨道交通车辆的一种辅助制动方式。
再生制动通过逆变器控制电机的电流,将旋转的车轮所带动的电机转换成电能,并将这些电能反馈给车辆的电源系统,从而实现制动的过程。
再生制动具有制动平稳、制动距离短、不会消耗太多能量的优点。
四、紧急制动紧急制动是城市轨道交通车辆的一种应急制动方式。
紧急制动可以通过手柄或按钮等操作,使车辆的制动系统立即切断牵引电源,同时加紧空气制动或电制动以实现制动的过程。
紧急制动具有制动力大、制动距离短、制动效率高等特点,但也容易产生车轮滑动,增加制动距离和制动平稳性的难度。
城市轨道交通车辆的制动模式有电制动、空气制动、再生制动和紧急制动等多种方式。
在实际运行中,不同的制动模式可以根据车辆的具体情况和运行状态进行选择,以保证城市轨道交通的安全、高效运行。
城市轨道交通车辆制动系统摘要:我国城市轨道交通行业的大规模发展全面带动了装备制造业及产业链的发展和技术升级。
按照国家发改委《增强制造业核心竞争力三年行动计划》和《关于加强城市轨道交通车辆投资项目监管有关事项的通知》要求,应积极开展城轨装备标准制修订,发展团体标准和企业标准,完善城轨装备标准规范,加快构建中国城轨装备标准体系。
作为城轨交通车辆关键核心装备的制动系统,有必要建立技术标准体系,以更好地推进制动系统统型产品开发,提高产品的通用性与互换性,满足制动系统产品设计、制造和运用需求。
关键词:城轨交通车辆;制动系统;标准现状;标准体系1我国城轨交通车辆制动系统技术现状目前地铁车辆、轻轨车辆、有轨电车在国内均已批量运用,中低速磁浮车辆、市域快速车辆、单轨车辆也逐步扩大应用。
制动系统是城轨交通车辆的核心系统,组成较为复杂,以地铁列车为例,每列地铁列车制动系统通常由五六十种部件组成,且技术领域跨度大,涵盖了气动控制、计算机控制、机械驱动、摩擦材料、密封等技术,不同的城轨交通车辆采用的制动技术也有所不同,有的甚至差异较大。
绝大部分地铁车辆、轻轨车辆和市域快速车辆采用微机控制直通电空制动系统,主要由制动控制系统(也称为制动控制装置)、基础制动装置、风源装置、防滑装置、辅助设备及管路供风部件等组成。
制动控制装置分为车控和架控2种形式,主要由电子制动控制单元、中继阀、空重车阀、紧急阀、电磁阀、压力传感器等组成。
大部分城轨车辆基础制动采用踏面制动方式,主要包括单元制动器和闸瓦;100km/h及以上速度等级的大部分地铁车辆、轻轨车辆等采用盘形基础制动装置,主要由夹钳单元、制动盘、闸片组成,多采用铸铁制动盘和合成闸片。
风源装置分为主空压机组成和辅助空压机组成,主要包括空压机和干燥器,大部分采用活塞式或螺杆式空压机和双塔吸附式干燥器,部分采用膜式干燥器,主空压机组成为全列车用风设备提供压缩空气,辅助空压机组成为升弓设备提供压缩空气。
城市轨道交通制动系统1、制动与缓解(1)制动。
制动是指人为地通过制动装置使车辆减速或阻止其加速的过程。
从能量变化角度分析,制动过程是一个能量转移的过程,即将列车运行的动能人为控制地转化成其他形式能量的过程。
而制动力则是指使车辆减速或阻止其加速的外力,制动机是产生并控制制动力的装置。
(2)缓解。
缓解是对已经施行制动的列车,解除或减弱其制动作用。
对于运动的列车而言,列车在停车后启动加速前或列车在运行途中限速制动后加速前均要解除制动作用,即施行缓解作用。
2、制动装置与制动系统(1)制动装置。
制动装置是在车辆中产生制动力,使列车减速、停车的一套机械、电气装置,一般将机械装置称为基础制动装置,而将电气控制的部分称为制动机。
制动作用的性能对保证车辆安全和正点运行具有极其重要的作用,制动装置也是提高列车运行速度和线路输送能力的重要条件之一。
(2)制动系统。
①制动系统的组成。
制动系统由动力制动系统、空气制动系统及指令和通信网络系统组成。
动力制动系统。
动力制动系统一般与牵引系统连在一起形成主电路,包括再生反馈电路和制动电阻器,将动力制动产生的电能反馈给供电接触网或消耗在制动电阻器上。
空气制动系统。
空气制动系统由供气部分、控制部分和执行部分组成。
供气部分有空气压缩机组、空气干燥器的风缸等;控制部分有电-空转换阀、紧急阀、称重阀、中继阀等;执行部分主要是指基础制动装置,主要有闸瓦制动装置、盘形制动装置等。
指令和通信网络系统。
指令和通信网络系统是传递司机指令的通道,也是制动系统内部数据传递交换及制动系统与列车控制系统进行数据通信的总线。
②制动系统的作用。
制动系统的主要作用如下:车辆在运行过程中,司机通过制动装置使列车减速、停车或停止加速。
防止车辆在长大下坡道运行时加速。
防止城轨车辆在停车线或检修线上自动溜放而实施停放作用等。
城轨电空制动系统工作原理一、概述城轨电空制动系统是城市轨道交通中常见的一种制动方式,它通过电力和气压来实现列车的制动。
该系统具有安全可靠、制动效果好等优点,因此被广泛应用于城市轨道交通中。
二、系统组成城轨电空制动系统主要由以下几部分组成:1. 制动管路:由气缸、管路和阀门等组成,负责传递气压信号。
2. 电控装置:由控制器和计算机等组成,负责控制整个制动系统的运行。
3. 制动盘和制动鞋:负责产生摩擦力,使列车减速或停车。
4. 供电装置:为整个制动系统提供电力支持。
三、工作原理城轨电空制动系统的工作原理可以分为以下几个步骤:1. 列车司机踩下紧急制动按钮或自然停车按钮时,控制器会发出信号给计算机。
2. 计算机根据接收到的信号计算出列车需要施加的刹车力,并将指令发送给气压控制器。
3. 气压控制器根据计算机发送的指令,控制制动管路中的气压变化,使制动盘和制动鞋接触,产生摩擦力。
4. 列车减速或停车后,计算机会发出解除制动信号,气压控制器则会减少或消除气压信号,使制动盘和制动鞋分离。
四、具体操作流程1. 列车司机踩下紧急制动按钮或自然停车按钮时,控制器会发出信号给计算机。
2. 计算机根据接收到的信号计算出列车需要施加的刹车力,并将指令发送给气压控制器。
3. 气压控制器根据计算机发送的指令,控制主风管中的气压变化。
当需要施加刹车时,气压控制器会打开快速放空阀门,使主风管中的气体迅速排放。
当需要解除刹车时,气压控制器则会关闭快速放空阀门,并逐渐增加主风管中的气体压力。
4. 当主风管中的气体压力下降到一定程度时,进入辅助风管中的空气就会被抽入主风管。
这些空气会经过气压控制器中的电磁阀,进入制动缸中。
当空气进入制动缸时,气缸活塞就会向外推动,使制动盘和制动鞋接触,产生摩擦力。
5. 列车减速或停车后,计算机会发出解除制动信号,气压控制器则会逐渐减少或消除主风管中的气体压力。
这样一来,进入辅助风管中的空气也就不再进入制动缸了。
城市轨道交通制动系统检修1. 简介城市轨道交通制动系统是确保列车安全运行的关键系统之一。
它负责列车的减速和停车,是保证列车在运行过程中能够按时停稳的关键部件。
为了保证乘客和行人的安全,城市轨道交通制动系统需要定期进行检修和维护。
2. 检修流程下面是城市轨道交通制动系统检修的一般流程:1.准备工作:检修人员需要提前准备好所需的工具和设备,确保能够顺利进行检修工作。
同时,需要了解列车的运行情况和制动系统的工作原理。
2.检查制动系统状态:首先,检修人员需要对制动系统进行外观检查,确保制动系统的各个部件没有受损或松动。
然后,使用相应的测试设备对制动系统进行功能检测,确保制动系统能够正常工作。
3.拆卸制动装置:如果发现制动装置有故障或需要更换零部件,检修人员需要将制动装置拆卸下来,清洗并检查其内部的零部件。
4.更换零部件:根据检查结果,如有需要,可以对制动系统的零部件进行更换。
检修人员需要根据制动系统的技术要求和使用手册,进行正确的零部件更换操作。
5.装配制动装置:在更换零部件之后,检修人员需要将制动装置重新组装到列车上,并确保装配的牢固和正确。
6.系统测试:组装完成后,检修人员需要对制动系统进行全面的测试。
测试时,应按照规定程序和方法进行操作,确保制动系统的各个部件能够正常配合工作。
7.调试和校准:如果在测试中发现制动系统有异常或调整不合理的情况,检修人员需要对其进行调试和校准,确保制动系统的性能达到要求。
8.清洁和维护:最后,检修人员需要对制动系统进行清洁和维护工作。
清洁可以去除制动系统上的脏污和杂质,维护可以延长制动系统的使用寿命。
3. 安全注意事项在进行城市轨道交通制动系统检修时,检修人员需要注意以下安全事项:•穿戴个人防护装备:检修人员应该穿戴好个人防护装备,如手套、护目镜、防护服等,确保自身的安全。
•断电和锁定:在检修过程中,需要断开制动系统的电源,并用合适的锁具锁定,以防止误操作造成危险。
•遵循操作规程:检修人员应该遵循操作规程和制动系统的使用手册进行操作,不得随意更改系统的工作参数。
城市轨道交通制动系统1. 引言城市轨道交通成为现代城市中不可或缺的交通方式之一。
为了确保轨道交通的运行平安和顺畅,制动系统起到了至关重要的作用。
本文将介绍城市轨道交通制动系统的根本原理、组成局部和运行方式。
2. 制动系统的根本原理城市轨道交通的制动系统主要依靠摩擦力来减速列车。
当制动系统施加力使车轮和轨道接触产生摩擦力时,列车的运动能量将会转化为热能而减速。
制动系统的根本原理是通过施加摩擦力来阻滞列车的运动,并将运动能量转化为热能来减速。
3. 制动系统的组成局部城市轨道交通的制动系统一般由以下几个主要组成局部构成:3.1 制动盘制动盘是由特殊材料制成的转动部件,安装在轮轴上。
当制动系统施加力时,制动盘会与制动片接触,通过摩擦产生制动力。
3.2 制动片制动片是制动系统的主要摩擦元件,通常由高温耐磨材料制成。
制动片和制动盘之间的摩擦产生制动力,实现列车的减速和停车。
3.3 制动装置制动装置是控制制动片与制动盘接触的装置。
它由制动机构、传动装置和控制系统组成。
制动机构用于施加力使制动片与制动盘接触,传动装置用于传递制动力,而控制系统用于控制制动力的施加和释放。
3.4 减速器减速器是将列车的高速旋转转换为适合制动系统工作的适宜速度的装置。
它通常由齿轮传动系统组成,通过传动装置将高速旋转转换为低速旋转,然后由制动系统实施制动。
4. 制动系统的运行方式城市轨道交通的制动系统通常有以下几种运行方式:4.1 机械制动机械制动是通过物理力量使制动片与制动盘接触来实现制动效果。
例如,手动刹车系统就是一种常见的机械制动系统,司机通过踩下踏板来使制动片与制动盘接触以减速列车。
4.2 电子制动电子制动是通过电子设备来控制制动系统的工作。
例如,列车制动系统与列车控制系统相连,当列车控制系统检测到需要减速或停车时,它会向制动系统发送信号,制动系统便会施加制动力。
4.3 辅助制动辅助制动是指在列车制动过程中,通过其他手段来帮助制动系统减速。
轨道交通中的制动系统设计随着城市化进程的加快,公共交通系统日渐完善,其中轨道交通作为城市公共交通的重要组成部分,为人们提供了快速、安全、舒适的出行方式。
而轨道交通中的制动系统设计,是保证列车安全运行的关键。
本文将从轨道交通中的制动原理入手,探讨制动系统的结构设计、制动方式、制动材料选用以及制动系统对于列车运行的影响等方面。
一、轨道交通中的制动原理轨道交通中的制动原理与汽车、飞机等其他交通工具有所不同。
列车制动一般采用电磁制动和摩擦制动相结合的方式。
具体来说,当列车刹车时,电磁制动先将发电机转换的电能转化为磁能,通过磁力作用阻止列车运动。
当列车速度降至一定程度后,由制动鞋对车轮进行摩擦制动。
摩擦制动的实现需要制动系统的配合,才能实现高效的制动效果。
二、制动系统的结构设计轨道交通列车的制动系统结构较为复杂,一般包括制动装置、制动控制系统、制动盘、制动鼓等多个部件。
其中,制动装置是实现制动的核心部件,主要包括制动鞋、制动盘、制动鼓、制动气缸、补偿机构等部件。
为保证列车在制动过程中的平稳性和安全性,制动装置设计需要考虑列车速度、列车质量、制动鞋面积、制动盘和鼓的材料等多个因素的影响。
三、制动方式的分类根据制动鞋与车轮的接触方式,列车制动可以分为机械制动、齿面制动和电磁制动等三种方式。
其中,机械制动是指直接由人力操作制动盘或齿轮来刹车;齿面制动是指依靠齿轮传递转矩和摩擦系数作用来实现制动效果;而电磁制动是由电机将机械能转化为电能,依靠电磁力产生的摩擦力来实现制动效果。
四、制动材料的选用为了保证列车制动的效果和安全性,制动材料成为了关键的考虑因素。
目前常见的制动材料有金属材料、非金属材料和复合材料等多种类型。
其中金属材料耐磨性能好,适用于高速列车制动系统;非金属材料摩擦力大,适用于城市轨道交通等低速列车;复合材料具有轻量化、高强度和防高温性能等优势,适用于高速列车等多种车型。
五、制动系统对列车运行的影响制动系统是轨道交通列车运行过程中至关重要的组成部分之一,具有直接影响列车安全、运营速度、乘客体验的重要作用。
城市轨道交通系统制动概述随着城市化的进步,城市轨道交通系统的重要性愈发突出。
制动作为城市轨道交通系统中至关重要的一部分,对保证乘客的安全和乘坐的舒适性起着至关重要的作用。
本文将就城市轨道交通系统制动的概述进行论述。
一、制动系统的概念与分类在城市轨道交通系统中,制动系统起到了控制列车速度和停车的作用。
它由制动装置、制动操纵装置和制动电气设备组成。
根据不同的工作原理,制动系统可以分为摩擦制动系统和电力制动系统。
1. 摩擦制动系统摩擦制动系统是制动系统中应用最广泛的一种。
它通过摩擦片与车轮之间的摩擦力来产生制动力,从而减速列车并将其停下来。
这种制动系统具有制动力大、反应灵敏等特点。
2. 电力制动系统电力制动系统利用电能将动能转化为热能,并通过辅助冷却系统散热。
这种制动系统具有制动效果稳定、不易受外界环境影响等特点。
二、制动原理与工作过程城市轨道交通系统的制动原理和工作过程可以简化为以下几个步骤:首先,操纵员通过制动操纵装置发出制动指令。
对于摩擦制动系统,指令将通过操作机械装置将摩擦片压紧车轮,从而产生摩擦力。
对于电力制动系统,指令将通过控制电路将电能传送到电制动单元,产生电磁力。
其次,制动装置根据指令产生的力对车轮施加制动力。
通过摩擦或电磁力的作用,制动装置将车轮逐渐减速,从而逐渐减小列车的速度。
最后,列车根据制动装置施加的制动力来减速和停车。
当制动力达到一定程度时,列车将完全停止。
同时,制动系统需要确保列车在制动过程中的稳定性和安全性,以保证乘客的安全。
三、制动系统的发展趋势随着技术的不断进步和需求的不断增长,城市轨道交通系统制动系统也在不断发展和革新。
以下是一些制动系统的发展趋势:1. 精准控制现代城市轨道交通系统制动系统需要具备精准的控制能力,以确保列车在不同情况下的减速和停车。
这包括根据列车负载的变化、不同天气条件和路面状态等因素进行制动力的调整。
2. 节能环保为了减少对环境的影响并提高能源利用效率,制动系统应朝着节能环保的方向发展。
轨道交通车辆的制动系统设计与优化在现代城市交通中,轨道交通系统扮演着重要的角色,它为人们提供了高效、便捷、安全的出行方式。
而轨道交通车辆的制动系统作为保障乘客安全的关键部件,其设计与优化显得尤为重要。
本文将探讨轨道交通车辆制动系统的设计原理,以及如何进行优化,以提高制动性能和乘客的乘坐舒适度。
一、轨道交通车辆制动系统的设计原理轨道交通车辆制动系统的设计目标是在车辆运行过程中保证行车的安全、可靠性和舒适性。
一个完整的制动系统一般由三个部分组成:制动装置、操纵装置和辅助装置。
制动装置:制动装置包括主要制动装置和辅助制动装置。
主要制动装置通常是通过压力传感器或踏板来控制,分为空气制动和电力制动两种方式。
空气制动是利用空气压力驱动制动系统,而电力制动则是通过电能转换为机械能来实现制动。
辅助制动装置是为了在主要制动系统失效时提供备用制动。
操纵装置:操纵装置是指用于控制制动系统的操作手柄或按钮,一般位于驾驶室内或乘客车厢内,方便司机或乘客进行制动操作。
辅助装置:辅助装置是指用于制动系统安全性和舒适性的增强装置,如制动防滞系统、牵引力控制系统和气囊减震系统等。
二、轨道交通车辆制动系统的优化在轨道交通车辆的制动系统中,性能的优化是提高乘车安全性和乘坐舒适度的关键。
以下是几种常用的优化措施:1. 制动力的精确控制:制动力的精确控制可以减少制动时的冲击力和停车距离。
通过先进的电子控制系统,可以实现对制动力的精确调节,提高制动的平稳性和减震效果。
2. 制动材料的选择与设计:轨道交通车辆制动材料的选择和设计直接影响制动性能。
合适的材料选用可以提高制动的效率和耐久性。
目前,常用的制动材料包括钢、碳陶瓷和碳纤维等,它们各自具有不同的制动性能和耐磨性。
3. 制动系统的故障检测和预警:为了保证车辆的安全运行,制动系统需要进行定期的故障检测和维护。
通过安装传感器和数据监测装置,可以实时监测制动系统的工作状态,并提前发现潜在故障,以避免事故的发生。