理论力学练习题 习题集
- 格式:docx
- 大小:53.71 KB
- 文档页数:27
理论力学试题库及答案(通用篇)一、理论力学试题库(通用篇)试题一:已知一质点在平面直角坐标系中的运动方程为 x = 2t² + 3,y = 4t² - t + 1。
求该质点在t = 2s 时的速度和加速度。
试题二:一质点沿圆周运动,其半径为 r,角速度为ω,角加速度为α。
求质点在任意时刻 t 的速度和加速度。
试题三:一质点从静止开始沿直线运动,受到恒力F 的作用。
求质点在任意时刻 t 的速度和位移。
试题四:一质点在平面内做匀速圆周运动,半径为r,角速度为ω。
求质点在任意时刻 t 的速度和加速度。
试题五:一质点在平面内做匀速运动,速度大小为v,方向与水平方向成θ 角。
求质点在任意时刻 t 的位移。
试题六:一质点在重力作用下做自由落体运动,求质点在任意时刻 t 的速度和位移。
试题七:一质点在水平地面上受到一斜向上的拉力F,拉力与水平方向的夹角为θ。
求质点在任意时刻 t 的速度和加速度。
试题八:一质点在平面内做匀速圆周运动,半径为r,角速度为ω。
求质点在任意时刻 t 的切向加速度和法向加速度。
试题九:一质点在平面内做匀速运动,速度大小为v,方向与水平方向成θ 角。
求质点在任意时刻 t 的位移和速度。
试题十:一质点在水平地面上受到一恒力 F 的作用,力与水平方向的夹角为θ。
求质点在任意时刻 t 的速度和位移。
二、答案答案一:t = 2s 时,速度 v = (4t, 8t - 1) = (8, 15) m/s;加速度 a = (8, 8) m/s²。
答案二:质点在任意时刻 t 的速度v = (rω, 0),加速度a = (0, rα)。
答案三:质点在任意时刻 t 的速度 v = (F/m)t,位移 s = (F/m)t²/2。
答案四:质点在任意时刻 t 的速度 v =(rωcos(ωt), rωsin(ωt)),加速度 a = (-rω²sin(ωt), rω²cos(ωt))。
理论力学题库及答案一、理论力学题库(一)选择题1. 在牛顿力学中,物体的运动状态可以用以下哪个物理量来描述?A. 力B. 动量C. 动能D. 动能定理2. 以下哪个物理量是守恒量?A. 动量B. 动能C. 力D. 功3. 一个物体做直线运动,以下哪个条件是物体做匀速直线运动的必要条件?A. 合外力为零B. 合外力恒定C. 速度恒定D. 加速度恒定(二)填空题4. 牛顿第二定律的表达式为______。
5. 动量的定义为______。
6. 功的计算公式为______。
7. 动能定理的表达式为______。
(三)计算题8. 一质量为2kg的物体在水平地面上受到一个水平力F的作用,力F与物体运动方向相同。
已知物体从静止开始运动,经过3秒后速度达到6m/s。
求力F的大小。
9. 一质量为4kg的物体从静止开始沿着光滑的斜面下滑,斜面倾角为30°,求物体下滑3秒后的速度。
10. 一质量为5kg的物体在水平地面上以10m/s的速度运动,遇到一个斜面,斜面倾角为45°,物体沿着斜面上滑,求物体上滑的最大距离。
二、理论力学题库答案(一)选择题答案1. B. 动量2. A. 动量3. A. 合外力为零(二)填空题答案4. F=ma5. 动量 = 质量× 速度6. 功 = 力× 位移× cosθ7. 动能定理:动能的增量 = 外力做的功(三)计算题答案8. 解:根据牛顿第二定律,F=ma,其中a为加速度,m为质量。
由题意知,a=(6m/s - 0m/s) / 3s = 2m/s²。
代入公式,F=2kg × 2m/s² = 4N。
9. 解:根据动能定理,动能的增量 = 外力做的功。
由于物体从静止开始下滑,初始动能为0。
下滑过程中,重力做功,即mgh,其中h为下滑的高度。
由斜面倾角可知,h =lsin30°,其中l为下滑的距离。
因此,mgh = (4kg ×9.8m/s²) × (l × sin30°) = 4kg × 9.8m/s² × (l × 0.5)。
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
b(杆AB)a(球A )d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体 )b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N,放在水平梁AC的中央,如图所示。
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
一.选择填空和填空题(每题5分,共30分)1.某任意力系向O 点简化,得到cm 10N N,10'R ⋅==O M F ,方向如图所示;若将该力系向A 点简化,则得到: A 。
A. 0N,10R ==A M F ;B. cm 10N N,10'R ⋅==A M F ;C. cm 0N 2N,10'R ⋅==A M F 。
2.已知杆AB =40cm ,以rad/s 31=ω绕A 轴转动,而杆CD 又绕B 轴以rad/s 12=ω转动,BC =BD =30cm ,图示瞬时AB ⊥CD ,若取AB 为动坐标,则此时C 点的牵连速度大小为 C 。
A. 30cm/s ;B. 120cm/s ;C. 150cm/s ;D. 160cm/s 。
第1题图 第2题图 3.一直角曲杆(重量不计)上各受力偶M 的作用,如图所示,A 1和A 2处的约束反力分别为F A 1和F A 2,则它们的大小应满足条件 C 。
A. 21A A F F >;B. 21A A F F =;C. 21A A F F <。
第3题图 4.若作用于质点系的外力在某段时间内在固定坐标Ox 轴上投影的代数和等于零,则在这段时间内B 。
A. 质点系质心的速度必保持不变;B. 质点系动量在x 轴上的投影保持不变;C. 质点系质心必保持不动。
5.物块重量为10N ,放在粗糙水平面上,已知物块与水平面间的静滑动摩擦系数为21.0=f ,动滑动摩擦系数为2.0=′f ,当物块受一与铅垂线成°=30θ夹角的力N 20=F 作用时(如图),作用在该物块上的摩擦力大小为 5.464N 。
6.匀质细圆环的半径为r ,质量为m 1=m ,与一根质量同为m 2=m ,长为2r 的匀质细直杆OA 刚性连接,可在水平面内以匀角速度ω绕O 轴定轴转动,如图所示。
则系统对O 轴的动量矩为 ω2334mr ;系统的动能为 22317ωmr 。
理论力学试题及答案一、选择题(每题2分,共20分)1. 牛顿第一定律描述的是:A. 物体在受力时的运动状态B. 物体在不受力时的运动状态C. 物体在受力时的加速度D. 物体在受力时的位移答案:B2. 根据牛顿第二定律,物体的加速度与作用力和物体质量的关系是:A. 加速度与作用力成正比,与质量成反比B. 加速度与作用力成反比,与质量成正比C. 加速度与作用力成正比,与质量成正比D. 加速度与作用力成反比,与质量成反比答案:A3. 以下哪个不是刚体的运动特性?A. 刚体的质心保持静止或匀速直线运动B. 刚体的各部分相对位置不变C. 刚体的各部分速度相同D. 刚体的各部分加速度相同答案:C4. 角动量守恒定律适用于:A. 只有重力作用的系统B. 只有内力作用的系统C. 外力矩为零的系统D. 外力为零的系统答案:C5. 以下哪个是能量守恒定律的表述?A. 一个封闭系统的总动能是恒定的B. 一个封闭系统的总势能是恒定的C. 一个封闭系统的总能量是恒定的D. 一个封闭系统的总动量是恒定的答案:C二、简答题(每题10分,共20分)6. 简述牛顿第三定律的内容及其在实际中的应用。
答案:牛顿第三定律,又称作用与反作用定律,表述为:对于两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。
在实际应用中,例如在推门时,门对人的作用力和人对门的作用力大小相等,方向相反。
7. 描述什么是简谐振动,并给出一个生活中的例子。
答案:简谐振动是一种周期性振动,其回复力与位移成正比,且总是指向平衡位置。
生活中的例子包括弹簧振子,当弹簧被拉伸或压缩后释放,它会在原始平衡位置附近做周期性的往复运动。
三、计算题(每题15分,共30分)8. 一个质量为m的物体,从静止开始,沿着一个斜面下滑,斜面的倾角为θ。
如果斜面的摩擦系数为μ,求物体下滑的加速度。
答案:首先,物体受到重力mg的作用,分解为沿斜面方向的分力mg sinθ和垂直斜面方向的分力mg cosθ。
理论力学测试题及答案一、单项选择题(每题2分,共10分)1. 牛顿第一定律描述的是:A. 物体在没有外力作用下的运动状态B. 物体在受到平衡力作用下的运动状态C. 物体在受到非平衡力作用下的运动状态D. 物体在任何力作用下的运动状态答案:A2. 以下哪个不是惯性参考系的特点?A. 牛顿第一定律在其中成立B. 牛顿第二定律在其中成立C. 牛顿第三定律在其中成立D. 物体在其中不受任何力的作用答案:D3. 动量守恒定律适用于:A. 只有重力作用的系统B. 只有弹力作用的系统C. 只有摩擦力作用的系统D. 只有保守力作用的系统答案:D4. 以下哪个是矢量?A. 质量B. 速度C. 时间D. 温度答案:B5. 以下哪个是标量?A. 力B. 位移C. 功D. 速度答案:C二、填空题(每空1分,共10分)1. 牛顿第二定律的数学表达式为:\[ F = ma \],其中\( F \)代表______,\( m \)代表______,\( a \)代表______。
答案:力;质量;加速度2. 根据牛顿第三定律,作用力和反作用力大小相等,方向______,作用在______。
答案:相反;不同物体上3. 动量的定义是质量与______的乘积。
答案:速度4. 功的定义是力与力的方向上的______的乘积。
答案:位移5. 动能的定义是\( \frac{1}{2}mv^2 \),其中\( m \)代表______,\( v \)代表______。
答案:质量;速度三、简答题(每题10分,共20分)1. 简述牛顿第二定律的物理意义。
答案:牛顿第二定律表明,物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比,即力是改变物体运动状态的原因。
2. 描述动量守恒定律在碰撞过程中的应用。
答案:在没有外力作用的系统中,两个或多个物体发生碰撞时,碰撞前后系统的总动量保持不变。
这意味着碰撞前后各物体动量的矢量和相等。
四、计算题(每题15分,共30分)1. 一辆质量为1500kg的汽车以20m/s的速度行驶,突然刹车,经过5秒后停止。
1-1、画出下列每个标注字符的物体(不包含销钉与支座)的受力图与系统整体受力图。
题图中未画重力的各物体自重不计,所有接触处均为光滑接触。
(整体受力图在原图上画)2-1、物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起。
设滑轮的大小、AB与CB杆自重及磨擦略去不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB处受的力。
2-2、图示结构中,各构件的自重略去不计。
在构件AB上作用一力偶矩为M的力偶,求支座A和C的约束力。
2-3、直角弯杆ABCD与直杆DE及EC铰接如图,作用在杆DE上力偶的力偶矩M=,不计各杆自重,不考虑摩擦,尺寸如图,求支座A,B处的约束力及杆EC的受力。
3-1、图示平面任意力系中F1=402N,F2=80N,F3=40N, F4=110N,M=。
各力作用位置如图所示。
求:(1)力系向点O简化的结果;(2)力系的合力的大小、方向及合力作用线方程。
3-2、无重水平梁的支承和载荷如图 (b)所示。
已知力F、力偶矩为M的力偶和强度为q的均布载荷。
求支座A和B处的约束力。
3-3、图示水平梁AB由铰链A和杆BC所支持。
在梁上D处用销子安装半径为r=的滑轮。
有一跨过滑轮的绳子,其一端水平地系于墙上,另一端悬挂有重P=1800N的重物,如AD=,BD=, =45°,且不计梁、杆、滑轮和绳的重量。
求铰链A和杆BC对梁的约束力。
3-4、如图所示,组合梁由AC和DC两段铰接构成,起重机放在梁上。
已知起重机重 P1=50kN,重心在铅垂线上EC,起重载荷 P2=10kN。
如不计梁重,求支座A,B和D三处的约束力。
3-6、由AC和CD构成的组合梁通过铰链C连接。
它的支承和受力如图所示。
已知均布载荷强度q=10kN/m,力偶矩M=40 kN·m,不计梁重。
求支座A,B,D的约束力和铰链C处所受的力。
4-1、图示构架中,物体重1200N,由细绳跨过滑轮E而水平系于墙上,尺寸如图,不计杆和滑轮的重量。
理论力学习题集答案
理论力学教研室
目录
目录 (1)
第一章:静力学的基本概念 (2)
第二章:平面基本力系 (6)
第三章:平面任意力系 (10)
第五章:空间基本力系 (24)
第六章:空间任意力系 (25)
第七章:重心 (32)
第八章:点的运动 (34)
第九章:刚体的基本运动 (36)
第十章:点的复合运动 (38)
第十一章:刚体的平面运动 (52)
第十二章:刚体的转动合成 (66)
第十四章:质点动力学基础 (70)
第十五章:质点的振动 (75)
第十七章:动能定理 (82)
第十八章:动量定理 (94)
第十九章:动量矩定理 (100)
第二十章:碰撞理论 (115)
第二十一章:达朗伯原理 (118)
第二十二章:虚位移原理 (125)
第一章:静力学的基本概念
第二章:平面基本力系
第三章:平面任意力系
第五章:空间基本力系
第六章:空间任意力系
第七章:重心
第八章:点的运动
第九章:刚体的基本运动
第十章:点的复合运动。
理论力学练习题一、选择题1. 质点系的动量守恒定律适用于以下哪种情况?A. 质点系内部作用力远大于外力B. 质点系内部作用力远小于外力C. 质点系内部作用力与外力相等D. 质点系内部作用力与外力都为零2. 以下哪项不是牛顿运动定律的内容?A. 物体的加速度与作用力成正比B. 物体的加速度与物体质量成反比C. 物体的加速度方向与作用力方向相反D. 物体的加速度方向与作用力方向相同3. 根据角动量守恒定律,以下说法正确的是:A. 角动量守恒定律只适用于刚体B. 角动量守恒定律只适用于质点C. 角动量守恒定律适用于所有物体D. 角动量守恒定律不适用于任何物体二、计算题1. 一个质量为m的物体在水平面上以速度v做匀速直线运动,求其动量大小。
2. 一个质量为m的物体在竖直方向上受到大小为F的力作用,物体的加速度为a。
如果物体从静止开始运动,求物体在t秒后的速度。
3. 一个质量为m的物体在光滑水平面上以角速度ω绕一个固定点做匀速圆周运动,求其向心力大小。
三、简答题1. 描述牛顿第三定律的内容,并举例说明。
2. 简述动量守恒定律的条件和应用。
3. 说明角动量守恒定律在天体物理中的应用。
四、分析题1. 一个质量为m的物体从高度h处自由落体,忽略空气阻力。
请分析其在落地时的动能,并与从同一高度以初速度v0水平抛出时的动能进行比较。
2. 一个质量为m的物体在光滑水平面上,受到一个恒定的力F作用,力的方向与水平面成θ角。
请分析物体的运动状态,并求出其加速度大小。
3. 考虑一个质量为m的物体在光滑水平面上,受到一个大小为F,方向始终与速度方向垂直的力作用。
请分析物体的运动状态,并求出其速度随时间的变化关系。
五、应用题1. 一个质量为2kg的物体在水平面上以5m/s的速度做匀速直线运动,若突然施加一个大小为10N的力,方向与运动方向相反,求物体在2秒后的速度。
2. 一个质量为3kg的物体从静止开始,受到一个大小为20N的恒定力作用,求物体在5秒后的速度和位移。
理论力学习题集第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
《理论力学》课程习题集西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程《理论力学》(编号为06015)共有单选题,计算题,判断题, 填空题等多种试题类型,其中,本习题集中有[判断题]等试题类型未进入。
一、单选题1. 作用在刚体上仅有二力A F 、B F ,且0+=A B F F ,则此刚体________。
⑴、一定平衡 ⑵、一定不平衡 ⑶、平衡与否不能判断2. 作用在刚体上仅有二力偶,其力偶矩矢分别为A M 、B M ,且A M +0=B M ,则此刚体________。
⑴、一定平衡 ⑵、一定不平衡 ⑶、平衡与否不能判断3. 汇交于O 点的平面汇交力系,其平衡方程式可表示为二力矩形式。
即()0=∑A i m F ,()0=∑B i m F ,但________。
⑴、A 、B 两点中有一点与O 点重合⑵、点O 不在A 、B 两点的连线上⑶、点O 应在A 、B 两点的连线上⑷、不存在二力矩形式,∑∑==0,0Y X 是唯一的4. 力F 在x 轴上的投影为F ,则该力在与x 轴共面的任一轴上的投影________。
⑴、一定不等于零⑵、不一定等于零 ⑶、一定等于零⑷、等于F 5. 若平面一般力系简化的结果与简化中心无关,则该力系的简化结果为________。
⑴、一合力 ⑵、平衡 ⑶、一合力偶 ⑷、一个力偶或平衡6. 若平面力系对一点A 的主矩为零,则此力系________。
⑴、不可能合成一个力⑵、不可能合成一个力偶 ⑶、一定平衡 ⑷、可能合成一个力偶,也可能平衡7. 已知1F 、2F 、3F 、4F 为作用刚体上的平面共点力系,其力矢关系如图所示为平行四边形,因此可知________。
⑴、力系可合成为一个力偶 ⑵、力系可合成为一个力⑶、力系简化为一个力和一个力偶⑷、力系的合力为零,力系平衡 8. 已知一平衡的平面任意力系1F 、2F ……1n F ,如图,则平衡方程∑=0A m ,∑=0B m ,∑=0Y 中(y AB ⊥),有________个方程是独立的。
理论力学试题一、概念题(1-4题每题3分,5-6题每题4分,共20分) 1、一等边三角形薄板置于光滑水平面上,开始处于静止,当沿其三边AB 、BC 、CD 分别作用力1F、2F 、3F 后,若该三力大小相等,方向如图所示,则 。
(A)板仍保持静止; (B)板作平动; (C )板作转动; (D)板作平面运动。
2、如图所示,均质杆AB 重P , A 端靠在摩擦角20=m ϕ的斜面上,欲使杆AB 在水平位置A 端不向下滑动,则吊绳倾角α的最大值为 。
3、一空间力系向某点O 简化后的主矢和主矩分别为:k j R88+=',k M O 24=,则该力系简化的最后结果为 。
4、半径为r ,质量为m 的均质圆盘在自身所在的平面 内作平面运动,在图示位置时,若已知图形上A 、B 两点的 速度如图所示,且已知B 点的速度大小为B v ,则圆盘的动量 的大小为 。
5、如图均质圆盘质量为m ,半径为r ,绕O 轴转动的 角速度为ω,角加速度为ε,偏心距为e 。
则刚体惯性力系 向转轴简化所得到的惯性力的大小=gF ;和惯性力偶的矩的大小=g OM 。
6、如图所示平衡系统,若用虚位移原理求M 和F 的关系。
请在图上画出系统的虚位移图;其虚功方程 为 。
AB(题2图) B v(题4图)(题5图)二、图示平面结构由三杆AC 、BC 、DE 铰接而成, 所受载荷和尺寸如图所示。
已知: q 、a ,且qa F 2=、22qa m =。
若不计各杆自重,试求铰E处的约束反力。
(16分)三、图示机构,已知带滑道的圆盘以匀 角速度0ω转动,已知:l B O A O 2121==, l AB O O 2321==,求机构在图示位置(211OO A O ⊥)时,折杆A O 2的角速度 和角加速度2ω和2ε。
(15分)四、图示机构在铅垂面内运动,滑块A以匀速v沿倾角为60滑道斜向下运动,通过长度为r l 4=的连杆AB带动半径为r 的圆盘B在水平固定面上作纯滚动。
《理论力学》1-1.两个力,它们的大小相等、方向相反和作用线沿同一直线。
这是(A)它们作用在物体系统上,使之处于平衡的必要和充分条件;(B)它们作用在刚体系统上,使之处于平衡的必要和充分条件;(C)它们作用在刚体上,使之处于平衡的必要条件,但不是充分条件;(D)它们作用在变形体上,使之处于平衡的必要条件,但不是充分条件;1-2. 作用在同一刚体上的两个力F1和F2,若F1 = - F2,则表明这两个力(A)必处于平衡;(B)大小相等,方向相同;(C)大小相等,方向相反,但不一定平衡;(D)必不平衡。
1-3. 若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们所作用的对象必需是(A)同一个刚体系统;(B)同一个变形体;(C)同一个刚体,原力系为任何力系;(D)同一个刚体,且原力系是一个平衡力系。
1-4. 力的平行四边形公理中的两个分力和它们的合力的作用范围(A)必须在同一个物体的同一点上;(B)可以在同一物体的不同点上;(C)可以在物体系统的不同物体上;(D)可以在两个刚体的不同点上。
1-5. 若要将作用力沿其作用线移动到其它点而不改变它的作用,则其移动范围(A)必须在同一刚体内;(B)可以在不同刚体上;(C)可以在同一刚体系统上;(D)可以在同一个变形体内。
1-6. 作用与反作用公理的适用范围是(A)只适用于刚体的内部;(B)只适用于平衡刚体的内部;(C)对任何宏观物体和物体系统都适用;(D)只适用于刚体和刚体系统。
1-7. 作用在刚体的同平面上的三个互不平行的力,它们的作用线汇交于一点,这是刚体平衡的(A) 必要条件,但不是充分条件; (B) 充分条件,但不是必要条件; (C) 必要条件和充分条件;(D) 非必要条件,也不是充分条件。
1-8. 刚化公理适用于(A) 任何受力情况下的变形体;(B) 只适用于处于平衡状态下的变形体; (C) 任何受力情况下的物体系统;(D) 处于平衡状态下的物体和物体系统都适用。
习题一静力学公理和物体受力分析1.判断题(1)作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。
( )(2)两端用光滑铰链连接的构件是二力构件。
()(3)力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()(4)悬挂的小球静止不动是因为小球对绳向下的拉力和绳对小球向上的拉力相互抵消的缘故。
()(5)作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同、大小相等、方向相反。
()(6)在任何情况下,体内任意两点的距离保持不变的物体叫刚体.()(7)凡在两个力作用下的构件称为二力构件。
()(8)凡是合力都大于分力。
()(9)根据力的可传性,力P可以由D点沿其作用线移到E点?( )题1-1-9图(10)光滑圆柱形铰链约束的约束反力,一般可用两个相互垂直的分力表示,该两分力一定要沿水平和铅垂方向。
( )(11)力平衡条件中的两个力作用在同一物体上;作用力和反作用力分别作用在两个物体上。
( )(12)刚体的平衡条件是变形体平衡的必要条件,而非充分条件。
()(13)约束力的方向必与该约束所阻碍的物体运动方向相反。
()(14)辊轴支座的约束力必沿垂方向,且指向物体内部。
( )。
(15)力可以沿着作用线移动而不改变它对物体的运动效应。
( )2.选择题(1)在下述原理、法则、定理中,只适用于刚体的有。
A.A。
三力平衡定理;B.力的平行四边形法则;C。
加减平衡力系原理;D。
力的可传性原理;E.作用与反作用定律.(2)三力平衡定理是。
A。
共面不平行的三个力相互平衡必汇交于一点;B。
共面三力若平衡,必汇交于一点;C.三力汇交于一点,则这三个力必互相平衡。
(3)作用在一个刚体上的两个力F A、F B,满足F A=—F B的条件,则该二力可能是。
A。
作用力与反作用力或一对平衡力;B。
一对平衡力或一个力偶;C.一对平衡力或一个力和一个力偶;D.作用力与反作用力或一个力偶。
第一章静力学公理和物体的受力分析一、选择题1、三力平衡定理是﹍﹍﹍﹍。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
2、三力平衡汇交定理所给的条件是﹍﹍﹍﹍。
①汇交力系平衡的充要条件;②平面汇交力系平衡的充要条件;③不平行的三个力平衡的必要条件;④不平行的三个力平衡的充分条件;3、图示系统只受作用而平衡。
欲使A支座约束力的作用线及AB成30°角,则斜面的倾角应为﹍﹍﹍﹍。
①0°②30°③45°④60°4、作用在一个刚体上的两个力、,满足=-的条件,则该二力可能是﹍﹍﹍﹍.①作用力和反作用或是一对平衡的力;②一对平衡的力或一个力偶;③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
二、填空题1、已知力沿直线AB作用,其中一个分力的作用线及AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为﹍﹍﹍﹍﹍﹍﹍﹍度。
2、作用在刚体上的两个力等效的条件是﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍。
3、将力沿X、Y方向分解,已知F=100N,在X轴上的投影为86。
6N,而沿X方向的分力的大小为115。
47N,则的Y的方向分量及X轴的夹角为﹍﹍﹍﹍,在Y轴上的投影为﹍﹍﹍﹍。
4、若不计各物体重量,试分别画出各构杆和结构整体的受力图。
第二章平面汇交力系和平面力偶系一、选择题1、已知、、、为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此可知﹍﹍﹍﹍﹍﹍﹍。
(1)力系可合成为一个力偶;(2)力系可合成为一个力;(3)力系简化为一个力和一个力偶;(4)力系的合力为零,力系平衡。
2、汇交于O点的平面汇交力系,其平衡方程式可表示为二力矩形式。
即()=0,()=0,但必须﹍﹍﹍﹍﹍﹍﹍。
①A、B两点中有一点及O点重合;②点O不在A、B两点的连线上;③点O应在A、B两点的连线上;3、由n个力组成的空间平衡力系,若其中(n-1)个力相交于A点,则另一个力﹍﹍﹍﹍﹍﹍﹍。
理论力学练习册及答案同济一、静力学基础1. 题目:一个均匀的木杆,长度为2m,重量为50kg,一端固定在墙上,另一端自由。
求木杆的重心位置。
答案:木杆的重心位于其几何中心,即木杆的中点。
由于木杆均匀,其重心距离固定端1m。
2. 题目:一个质量为10kg的物体,受到三个力的作用:F1=20N向右,F2=30N向上,F3=15N向左。
求物体的合力大小和方向。
答案:合力F = F1 + F2 + F3 = (20N, 0) + (0, 30N) + (-15N, 0) = (5N, 30N)。
合力大小F = √(5² + 30²) = √(25 + 900) = √925 ≈30.41N。
合力方向与水平线的夹角θ满足tanθ = 30N / 5N = 6,所以θ ≈ 80.53°。
二、动力学基础1. 题目:一个质量为2kg的物体,从静止开始沿直线运动,加速度为5m/s²。
求物体在第3秒末的速度和位移。
答案:速度v = at = 5m/s² × 3s = 15m/s。
位移s = 0.5at² = 0.5 × 5m/s² × (3s)² = 22.5m。
2. 题目:一个质量为5kg的物体,以20m/s的初速度沿直线运动,受到一个恒定的阻力,大小为10N。
求物体在第5秒末的速度。
答案:加速度a = F/m = -10N / 5kg = -2m/s²。
速度v = v0 + at = 20m/s - 2m/s² × 5s = 0m/s。
三、转动动力学1. 题目:一个半径为0.5m的均匀圆盘,质量为10kg,绕通过其中心的轴旋转。
若圆盘的角加速度为10rad/s²,求圆盘的转动惯量。
答案:转动惯量I = mr² = 10kg × (0.5m)² = 2.5kg·m²。
理论力学练习题习题集习题一静力学公理和物体受力分析1.判断题(1)作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。
()(2)两端用光滑铰链连接的构件是二力构件。
()(3)力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()(4)悬挂的小球静止不动是因为小球对绳向下的拉力和绳对小球向上的拉力相互抵消的缘故。
()(5)作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同、大小相等、方向相反。
()(6)在任何情况下,体内任意两点的距离保持不变的物体叫刚体。
()(7)凡在两个力作用下的构件称为二力构件。
()(8)凡是合力都大于分力。
()(9)根据力的可传性,力P 可以由D 点沿其作用线移到E 点?()(10)光滑圆柱形铰链约束的约束反力,一般可用两个相互垂直的分力表示,该两分力一定要沿水平和铅垂方向。
()(11)力平衡条件中的两个力作用在同一物体上;作用力和反作用力分别作用在两个物体上。
()(12)刚体的平衡条件是变形体平衡的必要条件,而非充分条件。
()(13)约束力的方向必与该约束所阻碍的物体运动方向相反。
()(14)辊轴支座的约束力必沿垂方向,且指向物体内部。
()。
(15)力可以沿着作用线移动而不改变它对物体的运动效应。
()2.选择题(1)在下述原理、法则、定理中,只适用于刚体的有。
A. A. 三力平衡定理;B. 力的平行四边形法则;C. 加减平衡力系原理;D. 力的可传性原理;E. 作用与反作用定律。
(2)三力平衡定理是。
A. 共面不平行的三个力相互平衡必汇交于一点;B. 共面三力若平衡,必汇交于一点;C. 三力汇交于一点,则这三个力必互相平衡。
(3)作用在一个刚体上的两个力F A 、F B ,满足F A = -F B 的条件,则该二力可能是。
A. 作用力与反作用力或一对平衡力;B. 一对平衡力或一个力偶;C. 一对平衡力或一个力和一个力偶;D. 作用力与反作用力或一个力偶。
(4)若作用在A 点的两个大小不等的力F 1、F 2沿同一直线但方向相反,则合力可以表示为。
A. F 1-F 2;B.F 2-F 1;C.F 1+F 2;D.不能确定。
(5)图示系统只受F 作用而平衡,欲使A 支座约束力的作用线与AB 成30°角,则斜面倾角应为。
A. A. 0°;B.30°;C.45°;D.60°。
(6)图示楔形块A 、B 自重不计,接触处光滑,则。
A.A 平衡,B 不平衡; B.A不平衡,B 平衡; C.A 、B 均不平衡; D.A、B 均平衡。
(7)考虑力对物体作用的两种效应,力是()。
A.滑动矢量; B.自由矢量; C.定位矢量。
3.填空题(1)作用力与反作用力大小,方向,作用在。
(2)作用在同一刚体上的两个力使物体处于平衡的充分必要条件是这两个力,,。
(3)在力平行四边形中,合力位于。
(4)图示结构,自重不计,接触处光滑,则(a )图的二力构件是,(b )图的二力构件是。
4.画图示各物体的受力图,未画重力的物体自重不计,并假设所以接触都是光滑的。
习题二平面力系1. 选择题(1) 如题2-1-1图所示,将大小为100N 的力F 沿x 、y 方向分解,若F 在x 轴上的投影为86.6N, 而沿x 方向的分力的大小为115.47N ,则F 在y 轴上的投影为( )。
A. 0;B. 50N;C. 70.7N;D. 86.6N。
题2-1-1图(2) 题2-1-2图所示结构受力F作用,杆重不计,则A 支座约束力的大小为( )。
A.F2; B.3F2; C.3F3; D. 0。
题2-1-2图(3) 在题2-1-3图所示结构中,如果将作用于构件AC 上的力偶m 搬移到构件BC 上,则A 、B 、C 三处反力的大小( )。
A. 都不变;B. A、B 处反力不变,C 处反力改变;C. 都改变;D. A、B 处反力改变,C 处反力不变。
题2-1-3图(4) 平面力系向点1简化时,主矢R ′=0,主矩M1≠0,如将该力系向另一点2简化,则( )。
A. R′≠0,M2≠0;B.R′=0,M2≠M1;C. R′=0,M2=M1;D.R′≠0,M2=M1。
(5) 杆AF 、BE 、CD 、EF 相互铰接,并支承,如题2-1-5图所示。
今在AF 杆上作用一力偶(F、F ′) ,若不计各杆自重,则A 支座处反力的作用线( )。
A. 过A 点平行于力F ;B.过A 点平行于BG 连线;C. 沿AG 直线;D.沿AH 直线。
题2-1-5图(6) 悬臂桁架受到大小均为F 的三个力的作用,如题2-1-6图所示,则杆1内力的大小为( );杆2内力的大小为( );杆3内力的大小为( )。
A. FB.2F ;C. 0;D. F/2。
题2-1-6图2. 填空题q =2kN m 的分布力和矩M =2kN ∙m 的力偶作用,如题(1) 悬臂梁受载荷集度O2-2-1图所示,则该力系向A 点简化的结果为___。
题2-2-1图(2) 均质立方体重P ,置于30°倾角的斜面上,如题2-2-2图所示。
摩擦系数fs=0.25,开始时在拉力T 作用下物体静止不动,然后逐渐增大力T ,则物体先___(填滑动或翻倒) ;又,物体在斜面上保持静止时,T 的最大值为___。
题2-2-2图3. 计算题(1) 题2-3-1图所示结构由折梁AC 和直梁CD 构成,各梁自重不计,已知:q=1kN/m, M=27kN·m, P=12kN, θ=30°, L=4m。
试求:①支座A 的反力;②铰链C 的约束反力。
题2-3-1图(2) 如题2-3-2图所示,曲杆ABC 与直杆AED 用铰A 及连杆DC 相连,轮C 重不计。
已知:R=1m, EG 段绳水平,P=100kN, L=1m,各杆重均不计。
试求:①DEA 杆在D 、A 两处所受的约束力;②CBA 杆在B 、A 两处所受的约束力。
题2-3-1图(3) 结构如题2-3-3图所示,自重不计,B 、C 处为铰接。
已知:BE=EC, a=40cm,r=10cm, P=50N, Q=100N。
试求A 处的约束反力。
题2-3-3图(4) 在题2-3-4图所示系统中,在B 点处用一绳索过光滑滑轮拉住重为Q=100kN的物体,已知:重物与斜面间的摩擦系数f=0.5,各杆件与轮重均不计,尺寸如图所示。
试求①平衡时作用于E 点的P 力的大小;②杆1、2内力的最大值。
题2-3-4图(5) 在题2-3-5图所示平面桁架中,已知: P 、L 1、L 2。
试求杆1、2的内力。
题2-3-5图(6) 题2-3-6图所示平面结构由杆AB 、DE 及弯杆DB 组成,P =10N ,M =20N ∙m ,l =r =1m 各杆及轮自重不计,求支座A 、D 处的约束反力及杆BD 的B 端所受的力。
题2-3-6图习题三空间力系1. 是非题(1)一空间力系,若各力作用线与某一固定直线相平行,则其独立的平衡方程只有5个。
()(2)一空间力系,若各力作用线平行某一固定平面,则其独立的平衡方程只有3个 ( ) (3)在空间问题中,力对轴的矩是代数量,而对点的矩是矢量。
()(4)当力与轴共面时,力对该轴之矩等于零。
()(5)在空间问题中,力偶对刚体的作用完全由力偶矩矢决定。
()(6)将一空间力系向某点简化,若所得的主矢和主矩正交,则此力系简化的最后结果为一合力。
()x y (7)某空间力系满足条件:,该力系简化的最后结果可能是一个力、力偶或平衡。
()2. 2.择题题(1)图3-2-1所示正立方体的顶角作用着六个大小相等的力,此力系向任一点简化的结果是。
A. 主矢等于零,主矩不等于零;B. 主矢不等于零,主矩等于零;C. 主矢不等于零,主矩也不等于零;D. 主矢等于零,主矩也等于零。
(2)如图3-2-2设力线平行于oz 轴,。
A. ∑m x =0y zB. ∑X=0,∑Y=0,∑m x =0;C. ∑Z=0,∑m x =0,∑m y =0;D. ∑X=0,∑Y=0,∑Z=0。
(3)如图3-2-3所示在正立方体的前侧面沿AB 方向作用一力F ,则该力。
A. 对x 、y 、z 轴之矩的绝对值全相等;B. 对x 、y 、z 轴之矩的绝对值均不相等;C. 对x 、y 轴之矩的绝对值相等;D. 对y 、z 轴之矩的绝对值相等。
ΣY =0, ΣZ =0, Σm () =0, Σm () =0(4)将两等效力系分别向A 、B 两点简化,得到的主矢和主矩分别为R 1、M 1和R 2、M 2(主矢与AB 不平行)。
则有。
A. R 1=R 2、M 1=M 2;B. R 1=R 2、M 1≠M 2;C. R 1≠R 2、M 1=M 2;D. R1≠R 2、M 1≠M 2。
(5)图3-2-5所示力F 作用在OABC 平面内,x 轴与OABC 平面成θ角(θ≠900),则力对三轴之矩有。
①M x =0,M y =0,M z ≠0;②M x =0,M y ≠0,M z =0;③M x ≠0,M y =0,M z =0;④M x ≠0,M y =0,M z ≠0。
(6。
个。
①A.3个;B.4(7)空间力偶矩是______________________。
A. 代数量;B. 滑动矢量;C. 定位矢量;D. 自由矢量。
(8)均质等厚薄平板如图3-2-8所示, 则其重心坐标为。
A.x c =-0.5cm, yc =1cm;B.x c =0.5cm, yc =0.5cm;C.x c =-4/7cm, yc=1.5cm; D.x c =17/7cm, yc =1.5cm。
3. 3.填空题(1)某空间力系若:①各力作用线平行于某一固定平面;②各力作用线垂直于某一固定平面;③各力作用线分别在两个平行的固定平面内,则其独立的平衡方程式的最大数目分别为:① 个;② 个;③个。
(2)通过A (3,0,5),B (0,0,9)两点(长度单位为米),且由A 指向B 的力F ,在x 轴上的投影为;在z 轴上的投影为;对y 轴的矩的大小为。
(3)空间力偶的三要素是:,,。
(4)如图3-3-4所示正立方体,边长为a ,四个力大小皆等于F ,则此力系简化的最终结果是。
并在图中画出。
(5)空间平行力系的各力平行于z 轴,若已知∑Z=0;∑m x =0,则该力系合成的结果为,或为。
(6)如图3-3-6所示,已知力P 沿正六边体对顶线BA 作用,且P=1000N。
则该力对z 轴的矩为。
(7)试写出各类力系所具有的最大的独立平衡方程数目。
(8)空间二力偶等效的条件是___________________________,图示长方形刚体,仅受二力偶作用,已知其力偶矩矢满足M 1=-M 2,该长方体是否平衡?答:___________。