正态性检验方法比较.doc
- 格式:doc
- 大小:115.00 KB
- 文档页数:3
总结正态性检验的几种方法1.1 正态性检验方法1)偏度系数样本的偏度系数(记为1g )的计算公式为()2331331(1)(2)(1)(2)n ii n n g x x n n s n n s μ==-=----∑, 其中s 为标准差,3μ为样本的3阶中心距,即()3311n i i x x n μ==-∑。
偏度系数是刻画数据的对称性指标,关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。
(2)峰度系数样本的峰度系数(记为2g ),计算公式为()242412244(1)(1)3(1)(2)(3)(2)(3)(1)(1)3(1)(2)(3)(2)(3)n i i n n n g x x n n n s n n n n n n n n s n n μ=+-=-------+-=------∑,其中s 为标准差,4μ为样本的3阶中心距,即()4411n i i x x n μ==-∑。
当数据的总体分布为正态分布时,峰度系数近似为0,;当分布为正态分布的尾部更分散时,峰度系数为正;否则为负。
当峰度系数为正时,两侧极端数据较多,当峰度系数为负时,两侧极端数据较少。
(3)QQ 图QQ 图可以帮助我们鉴别样本的分布是否近似于某种类型的分布。
现假设总体为正态分布()2,N μσ,对于样本12,,,n x x x L ,其顺序统计量是(1)(2)(),,,n x x x L 。
设()x Φ为标准正态分布()0,1N 的分布函数,1()x -Φ是反函数,对应正态分布的QQ 图是由以下的点 1()0.375,,1,2,,0.25i i x i n n -⎛⎫-⎛⎫Φ= ⎪ ⎪+⎝⎭⎝⎭L , 构成的散点图,若样本数据近似为正态分布,在QQ 图上这些点近似地在直线上y x σμ=+,附近,此直线的斜率是标准差σ,截距式均值,μ,所以利用正态QQ 图可以做直观的正态性检验。
正态性检验的几种方法一、引言正态分布是自然界中一种最常见的也是最重要的分布。
因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验。
目前,正态性检验主要有三类方法:一是计算综合统计量,如动差法、Shapiro-Wilk 法(W 检验)、D ’Agostino 法(D 检验)、Shapiro-Francia 法(W ’检验)。
二是正态分布的拟合优度检验,如2χ检验、对数似然比检验、Kolmogorov-Smirov 检验。
三是图示法(正态概率图Normal Probability plot),如分位数图(Quantile Quantile plot ,简称QQ 图)、百分位数(Percent Percent plot ,简称PP 图)和稳定化概率图(Stablized Probability plot ,简称SP 图)等。
而本文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,还进行了应用。
二、正态分布2.1 正态分布的概念定义1若随机变量X 的密度函数为()()()+∞∞-∈=--,,21222x e x f x σμπσ其中μ和σ为参数,且()0,,>+∞∞-∈σμ则称X 服从参数为μ和σ的正态分布,记为()2,~σμN X 。
另我们称1,0==σμ的正态分布为标准正态分布,记为()1,0~N X ,标准正态分布随机变量的密度函数和分布函数分别用()x ϕ和()x Φ表示。
引理1 若()2,~σμN X ,()x F 为X 的分布函数,则()⎪⎭⎫⎝⎛-Φ=σμx x F由引理可知,任何正态分布都可以通过标准正态分布表示。
2.2 正态分布的数字特征引理2 若()2,~σμN X ,则()()2,σμ==x D x E 引理3 若()2,~σμN X ,则X 的n 阶中心距为()()N k kn k k n kn ∈⎩⎨⎧=-+==2,!!1212,02σμ定义2 若随机变量的分布函数()x F 可表示为:()()()()x F x F x F 211εε+-= ()10<≤ε其中()x F 1为正态分布()21,σμN 的分布函数,()x F 2为正态分布()22,σμN 的分布函数,则称X 的分布为混合正态分布。
正态检验方法一、前言正态检验是统计学中常用的一种方法,用于检验数据是否符合正态分布。
正态分布是指在概率论和统计学中经常出现的一种连续概率分布,其特点是对称、单峰、钟形曲线。
正态分布在实际应用中具有很重要的意义,因此对数据进行正态检验就显得尤为重要。
本文将详细介绍正态检验的方法以及如何使用R语言进行正态检验。
二、什么是正态检验?正态检验(Normality Test)是指通过某些统计量对数据样本进行假设检验,判断样本是否符合正态分布。
常见的统计量有Kolmogorov-Smirnov (K-S) 检验、Shapiro-Wilk 检验、Anderson-Darling (A-D) 检验等。
三、K-S检验K-S检验(Kolmogorov–Smirnov test)是一种非参数假设检验方法,主要用于判断一个样本是否来自某个已知分布。
在正态性检查中,我们可以使用K-S测试来比较观察值与标准正态分布之间的差异。
1. K-S测试原理在使用K-S测试时,我们首先需要确定一个假设H0:该样本来自一个已知分布。
通常情况下,该已知分布是标准正态分布。
我们可以使用样本的均值和标准差来估计标准正态分布的参数。
接下来,我们需要计算出观察值与标准正态分布之间的最大偏差(D)。
这个偏差是指在统计学上,观察值与标准正态分布之间的最大距离。
最后,我们需要根据样本大小和显著性水平确定临界值。
如果D大于临界值,则拒绝假设H0,即该样本不符合正态分布。
2. 使用R语言进行K-S检验在R语言中,我们可以使用ks.test()函数进行K-S检验。
该函数包含两个参数:x表示要检验的数据向量;y表示用于比较的已知分布。
例如:```R# 生成一个随机数向量set.seed(123)x <- rnorm(100)# 进行K-S检验ks.test(x, "pnorm")```输出结果为:```ROne-sample Kolmogorov-Smirnov testdata: xD = 0.0863, p-value = 0.4814alternative hypothesis: two-sided```其中,D表示最大偏差;p-value表示拒绝原假设的显著性水平。
兰州商学院论文题目:正态性检验方法的比较学院、系:统计学院专业 (方向):社会统计年级、班:08级一班学生姓名:马晓莉学号:200806012282010 年11 月23 日正态性检验方法的比较正态性检验总共有八中检验方法一.W检验W 适用于小样本 (3≤n ≤50) (1)0:H 总体服从正态分布(2)检验统计量为2()12211[()()]()()ni i i nniii i a a X X Waa XX ===--=--∑∑∑(3)检验原理与拒绝域:当原假设为真时, 的值应接近于1,若其值过小,则怀疑原假设,从而,拒绝域为{}R W c =≤其中,对于给定的 ,有 {}P W c α≤=查表,可得临界值二、偏度、峰度检验法: 1、偏度系数 (1)0:H10β=(2)总体偏度系数331332222()()[()]E X EX E X EX νβν-==-(3)10β>总体分布正偏(右长尾) 10β= 总体分布关于E X 对称 10β<总体分布负偏(左长尾)样本偏度系数SK3322()B S B =2、峰度系数 (1)0:H23β=(2)峰度系数4422222()33()[()]E X EX E X EX νβν-=-=--(3)20β>总体分布高峰态20β= 总体分布正峰态 20β<总体分布低峰态峰度系数KU4223()B K B =-三、Kolmogorov 检验 (1)双侧检验001:()():()()H F x F x xH F x F x x=∀≠∃ 单侧检验 0010:()():()()H F x F x x H F x F x x ≥∀<∃ 0010:()():()()H F x F x xH F x F x x≤∀>∃(2)检验统计量: 双侧检验 0sup |()()|n xD F x F x =-左侧检验 0sup(()())n xD F x F x +=-右侧检验0sup(()())n xDF x F x -=-实际中,应用统计量0101max{max(|()()|,|()()|)}n n i i n i i i nD F x F x F x F x -≤≤=--称为Kolmogorov 统计量(3) 以双侧检验为例,当0H 为真时,由格里汶科定理,n D 的值应较小,若其值过大,则怀疑原假设. 从而,拒绝域 {}n R D d => 其中,对于给定的α{}n P D d α>=又ˆ{}n np P D D =≥ (4) 判断样本所得 是否落入拒绝域,作出结论. 四2χ拟合优度检验(1)0H :总体X 的分布函数为()F X ,即~()XF X1:H 总体X 的分布函数不是()F X(2)检验统计量 22211()()kkii i i i i i if f np np p nnp χ==-=-=∑∑:i f 样本中i A 发生的实际频数——(1,2,...)i k =观察频数0:i np H 为真时iA 应发生的理论频数——(1,2,...)i k =期望频数(3)拒绝域 对于给定的α 令2{}P d χα≥= 则拒绝域为 2{}R d χ=≥五、大样本场合(50≤n ≤1000)的 D 检验: 1、检验统计量及分布:0.28209479)0.02998598D Y -=其中()1()ni n i X D +-=∑当原假设为真时,即当总体正态时,~(0,1),YN但趋于0的速度比较慢。
正态性检验方法正态性检验是统计学中常用的一种方法,用于检验数据是否符合正态分布。
正态分布是统计学中最重要的分布之一,许多统计方法都基于数据服从正态分布的假设。
因此,对数据进行正态性检验是非常重要的,它可以帮助我们选择合适的统计方法,进行准确的数据分析和推断。
常见的正态性检验方法主要包括直方图、正态概率图(Q-Q图)、K-S检验、Shapiro-Wilk检验等。
下面将逐一介绍这些方法的原理和应用。
直方图是最直观的正态性检验方法之一。
它将数据按照一定的区间进行分组,并绘制成柱状图。
如果数据呈现出类似钟形曲线的分布,那么就可以初步判断数据服从正态分布。
但直方图只能提供直观的感受,对于正态性的检验并不够准确。
正态概率图(Q-Q图)是一种更为准确的正态性检验方法。
它通过比较样本数据和理论正态分布的分位数来判断数据是否符合正态分布。
如果数据点在一条直线附近分布,并且与45度直线吻合度较高,则可以认为数据服从正态分布。
K-S检验(Kolmogorov-Smirnov test)是一种常用的非参数检验方法,用于检验样本数据是否来自于某一特定分布,包括正态分布。
K-S检验通过计算累积分布函数的差距来判断两个分布之间的差异,从而判断样本数据是否符合正态分布。
Shapiro-Wilk检验是一种较为严格的正态性检验方法,特别适用于小样本数据。
它基于样本数据的排序值和样本均值的比较,通过计算统计量来检验数据是否符合正态分布。
Shapiro-Wilk检验在小样本情况下的效果更为准确。
在实际应用中,我们可以根据数据的特点和样本量的大小选择合适的正态性检验方法。
如果数据呈现出明显的偏态或者峰态,那么可能不适合使用正态分布进行统计分析,需要考虑其他分布。
另外,对于大样本数据,即使数据略微偏离正态分布,也可能不会对统计推断产生显著影响。
因此,在进行正态性检验时,需要综合考虑数据的特点和实际需求。
总之,正态性检验是统计学中非常重要的一环,它可以帮助我们判断数据是否符合正态分布,选择合适的统计方法,进行准确的数据分析和推断。
SPSS和SAS常用正态检验方法许多计量资料的分析方法要求数据分布是正态或近似正态,因此对原始独立测定数据进行正态性检验是十分必要的。
通过绘制数据的频数分布直方图来定性地判断数据分布正态性。
这样的图形判断决不是严格的正态性检验,它所提供的信息只是对正态性检验的重要补充。
正态性检验主要有三类方法:一、计算综合统计量如动差法、夏皮罗-威尔克Shapiro-Wilk 法(W 检验) 、达戈斯提诺D′Agostino 法(D 检验) 、Shapiro-Francia法(W′检验) .二、正态分布的拟合优度检验如皮尔逊χ2检验、对数似然比检验、柯尔莫哥洛夫Kolmogorov-Smirov 法检验.三、图示法(正态概率图Normal Probability plot)如分位数图(Quantile Quantileplot ,简称QQ 图) 、百分位数(Percent Percent plot ,简称PP 图) 和稳定化概率图(Stablized Probability plot ,简称SP 图) 等.下面介绍几种较统计软件中常用的正态性检验方法1、用偏态系数和峰态系数检验数据正态性偏态系数Sk,它用于检验不对称性;峰态系数Ku,它用于检验峰态。
S k= 0, K u= 0 时, 分布呈正态, S k> 0 时, 分布呈正偏态,S k < 0 时, 分布呈负偏态。
适用条件:样本含量应大于2002、用夏皮罗-威尔克(Shapiro-Wilk)法检验数据正态性即W检验,1965 年提出,适用于样本含量n ≤50 时的正态性检验;。
3、用达戈斯提诺(D′Agostino)法检验数据正态性即D检验,1971提出,正态性D检验该方法效率高,是比较精确的正态检验法。
4、Shapiro-Francia 法即W′检验,于1972 年提出,适用于50 < n < 100 时的正态性检验。
5、QQ图或PP图散点聚集在固定直线的周围,可以认为数据资料近似服从正态分布SPSS&SAS规则:SPSS 规定:当样本含量3 ≤n ≤5000 时,结果以Shapiro - Wilk (W 检验) 为准,当样本含量n > 5000 结果以Kolmogorov - Smirnov 为准。
总结正态性检验的⼏种⽅法总结正态性检验的⼏种⽅法1.1 正态性检验⽅法1)偏度系数样本的偏度系数(记为1g )的计算公式为()2331331(1)(2)(1)(2)n ii n n g x x n n s n n s µ==-=----∑,其中s 为标准差,3µ为样本的3阶中⼼距,即()3311n i i x x n µ==-∑。
偏度系数是刻画数据的对称性指标,关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。
(2)峰度系数样本的峰度系数(记为2g ),计算公式为()242412244(1)(1)3(1)(2)(3)(2)(3)(1)(1)3(1)(2)(3)(2)(3)n i i n n n g x x n n n s n n n n n n n n s n n µ=+-=-------+-=------∑,其中s 为标准差,4µ为样本的3阶中⼼距,即()4411n i i x x n µ==-∑。
当数据的总体分布为正态分布时,峰度系数近似为0,;当分布为正态分布的尾部更分散时,峰度系数为正;否则为负。
当峰度系数为正时,两侧极端数据较多,当峰度系数为负时,两侧极端数据较少。
(3)QQ 图QQ 图可以帮助我们鉴别样本的分布是否近似于某种类型的分布。
现假设总体为正态分布()2,N µσ,对于样本12,,,n x x x L ,其顺序统计量是(1)(2)(),,,n x x x L 。
设()x Φ为标准正态分布()0,1N 的分布函数,1()x -Φ是反函数,对应正态分布的QQ 图是由以下的点 1()0.375,,1,2,,0.25i i x i n n -??-??Φ= ? ?+L ,构成的散点图,若样本数据近似为正态分布,在QQ 图上这些点近似地在直线上y x σµ=+,附近,此直线的斜率是标准差σ,截距式均值,µ,所以利⽤正态QQ 图可以做直观的正态性检验。
正态性检验方法的比较
正态分布是许多检验的基础,比如F 检验,t 检验,卡方检验等在总体不是正太分布是没有任何意义。
因此,对一个样本是否来自正态总体的检验是至关重要的。
当然,我们无法证明某个数据的确来自正态总体,但如果使用效率高的检验还无法否认总体是正太的检验,我们就没有理由否认那些和正太分布有关的检验有意义,下面我就对正态性检验方法进行简单的归纳和比较。
一.图示法
1.P-P 图
以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,以样本值表现为直角坐标系的散点。
如果数据服从正态分布,则样本点应围绕第一象限的对角线分布。
2. Q-Q 图
以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。
如果数据服从正太分布,则样本点应围绕第一象限的对角线分布。
以上两种方法以Q-Q 图为佳,效率较高。
3.直方图
判断方法:是否以钟型分布,同时可以选择输出正态性曲线。
4.箱线图
判断方法:观察矩形位置和中位数,若矩形位于中间位置且中位数位于矩形的中间位置,则分布较为对称,否则是偏态分布。
5.茎叶图
判断方法:观察图形的分布状态,是否是对称分布。
二.偏度、峰度检验法:
1. S,K 的极限分布
样本偏度系数()
3
322B S B = 该系数用于检验对称性,S>0时,分布呈正偏态,S<0时,分布呈负偏态。
样本峰度系数()4
223B K B =-
该系数用于检验峰态,K>0时为尖峰分布,S<0时为扁平分布;当S=0,K=0时分布呈正态分布。
0H :F(x)服从正态分布 1H :F(x)不服从正态分布
当原假设为真时,检验统计量
~N(0,1)
~N(0,1) 对于给定的α
R ||={|>λ⋃|>λ} 其中14u α
-λ=
2. Jarque-Bera 检验(偏度和峰度的联合分布检验法)
检验统计量为 JB= 22164n k S K -⎛⎫=+ ⎪⎝⎭
()22χ~ JB 过大或过小时,拒绝原假设。
三.非参数检验方法
1.Kolmogorov-Smirnov 正态性检验(基于经验分布函数(ECDF )的检验)
()()0max ||n D F x F x =-
()n F x 表示一组随机样本的累计概率函数,()0F x 表示分布的分布函数。
当原假设为真时,D 的值应较小,若过大,则怀疑原假设,从而,拒绝域为 {}R D d =>
对于给定的α {}p P D d α=>= 又ˆ{}n n
p P D D =≥ 2.Lilliefor 正态性检验
该检验是对Kolmogorov-Smirnov 检验的修正,参数未知时,由22
ˆˆ,X S μσ==可计算得检验统计量ˆn
D 的值。
3.Shapiro-Wilk(W 检验)
检验统计量: (
)()()()()()212211
n i i i n n i i i i a a X X W a
a X X ===⎡⎤--⎢⎥⎣⎦=--∑∑∑ 当原假设为真时,W 的值应接近于1,若值过小,则怀疑原假设,从而拒绝域为 R {}W c =≤
在给定的α水平下 P {}W c ≤=α
4. 2
χ拟合优度检验(也是基于经验分布函数(ECDF )的检验)
检验统计量为 22211()()k
k i i i i i i i i f f np n p p n np χ==-=-=∑∑1)k ~χ(- 22211ˆ()ˆ()ˆˆk k i i i i i i i i f f np n p p n np χ==-=-=∑∑1)k r ~χ(-- r 是被估参数的个数
若原假设为真时,2χ应较小,否则就怀疑原假设,从而拒绝域为2
{}R d χ=≥,对于给定
的α 2{}P d χα≥= 又22
ˆ{}p P χχ=≥ 四.方法的比较
1.图示法相对于其他方法而言,比较直观,方法简单,从图中可以直接判断,无需计算,但这种方法效率不是很高,它所提供的信息只是正态性检验的重要补充。
2.经常使用的2
χ拟合优度检验和Kolmogorov-Smirnov 检验的检验功效较低,在许多计算机软件的Kolmogorov-Smirnov 检验无论是大小样本都用大样本近似的公式,很不精准,一般使用Shapiro-Wilk 检验和Lilliefor 检验。
3. Kolmogorov-Smirnov 检验只能检验是否一个样本来自于一个已知样本,而Lilliefor 检验可以检验是否来自未知总体。
4. Shapiro-Wilk 检验和Lilliefor 检验都是进行大小排序后得到的,所以易受异常值的影响。
5. Shapiro-Wilk 检验只适用于小样本场合(3≤n ≤50),其他方法的检验功效一般随样本容量的增大而增大。
6. 2χ拟合优度检验和Kolmogorov-Smirnov 检验都采用实际频数和期望频数进行检验,前者既可用于连续总体,又可用于离散总体,而Kolmogorov-Smirnov 检验只适用于连续和定量数据。
7.2χ拟合优度检验的检验结果依赖于分组,而其他方法的检验结果与区间划分无关。
8.偏度和峰度检验易受异常值的影响,检验功效就会降低。
9.假设检验的目的是拒绝原假设,当p 值不是很大时,应根据数据背景再作讨论。