线性代数练习题(行列式)
- 格式:doc
- 大小:212.93 KB
- 文档页数:6
第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。
2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。
解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。
线性代数习题景德镇陶瓷学院信息工程学院第一章 行列式习题1、若排列x 1 x 2……x n-1 x n 的逆序数为I ,问排列x n x n-1……x 2 x 1的逆序数是多少?2、选择i 与k ,使(1)1274i56k9成偶排列 (2) 1i25k4897成奇排列3、计算排列2K ,1,2K-1,2,2K-2,3……K+1,K 的逆序数,并讨论它的奇偶性。
4、在六阶行列式中,项:a 23a 31a 42a 56a 14a 65,a 32a 43a 14a 51a 66a 25各应带什么符号5、根据行列式定义,计算:()x x x x x x f 111123111212-=中X 4与X 3的系数。
6、计算行列式D=2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a7、计算行列式D=nx x x nx x x nx x x n n n +++++++++ 212121222111注:n 阶行列式计算的常用方法有:(1)按定义展开:直接用定义展开计算;(2)三角化:即利用行列式的基本性质,使行列式主对角线一侧的元素都变为零(如第9题);(3)拆子列:利用行列式的性质50,将行列式化为两个较简单的行列式来计算。
(如第7、8、10题);(4)递推法:设法找出n 阶行列式D n 与低阶行列式的关系(往往要用归纳法验证),再递推求出D n 的值。
(如第8题);(5)降阶法:利用行列式按行(列)展开定理,将行列式降阶后求解; (6)应用范德蒙行列式:将行列式变形,化成范德蒙行列式。
具体计算n 阶行列式时应根据行列式特点单独或综合运用上述方法。
8、证明:6 D n =βαβααββααββα++++10000010001000 =βαβα--++11n n9、计算nD (333)...............3 (33)33...3233 (331)=10、计算行列式yy x x -+-+111111111111111111、求一个二次多项式f(x),使f(1)=0,f(2)=3,f(-3)=28。
线性代数第一章行列式训练题一、单项选择题1.二阶行列式1221−−k k ≠0的充分必要条件是( )A .k ≠–1B .k ≠3C .k ≠–1且k ≠3D .k ≠–1或≠3答案:C2.设行列式2211b ab a =1,2211c a c a =2,则222111c b a c b a ++=( )A .–3B .–1C .1D .3 注22112211222111c a c a b a b a c b a c b a +=++答案:D3.如果方程组=+=−=−+0404033232321kx x x x x kx x 有非零解,则 k =( ) A.–2 B.–1C.1D.2 注:使04014013=−−kk答案:B4.设行列式D=333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( ) A .–15 B .–6 C .6D .15答案:C 5.3阶行列式ji a =011101110−−−中元素21a 的代数余了式21A =( )A .–2B .–1C .1D .2 0111)1(12−−+ 答案:C6.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a −−−=( ) A.–24 B.–12 C.–6D.12答案:B 7.行列式11110111111110−−−−−−第二行第一列元素的代数余子式21A =( )A .–2B .–1C .1D .2答案:B 8.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m–nB.n–mC.m+nD.–(m+n )答案:B二、填空题请在每小题的空格中填上正确答案。
线性代数部分练习题线性代数部分练习题⼀、⾏列式、矩阵的运算 (第⼀、⼆章)1.设a ,b 为实数,且000101ab ba-=--,则()A.a =0,b =0;B.a =1,b =0;C.a =0,b =1;D.a =1,b =1 2.排列53142的逆序数(53142)τ=() A .7 ; B .6; C .5 ; D .43. 计算⾏列式=----32320200051020203() A.-180; B.-120; C.120; D.1804. 设⾏列式D 1=22221111a c b a a c b a ac b a +++,D 2=222111c b a c b a c b a ,则D 1= )A .0;B .D 2;C .2D 2;D .3D 25. 已知⾏列式a52231521-=0,则数a =( )A.-3;B.-2;C.2;D.36. 设⾏列式111213212223313233a a a a a a a a a =2,则111213212223313233232323a a a a a a a a a ------=() A .-12; B .-6; C .6; D .12 7. 设⾏列式==1111034222,1111304z y x zy x 则⾏列式( )A.32; B.1; C.2; D.38 8. 设⾏列式01110212=-k k ,则k 的取值为()A.2;B.-2或3;C.0 ;D.-3或29. 设矩阵A =(1,2),B =?4321,C ???? ??=654321则下列矩阵运算中有意义的是() A .ACB; B .ABC; C .BAC; D .CBA 10.设A 为三阶⽅阵,且|A |=2,则|-2A |=() A .-16; B .-4; C .4; D .1611.设矩阵123456709??=A ,则*A 中位于第2⾏第3列的元素是()A .-14;B .-6;C .6;D .1412.设A 是n 阶矩阵,O 是n 阶零矩阵,且2-=A E O ,则必有()A .1-=A A ; B .=-A E ; C .=A E ; D .1=A13.下列等式中正确的是() A .()222B BA AB A B A +++=+B .()T T TB A AB =C .()()22B A B A B A -=+- D .()A A A A 233-=-14. 设A =?4321,则|2A *|=() A.-8; B.-4; C.4; D.815. 设A ,B ,C 均为n 阶⽅阵,AB =BA ,AC =CA ,则ABC =() A .ACB; B .CAB; C .CBA ; D .BCA16. 设A 为3阶⽅阵,B 为4阶⽅阵,且⾏列式|A |=1,|B |=-2,则⾏列式||B |A |的值为() A .-8; B .-2; C .2; D .817. 设矩阵A =-11,B =(1,1)则AB =()A .0;B .(1,-1);C .???? ??-11 ;D .--111118. 设n 阶矩阵A 、B 、C 满⾜ABC =E ,则C -1=( ) A. AB; B. BA; C. A -1B -1; D. B -1A -119.已知2阶⾏列式第1⾏元素为2和1,对应的余⼦式为-2和3,则该⾏列式的值为__________.20.阶⾏列式011101110---=ij a 中元素a 21的代数余⼦式A 21=____________.21. 在四阶⾏列式中,项a 31a 22a 43a 14的符号是____________.22. 在五阶⾏列式中,项a 21 a 32 a 45 a 14 a 53的符号为_____________.23. 已知四阶⾏列式D 中第三列元素依次为-1,2,0,1,它们的代数余⼦式依次分别为5,-3,-7,-4,则D=_______24. 设⾏列式304222532D =-,其第3⾏各元素的代数余⼦式之和为____________.25. 已知⾏列式333222111c b a c b a c b a =1,则333333222222111111c b a b a a c b a b a a c b a b a a +--+--+--=______________. 26. ⾏列式11124641636=________.27. 已知3阶⾏列式|A|中第3列元素依次为-1,2,0,它们的余⼦式依次为5,3,-7,则|A|=__________.28. 3阶⾏列式767367949249323123=________.29.设矩阵011001000?? ?= ?A ,则A 2=______.30.111,,2(2),16A B A B A A --==-是两个四阶⽅阵,且则|B |=__________. 31.设A ,B 都是3阶矩阵,且|A |=2,B = -2E ,则|A -1B |=_________. 32.设A 、B 均为三阶⽅阵,|A |=4,|B |=5,则|2AB |=__________. 33.排列12453的逆序数为____________.34.已知A 2-2A -8E =0,则(A +E )-1=____________. 35. 设矩阵A =?-2112,E 为2阶单位矩阵,矩阵B 满⾜BA=B +E ,则|B |=___________. 36. 设A =411023, B =,010201则AB =___________. 37. 已知矩阵A =(1,2,-1),B =(2,-1,1),且C =A T B ,则C 2=__________.38. 设矩阵A =100012021,B =????? ??310120001,则A+2B =_____________.40.计算四阶⾏列式1234123412341234------41. 已知3阶⾏列式1120212x x-中元素12a 的代数余⼦式A 12=2,求元素21a 的代数余⼦式A 21的值.43. 求D =012010122101021046. 计算3112513420111533------47. 计算1 1 -1 2-1 -1 -4 12 4 -6 11 2 4 250. 计算422223222222222153. n 阶⾏列式n a b b b b a bb D bb ab b b ba=.56.计算123110311211230123(1)n n n n n nD nn ------=--------. 57. n 阶⾏列式11111 1111111n n n D nn=. 58. 设A =210011001??-??,B =102101?? ? ? ???,⼜AX =B ,求矩阵X.60. 已知矩阵A =111210101??- ? ?,B =100210021?? ? ? ???,求:(1)A T B ;(2)| A T B |.63.2A A A E O --2=设⽅阵满⾜⽅程:,+2A A E 证明:与都可逆,并求它们的逆矩阵。
《线性代数与解析几何》练习题行列式部分一.填空题:1.已知41132213----=D 用ij A 表示D 的元素ij a 的代数余子式,则21222323______A A A --+=,31323323____A A A --+=,行列式__________333231232221131211=A A A A A A A A A 2.12434003209106412a a a a a 的的代数余子式的值等于________。
3.设512312123122x x x D xxx=,则D 的展开式中3x 的系数为______4.4阶行列式111213142122232414423132333441424344a a a a a a a a D a a a a a a a a a a =展开式中含有因子的项为______和______5.行列式234234234234a a a ab b b b Dc c c c dd d d ==______6.设xx x x x f 321132213321)(=则(4)_____f = 7.设0112520842111111154115212111111541132111111323232=++-x x xx x xx x x上述方程的解______________________=x8.行列式112233440000000a b a b D b a b a ==__________ 9.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ 只有零解,则λ应满足_________条件。
10.若方程123123123020kx x x x kx x x x x ++=⎧⎪+-=⎨⎪-+=⎩有非零解,则k =_________或k =________。
11.行列式xy yyx y yyx=______ 12.行列式1110110110110111=______13.行列式000000000ab c de f=______14.方程组12312321231x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ 有唯一解时,对λ的要求是______二.计算题: 1.已知5阶行列式270513422111542131122254321=求434241A A A ++和4544A A +,其中ij A 是元素ij a 的代数余子式。
第1章 行列式及其应用一、填空题1.行列式1221--k k 0≠的充分必要条件是 .2.排列36715284的逆序数是 。
3.已知排列397461t s r 为奇排列,则r = , s = ,t = . 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 . 5.若54435231a a a a a j i 为五阶行列式带正号的一项,则 i = , j = .6.设行列式275620513--=D ,则第三行各余子式之和的值为 . 7.行列式=30092280923621534215 .8.行列式=1110110********* .9.多项式0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 的所有根是 .10.若方程225143214343314321x x -- = 0 ,则 .11.行列式 ==2100121001210012D12. 行列式122305403-- 中元素3的代数余子式是 . 13. 设行列式4321630*********=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= . 14.已知四阶行列D 中第三列元素依次为1-,2,0,1,它们的余子式依次分布为5,3,,7-4,则D = .15. 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k .二.选择题1.若行列式x52231521- = 0,则=x ( ).(A )2 (B )2- (C )3 (D )3-2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = ( ).(A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x 根的个数是( ).(A )0 (B )1 (C )2 (D )3 4.下列构成六阶行列式展开式的各项中,取“+”的有 ( ). (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为( ).(A )3,2==l k ,符号为正 (B )3,2==l k ,符号为负 (C )2,3==l k ,符号为正 (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是( ).(A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于等于n 个7.如果133********21131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( ). (A )8 (B )12- (C )24- (D )24 8.如果3333231232221131211==a a a a a a a a a D ,2323331322223212212131111352352352a a a a a a a a a a a a D ---=,则=1D ( ). (A )18 (B )18- (C )9- (D )27-9. 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a =( ). (A )8 (B )2 (C )0 (D )6- 10.若111111111111101-------=x A ,则A 中x 的一次项系数是 ( ).(A )1 (B )1- (C )4 (D )4-11.4阶行列式443322110000000a b a b b a b a 的值等于 ( ).(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a --(C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 12.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解是( ).(A )2221211a b a b x =,2211112b a b a x = (B )2221211a b a b x -=,2211112b a b a x = (C )2221211a b a b x ----=,2211112b a b a x ----= (D )2221211a b a b x ----=,2211112b a b a x -----=13. 方程0881441221111132=--x x x的根为 ( ). (A )3,2,1 (B )2,2,1- (C )2,1,0 (D )2,1,1-14. 已知a a a a a a a a a a =333231232221131211,那么=+++323133312221232112111311222a a a a a a a a a a a a ( ). (A )a (B )a - (C)a 2 (D )a 2-15. 已知齐次线性方程组⎪⎩⎪⎨⎧=+-=-+=++0030z y z y x z y x λλλ仅有零解,则 ( ).(A )0≠λ且1≠λ (B )0=λ或1=λ (C )0=λ (D )1=λ三、判断题。
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数练习题(行列式)A
一、填空题
1、-=--362
2
36623
2、
=00010020
03004000
3、_____________)631254
(=N 4、四阶行列式)det(ij a 的反对角线元素之积(即41322314a a a a )一项的符号为
5. 行列式2
430123
21---中元素0的代数余子式的值为_______
二、选择题 1、
=11
a a
( )
----+1111A a B a C a
D a
3、+=-010
111111a
a
( ) +++-11(1)(1)A a B a C a D a a
5、若≠314
001
0x
x x
,则=x ( )
≠≠≠≠≠≠020202且或A x x B x x C x D x
6、=111011011011
0111
( )
--2331A B C
D
7、=222
111
x
y z x y z ( ) ---+++++()()()()()()A y x z x z y B
xyz C y x z x z y D
x y z
三、设行列式 2
92170216
3332314----=D ,不计算ij A 而直接证明:
444342412A A A A =++
线性代数练习题(行列式)B
一、填空题
1、 设ij A 是n 阶行列式中元素ij a 的代数余子式,则
=∑1
n
ik
jk k a
A =
2、 设=3(1,2,3,4)i A i 是行列式12345678
2348
6789
中元素3i a 的代数余子式,
+++=132********A A A A
3、 各列元素之和为零的n 阶行列式之值等于
4、 设A 为m 阶方阵,B 为n 阶方阵,则
=00
A B
;
=00
A B
5、 设=(,1,2)ij A i j 为行列式=
21
31
D 中元素ij a 的代数余子式,则=1121
12
22A A A A 6、 方程
-+-=
----1321360
1
2
2
14
x x x x 的根为
7、 已知齐次线性方程组λ+-=⎧⎪
+-=⎨⎪-+=⎩1231231
232020340
x x x x x x x x x 有非零解,则λ=
8、 若11223344,,,a a a a 都不等于零,则方程组
+++=⎧⎪++=⎪
⎨
+=⎪⎪=⎩
1111221331441
22223324423333443
3444a x a x a x a x b a x a x a x b a x a x b a x b 有 解。
二、选择题 1、若
=111221220a a a a ,则方程组+=⎧⎨+=⎩111122
2112220
a x a x a x a x ( ) A 无解 B 有无穷多解 C 有唯一解 D 不一定
2、->11
01004a a a
的充分必要条件是( )
<>-><2222A a B a C a D a
3、λ
λ=-2
1
2
001
11
的充分必要条件是( ) λλλλλ==-===-2203,2A B C D
4、4阶行列式
1122334
4
000
0000
a b a b b a b a 的值等于( ) -+----1234123412341234
1212343423231414()()()()
A a a a a b b b b
B a a a a b b b b
C a a b b a a b b
D a a b b a a b b
5、若==≠11
121321
222331
32
33
0a a a D a a a M a a a ,而∆=11
1213
31
3233212223
222222a a a a a a a a a ,则∆=( )
--2244A M B M C M D M
6、如果304050x y z y z x y z λλ+-=⎧⎪
+=⎨⎪--=⎩
有非零解,则λ=( )
0113 A B C D
--
7、当k=()时,
20
20
kx z
ky z
kx y z
+=
⎧
⎪
++=
⎨
⎪-+=
⎩
只有零解
0122 A B C D
--三、计算题
1、101
011
111
110
a
b
c
d
--
---
-
2、
x a a a
b x a a
b b x a
b b b x
答案:A 一、1、343; 2、-4!
二、1、A ;3、B ;5、B ;6、C ;7、A B 一、1、0D i j
i j
=⎧⎨
≠⎩; 2、0;3、0;4、,(1)mn A B A B -,5、-1
6、3,2x =-;
7、令系数行列式等于零,为使第2,3列成比例,4λ=
8、因其行列式11120nn D a a a =≠ ,故有唯一解。
二、1、B ;2、D ;3、D ;4、D ;5、D ;6、C,D ;7、A,B,D 三、1、按行(列)展开,得4D a b d =++
2、将11a x =拆成()b x b +-,第一列其它的b 写成0b +,依第一列拆成两个行列式之和,可得递推公式1()()n n n b x a x b -∆=-+-∆,由此得[()()]/n n n a x b b x a a b ∆=---- 四、证明题
用行列式的性质证明
11122122111211
12
12111221222122
3
4
21
22
0000a a a a a a b b b b a a b b b b =
∙**** 其中(1,2,3,4)i i *=为任意数。