《常微分方程》第六章 非线性微分方程
- 格式:ppt
- 大小:333.00 KB
- 文档页数:18
常微分⽅程考研讲义第六章⾮线性微分⽅程和稳定性第六章⾮线性微分⽅程和稳定性[教学⽬标]1. 理解解的稳定性、零解稳定性及零解渐进稳定性的概念。
2. 掌握平⾯初等奇点的分类⽅法。
3. 了解拟线性近似决定微分⽅程组的稳定性及⽤李雅谱若夫第⼆⽅法判别稳定性的⽅法。
4. 了解周期解和极限环的概念。
[教学重难点] 奇点的分类与相应零解的稳定性。
[教学⽅法] 讲授,实践。
[教学内容] 解的稳定性定义,相平⾯、相轨线与相图;平⾯⾃治系统的性质,奇点的分类及相应零解的稳定性;拟线性近似,李雅谱若夫第⼆⽅法判别稳定性,周期解和极限环的概念。
[考核⽬标]1.奇点的分类及相应零解的稳定性。
2.李雅谱若夫第⼆⽅法判别稳定性。
3.会求周期解和极限环。
§1 相平⾯、相轨线与相图把xoy 平⾯称为平⾯⾃治系统==),(),(y x Q y y x P x(6.1)的相平⾯.把(6.1)式的解(),()x x t y y t ==在xoy 平⾯上的轨迹称为(6.1)式的轨线或相轨线. 轨线族在相平⾯上的图象称为(6.1)式的相图.注意:在上述概念中,总是假设(6.1)式中的函数(,),(,)P x y Q x y 在区域)(||,|:|+∞≤<(6.1)式的解(),()x x t y y t ==在相平⾯上的轨线,正是这个解在(,,)t x y 三维空间中的积分曲线在相平⾯上的投影.下⾯讨论⼆阶线性系统+=+=ya x a dtdx y a x a dtdx22211211 (6.2)奇点(0,0)附近轨线的分布:上述系统写成向量形式为⽅程组)0(det d d ≠=A AX Xt它存在线性变换TX X =~,可化成标准型X J X ~d ~d =t由A 的特征根的不同情况,⽅程的奇点可能出现四种类型:结点型,鞍点型,焦点型,中⼼型. 1.结点型如果在某奇点附近的轨线具有如图5-1的分布情形,我们就称这奇点为稳定结点.因此,当µ<λ<0时,原点O 是==y tyxt µλd d d dx(6.3) (5.4)式的稳定结点.图 6-1 图 6-2如果在某奇点附近的轨线具有如图5-2的分布情形,我们就称这奇点为不稳定结点.因此,当µ>λ>0时,原点O 是(5.4)的不稳定结点.如果在奇点附近的轨线具有如图5-3和图5-4的分布,就称这奇点为临界结点.图 6-3 图 6-4当λ<0时,轨线在t→+∞时趋近于原点. 这时,我们称奇点O为稳定的临界结点;当λ>0时,轨线的正向远离原点,我们称奇点O为不稳定的临界结点.如果在奇点附近轨线具有如图5-5及图5-6的分布,就称它是退化结点.当λ<0时,轨线在t→+∞时趋于奇点,称这奇点为稳定的退化结点;当λ>0时,轨线在t→+∞时远离奇点,称这奇点为不稳定的退化结点.图 6-5 图 6-62.鞍点型如果在某奇附近的轨线具有如图5-7或图5-8的分布情形,我们称这奇点为鞍点.因此,当µ,λ异号时,原点O是(5.25)的鞍点.图 6-7 图 6-83.焦点型如果在某奇附近的轨线具有如图5-9的分布情形,我们称原点O 是稳定焦点;⽽当α>0时,相点沿着轨线远离原点,这时,称原点是不稳定焦点 (见图5-10).图 6-9图 6-104.中⼼型如α=0,则轨线⽅程成为:C =ρ或 222C y x =+它是以坐标原点为中⼼的圆族.在奇点附近轨线具有这样的分布,称奇点为中⼼.图 6-11 图 6-12综上所述,⽅程组)0(det d d ≠=A AX Xt(6.4)经过线性变换TX X =~,可化成标准型X J X ~d ~d =t(6.5) 由A 的特征根的不同情况,⽅程的奇点可能出现四种类型:结点型,鞍点型,焦点型,中⼼型.当0det ≠A ,根据A 的特征根的不同情况可有如下的类型:同号——结点相异(⾮零)实根实根异号——鞍点临界结点重(⾮零)实根退化结点实部不为零——焦点复根因为A 的特征根完全由A 的系数确定,所以A 的系数可以确定出奇点的类型.§2李雅普诺夫稳定性1、稳定性定义李雅普诺夫稳定性概念如果对于任意给定的0>ε和0t ≥0都存在0),(0>=t εδδ,使得只要0x 满⾜δ<-10x x就有ε?<-),,(),,(1000x x x t t t t对⼀切0t t ≥成⽴,则称微分⽅程),(d d x xt f t= (6.6) 的解),,(10x x t t ?=是稳定的.否则是不稳定的.假设),,(10x x t t ?=是稳定的,⽽且存在)0(11δδδ≤<,使得只要0x 满⾜1δ<-10x x就有0)),,(),,((lim 1000=-∞→x x x t t t t t ?则称(6.6)的解),,(10x x t t ?=是渐近稳定的.注意:微分⽅程(6.6)式中的函数),(x t f 对nR D ?∈x 和(,)t ∈-∞+∞连续,对x 满⾜局部李普希兹条件.⼀般情况下,我们把解),,(10x x t t ?=的稳定性化成零解的稳定性问题进⾏讨论. 这样就有下⾯的关于零解0=x 稳定性的定义:定义1 若对任意0ε>和00t ≥,存在0),(0>=t εδδ,使当δ<0x 时有ε<),,(00x x t t对所有的0t t ≥成⽴,则称(6.6)的零解是稳定的.反之是不稳定的.定义2 若(6.6)的零解是稳定的,且存在10δ>, 使当1δ<0x 时有0),,(lim 00=∞→x x t t t则称(5.1)的零解是渐近稳定的. 2、李雅普诺夫第⼆⽅法定义3(李雅普诺夫函数)若函数R G →:)(x V满⾜V (0)=0, )(x V 和),,2,1(n i x i=??V都连续,且若存在0)0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正⼜不是常负的函数称为变号的.定理1(零解稳定判别定理)对系统n R x x F tx∈=),(d d (6.7)若在区域D 上存在李雅普诺夫函数V (x )满⾜(1) 正定;(2)∑=??=ni i iF x Vt1)2.5()(d d x V 常负. 则(6.7)的零解是稳定的.注意:(6.7)式中T n x F x F x F ))(,),(()(1 =在{}K G ≤∈=x R x n |上连续,满⾜局部李普希兹条件,且(0)0F =.引理若V (x )是正定(或负定)的李雅诺夫函数,且对连续有界函数()x t 有0))((lim =∞→t t x V则.0)(lim =∞→t x t定理2(零解渐近稳定判别定理)对系统(5.2),若在区域D 上存在李雅普诺夫函数V (x )满⾜(1) 正定,(2)(6.7)1d ()d ni i iVtx =?=?∑V F x 负定,则(6.7)的零解渐近稳定.定理3(零解不稳定判别定理)对系统(5.11)若存在李雅普诺夫函数V (x )满⾜(1)∑=??=ni i ix F x Vdtd 1)2.5()(V 正定,(2)V (x )不是常负函数,则系统(6.7)的零解是不稳定的.。
第六章 非线性微分方程教学目的:使学生重点掌握二维自治系统奇点的分类及其附近的轨线分布;理解稳定性概念及其判定定理,会应用稳定性概念、线性化系统的特征值、Liapunov 第二方法讨论自治系统的解的稳定性;了解周期解和极限环的概念.教学内容:1、存在唯一性定理、稳定性2、相平面相平面、奇点分类、按线性近似决定微分方程组的稳定性. 3、Liapunov 第二方法 Liapunov 第二方法. 4、极限圈 周期解、极限环.教学重难点:奇点的分类与相应零解的稳定性 教学过程:§6.1 稳定性6.1.1 常微分方程组的存在唯一性定理本章讨论非线性常微分方程组n R Y Y t G dtdY∈=),;( (6.1)的解的性态.设给定方程组(6.1)的初值条件为00)(Y t Y =, (6.2) 考虑包含点),,,;(),(02010000n y y y t Y t Λ=的某区域 b Y Y a t t R ≤-≤-00,:. 在这里Y 的范数Y 定义为∑==ni iyY 12. 所谓),(Y t G 在域G 上关于Y 满足局部利普希茨条件是指:对于G 内任一点),(00Y t ,存在闭邻域G R ⊂,而),(Y t G 于R 上关于Y 满足利普希茨条件,即存在常数0>L ,使得不等式Y Y L Y t G Y t G -≤-~);()~;( (6.3) 对所有R Y t Y t ∈),(),~,(成立. L 称为利普希茨常数.存在唯一性定理 如果向量函数),(Y t G 在域R 上连续,且关于Y 满足利普希茨条件,则方程组(6.1)存在唯一解),;(00Y t t Y ϕ=,它在区间h t t ≤-0上连续,而且0000),;(Y Y t t =ϕ 这里);(max ),,min(),(Y t G M Mba h G Y t ∈==.解的延拓与连续定理 如果向量函数),(Y t G 在域G 内连续,且关于Y 满足局部利普希茨条件,则方程组(6.1)的满足初值条件(6.2)的解),;(00Y t t Y ϕ=)),((00G Y t ∈可以延拓,或者延拓到∞+(或∞-);或者使点)),;(,(00Y t t t ϕ任意接近区域G 的边界. 而解),;(00Y t t ϕ作为00,;Y t t 的函数在它的存在范围内是连续的.可微性定理 如果向量函数),(Y t G 及),,2,1,(n j i y G jiΛ∂∂在域G 内连续,那么方程组(6.1)由初值条件(6.2)确定的解),;(00Y t t Y ϕ=作为00,;Y t t 的函数,在它的存在范围内是连续可微的.6.1.2 李雅普诺夫稳定性考虑一阶非线性方程2By Ay dtdy-= (6.4)其中B A ,为常数且0>⋅B A ,初值条件为0)0(y y =.为研究方程组(6.1)的特解)(t Y ϕ=邻近的解的性态,通常先利用变换)(t Y X ϕ-= (6.6) 把方程组(6.1)化为);(X t F dtdX=, (6.7)其中))(;())(;()();();(t t G t X t G dtt d Y t G X t F ϕϕϕ-+=-=. 此时显然有 0)0;(=t F (6.8) 而把方程组(6.1)的特解)(t Y ϕ=变为方程组(6.7)的零解0=X . 于是,问题就化为讨论方程组(6.7)的零解0=X 邻近的解的性态.驻定微分方程常用的特解是常数解,即方程右端函数等于零时的解,如方程(6.4)的特解)(),(21t y t y . 微分方程的常数解,又称为驻定解或平衡解.考虑微分方程组(6.7),假设其右端函数),(X t F 满足条件(6.8)且在包含原点的域G 内有连续的偏导数,从而满足解的存在唯一性、延拓、连续性和可微性定理的条件.定义1 如果对任意给定的0>ε,存在)(00有关和一般与t εδδ>,使当任一0X 满足δ≤0X 时,方程组(6.7)的由初值条件00)(X t X =确定的解)(t X ,对一切0t t ≥均有ε<)(t X .则称方程组(6.7)的零解0=X 为稳定的.如果(6.7)的零解0=X 稳定,且存在这样的00>δ使当00δ≤X 时,满足初值条件00)(X t X =的解)(t X 均有0)(lim =+∞→t X t ,则称方程组(6.7)的零解0=X 为渐近稳定的.如果零解0=X 渐近稳定,且存在域0D ,当且仅当00D X ∈时满足初值条件00)(X t X =的解)(t X 均有0)(lim =+∞→t X t ,则域0D 称为(渐近)稳定或吸引域. 若稳定域为全空间,即+∞=0δ,则称零解0=X 为全局渐近稳定的或简称全局稳定的.当零解0=X 不是稳定时,称它是不稳定的. 即是说:如果对某个给定的0>ε不管0>δ怎样小,总有一个0X 满足δ≤0X ,使由初值条件00)(X t X =所确定的解)(t X ,至少存在某个01t t >使得ε=)(1t X ,则称方程组(6.7)的零解0=X 为不稳定的.二维情形零解的稳定性态,在平面上的示意图如图(6.2)(见254页)6.1.3 按线性近似决定稳定性 考虑一阶常系数线性微分方程组AX dtdX= (6.10) 由第五章5.3的(5.52)式可知,它的任一解均可由n i e t cii lm t m im≤≤∑=1,0λ (6.11)的线性组合,这里i λ为方程组(6.10)的系数矩阵A 的特征方程0)det(=-E A λ (6.12) 的根,i l 为零或正整数,由根i λ的重数决定.根据(6.11),与第五章相对应的可得如下结论.定理1 若特征方程(6.12)的根均具有负实部,则方程组(6.10)的零解是渐近稳定的;若特征方程(6.12)具有正实部的根,则方程组(6.10)的零解是不稳定的;若特征方程(6.12)没有正实部的根,但有零根或具有零实部的根,则方程组(6.10)的零解可能是稳定的也可能是不稳定的,这要看零根或具有零实部的根其重数是否等于1而定.考虑非线性方程组)(X R AX dtdX+=, (6.13)其中0)0(=R ,且满足条件0)(→XX R (当0→X 时). (6.14)显然0=X 是方程组(6.13)的解. 亦是方程组的奇点.问题 在什么条件下,(6.13)的零解稳定性能由线性微分方程组(6.10)的零解的稳定性来决定. 这便是所谓按线性近似决定稳定性的问题.定理2 若特征方程(6.12)没有零根或零实部的根,则非线性微分方程组(6.13)的零解的稳定性态与其线性近似的方程组(6.10)的零解的稳定性态一致. 这就是说,当特征方程(6.12)的根均具有负实部时,方程组(6.13)的零解是渐近稳定的,而当特征方程(6.12)具有正实部的根时,其零解是不稳定的.(6.2中再补充证明)该定理说明非线性微分方程组(6.13)的零解是否为渐近稳定的取决于其相应的特征方程(6.12)的全部的根是否具有负实部.临界情形至于特征方程(6.12)除有负实部的根外还有零根或具零实部的根的情形,非线性微分方程组(6.13)的零解的稳定性态并不能由线性近似方程组(6.10)来决定. 因为可以找到这样的例子,适当变动)(t R (条件(6.14)仍满足),便可使非线性微分方程组(6.13)的零解是稳定的或是不稳定的.例1 考虑有阻力的数学摆的振动,其微分方程为0sin 22=++ϕϕμϕl gdt d m dtd , (6.15) 这里长度l ,质量m 和重力加速度g 均大于0,并设阻力系数0>μ. 令dtd y x ϕϕ==,,将方程(6.15)化为一阶微分方程组x lg y m dt dy y dt dx sin ,--==μ (6.16) 原点是方程组的零解.赫尔维茨(Hurwitz )判别代数方程的根的实部是否均为负的法则. 定理3 设给定常系数的n 次代数方程0122110=+++++---n n n n n a a a a a λλλλΛ, (6.18)其中00>a ,作行列式,,0,,345123013231211Λa a a a a a a a a a a a a =∆=∆=∆ ,000142322212012301-----∆==∆n n nn n n n n a a a a a a a a a a a a ΛM MM M M ΛΛ 其中0=i a (对一切n i >).那么,方程(6.18)的一切根均有负实部的充分必要条件是下列不等式同时成立: 0,0,,0,0,01321>>∆>∆>∆>-n n a a Λ. 证明见高等代数的课本,略.例2 考虑一阶非线性微分方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧+--+=++-=+-+-=),(,,222232z y e z y x dtdz z y x y x dtdy e x z y x dt dx x x 例3 对三次方程0)1(2)()1(23=-++++++c ab c a b b a λλλ,其中0,0,0>>>c b a ,考虑其根均具有负实部时参数c 的变化范围.习题6.1 第260页1(1),(3);3(1),(3);4(1),(3);5§6.2 V 函数方法6.2.1 李雅普诺夫定理对于数学摆的振动,当摆有阻力时可由其线性近似方程组决定它的稳定性. 但当摆无阻力时,方程组(6.16)变成x lg dt dy y dt dx sin ,-== (6.19) 属于临界情形,不能按线性近似决定其稳定性. 为判断其零解的稳定性态. 直接对方程组(6.19)进行处理. 李雅普诺夫第二方法的思想:构造一个特殊的函数),(y x V ,并利用函数),(y x V 及其通过方程组的全导数dty x dV ),(的性质来确定方程组解的稳定性. 具有此特殊性质的函数),(y x V 称为李雅普诺夫函数,简称V 函数.如何应用V 函数来确定非线性微分方程组的解稳定性态问题. 只考虑非线性驻定微分方程组)(X F dtdX= (6.20)定义2 假设)(X V 为在域H X ≤内定义的一个实连续函数,0)0(=V . 如果在此域内恒有0)(≥X V ,则称函数V 为常正的;如果对一切0≠X 都有0)(>X V ,则称函数V 为定正的;如果函数V -是定正的(或常正的),则称函数V 为定负(或常负)的.进而假设函数)(X V 关于所有变元的偏导数存在且连续,以方程(6.20)的解代入,然后对求t 导数i ni ii n i i f x Vdt dx x V dt dV ∑∑==∂∂=∂∂=11, 这样求得的导数dtdV称为函数V 通过方程(6.20)的全导数. 例1函数 2)(),(y x y x V +=是常正的;而函数42)(),(y y x y x V ++=是定正的;定理4 如果对微分方程组(6.20)可以找到一个定正函数)(X V ,其通过(6.20)的全导数dtdV为常负函数或恒等于零,则方程组(6.20)的零解是稳定的. 如果有定正函数)(X V ,其通过(6.20)的全导数dtdV为定负的,则方程组(6.20)的零解是渐近稳定的.如果存在函数)(X V 和某非负常数μ,而通过(6.20)的全导数dtdV可以表示为)(X W V dtdV+=μ, 且当0=μ时,W 为定正函数,而当0≠μ时W 为常正函数或恒等于零;又在0=X 的任意小邻域内都至少存在某个X ,使0)(>X V ,那么,方程组(6.20)的零解是不稳定的. 证明详见第265页.几何解释 由未知函数组成的空间称为相空间,二维相空间又称为相平面,微分方程的解在相空间中的轨迹称为轨线,轨线亦可定义为积分曲线在相空间中的投影.以平面微分方程组为例,从相平面上轨线与V 函数的关系来说明稳定性定理的几何意义.例2 考虑平面微分方程组33,ay x dtdyax y dtdx+=+-=, (6.26)定理4是李雅普诺夫稳定性的基本定理,对含有时间t 的非驻定的微分方程组及含有时间t 的V 函数),(X t V 也有相应的定理,其证明也一样.定理5 如果存在定正函数)(X V ,其通过方程组(6.20)的全导数dtdV为常负,但使 0)(=dtt dV 的点X 的集中除零解0=X 之外并不包含方程组(6.20)的整条正半轨线,则方程组(6.20)的零解是渐近稳定的. 定理5的证明与定理4的类似.例3 数学摆的稳定性问题 6.2.2 二次型V 函数的构造应用李雅普诺夫第二方法判断微分方程组零解的稳定性的关键是找到合适的V 函数. 如何构造满足特定性质的V 函数是一个有趣而复杂的问题. 这里考虑常系数线性微分方程组构造二次型V 函数的问题,并利用它来补充证明按线性近似决定稳定性的定理2定理6 如果一阶线性方程组AX dtdX= (6.10)的特征根i λ均不满足关系),,2,1,(0n j i j i Λ==+λλ,则对任何负定(或正定)的对称矩阵C ,均有唯一的二次型 )()(B B BXX X V T T== (6.27)使其通过方程组(6.10)的全导数有)(C C CX X dtdVT T ==. (6.28)且对称矩阵B 满足关系式C BA B A T=+, (6.29) 这里TA ,TB ,TC TX 分别表示X C B A ,,,的转置.如果方程组(6.10)的特征根均具有负实部,则二次型(6.27)是定正(或定负)的;如果方程组(6.10)有均正实部的特征根,则二次型(6.27)不是常正(或常负)的.例4 考虑二阶线性微分方程02322=++x dt dxdtx d , 经过变换y dtdx= 习题6.2 1(1),(3),(5);2(1),(3);3(1),(3),(5);4;5§6.3 奇点考虑二维(平面)一阶驻定微分方程组⎪⎩⎪⎨⎧==),,(),,(y x Y dtdy y x X dt dx(6.33)同时满足0),(,0),(==y x Y y x X 的点),(**y x 是微分方程组(6.33)的奇点,*=x x ,*=y y 是方程的解. 可从通过坐标平移将奇点移到原点)0,0(,此时0)0,0()0,0(==Y X .考虑驻定微分方程组是线性的情形下其轨线在相平面上的性态,并根据奇点邻域内轨线分布的不同性态来区分奇点的不同类型. 这时方程的形式为⎪⎩⎪⎨⎧+=+=.,dy cx dtdyby ax dt dx(6.36)显然,坐标原点0,0==y x 是奇点. 如果方程组的系数满足条件0≠dc b a (6.37)则此奇点还是唯一的. 以下假定条件(6.37)成立.按特征根为相异实根、重根或共轭复根,分五种情形进行讨论. 情形1 同号相异实根 这时方程的标准形式为ηληξλξ21,==dtd dt d ,(6.40) 其解为t tBe t Aet 21)(,)(λληξ==, (6.41)其中21,λλ为实特征根,而B A ,是任意实数.21,λλ同为负实数时,方程的零解是渐近稳定的,称对应的奇点为稳定结点. 21,λλ同为正实数时,方程的零解为不稳定的,而对应的奇点称为不稳定结点.情形2 异号实根, 奇点称为鞍点.鞍点是不稳定的. 情形3 重根 这时可分两种情况讨论:(1)0≠b 或0≠c . 如前面所指出的,这时方程可化为如下标准形式ληηηλξξ=+=dtd dt d ,, (6.42) 其解为t tAe t eB At t λληξ=+=)(,)()(, (6.43)其中λ为实特征根,而B A ,是任意实常数.当0<λ时,奇点称为稳定退化结点. 假如0>λ,奇点是不稳定退化结点.(2)0==c b ,这时方程组(6.36)取形式 d a y dtdy x dt dx ====λλλ,,, 其解为t tBe t y Ae t x λλ==)(,)(,于是 x ABy =. 奇点称为奇结点,且0<λ时为稳定的,而0>λ时为不稳定的.情形4 非零实部复根 这时方程的标准形式为αηβξηβηαξξ+-=+=dtd dt d ,,(6.44) 这里βα,分别为特征根的实部和虚部. 方程(6.44)的解的极坐标形式B t Ae r t +-==βθα,, (6.45) 其中0>A 和B 为任意常数.奇点为焦点,且0<α时为稳定的,而0>α时为不稳定的. 情形5 纯虚根奇点称为中心. 零解为稳定,但非渐近稳定的. 定理7 如果平面线性驻定方程组(6.36)的系数满足条件(6.37),则方程的零解(奇点)将依特征方程(6.39)的根的性质而分别具有如下的不同特性:(1)如果特征方程的根21λλ≠为实根,而021>λλ时奇点为结点,且当01<λ时结点是稳定的,而对应的零解为渐近稳定的,但当01>λ时奇点和对应的零解均为不稳定的;当021<λλ时奇点为鞍点,零解为不稳定的.(2)如果特征方程具有重根λ,则奇点通常为退化结点,但在0==c b 的情形奇点为奇结点. 又当0<λ时,这两类结点均为稳定的,而零解为渐近稳定的,但当0>λ时奇点和对应的零解均为不稳定的.(3)如果特征方程的根为共轭复根,即21λλ=,则当0Re 1≠λ时奇点为焦点,且当0Re 1<λ时焦点为稳定的,对应的零解为渐近稳定的,而当0Re 1>λ时奇点和对应的零解均为不稳定的;当0Re 1=λ时奇点为中心,零解为稳定但非渐近稳定的.程(6.36)的奇点)0,0(O ,当0det ≠A 时,根据A 的特征根的不同情况可有如下的类型:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧中心—实部为零焦点—实部不为零复根退化结点临界结点重(非零)实根鞍点—异号结点—同号相异(非零)实根实根 A 的系数与奇点分类的关系1)042>-q p○1 0>q奇点为结点二根同负二根同正--⎭⎬⎫><00p p○2 奇点为鞍点二根异号--<0q 2)042=-q p结点奇点为临界结点或退化负的重根正的重根--⎭⎬⎫><00p p 3)042<-q p0≠p 复数根的实部不为零,奇点为焦点 0=p 复数根的实部为零,奇点为中心.综合上面的结论,由曲线q p 42=,q 轴及p 轴把q p 0平面分成几个区域,不同的区域,对应着不同类型的奇点(见288页(图6.10)).例1 考虑二阶线性微分方程02322=++x dt dxdtx d , 通过变换y dt dx=可将它化为下列方程组 ⎪⎩⎪⎨⎧--==,32,y x dtdyy dt dx习题6.3 1;2;3.§6.4 极限环和平面图貌6.4.1 极限环对于二阶常系数微分方程组,除了在中心型奇点邻域内轨线是一族围绕原点的闭曲线(对应于方程组的周期解)外;其余的情形均是一端趋于奇点(+∞→t 或-∞→t ),另一端趋于无穷远(-∞→t 或+∞→t )或两端都趋于无穷远的轨线,不存在其他的复杂情形. 对于非线性微分方程组,在6.1中利用线性近似方程组讨论了奇点邻域的轨线性态,至于全相平面的轨线图貌,情况就复杂多了.例1 对平面二阶非线性驻定方程组⎪⎩⎪⎨⎧+-+-=+-+=)(),(2222y x y y x dtdy y x x y x dt dx (6.47) 如取极坐标θcos r x =,θsin r y =,则方程组(6.47)可化为)1(2r r dt dr -=,1-=dtd θ, 孤立的周期解(闭轨线),在相平面上称为极限环. 当极限环附近的轨线均正向(即+∞→t 时)趋近于它时,称此极限环为稳定的. 如果轨线是负方向(即-∞→t 时)趋近于它时,称此极限环为不稳定的. 当此极限环的一侧轨线正向趋近于它时,称此极限环为半稳定的.不先求出特解(如上例的1=r ),而仅仅由构造出的环域D 便可以证明在此环域内必存在极限环. 这种构造特殊环域来寻求极限环的方法称为本迪克松(Bendixson )方法. 定理8 如果G 内存在有界的环形闭域D ,在其内不含有方程组(6.33)的奇点,而(6.33)的经过域D 上点的解)(),(t y y t x x ==,当0t t ≥(或0t t ≤)时不离开该域,则或者其本身是一个周期解(闭轨线),或者它按正向(或负向)趋近于D 内的某一周期解(闭轨线).通过构造有特殊性质的域D 可以确定周期解(极限环)的存在性,能否通过构造具有别的性质的域*D 来否定周期解(极限环)的存在呢?定理9 如果于G 内存在单连通域*D ,在其内函数yY x X ∂∂+∂∂不变号且在*D 内的任何子域上不恒等于零,则方程组(6.33)在域*D 内不存在任何周期解,更不存在任何极限环.例2 考虑6.1例1的数学摆,范德波尔微分方程 0)1(222=+-+x dt dx x dtx d μ, (6.49) 考虑所谓的李纳(Lienard )微分方程0)()(22=++x g dt dx x f dt x d , (6.50)如果记⎰=x dx x f x F 0)()(,并设)(x F dt dx y +=,则方程(6.50)可化为平面微分方程组 )(),(x g dtdy x F y dt dx -=-=. (6.51) 对于方程(6.50)或方程组(6.51),有下面的定理.定理10 假设(1))(x f 及)(x g 对一切x 连续,)(x g 满足局部利普希茨条件;(2))(x f 为偶函数,)(,0)0(x g f <为奇函数,当0≠x 时0)(>x xg ;(3)当±∞→x 时,)(;)(x F x F ±∞→有唯一正零点a x =,且对)(,x F a x ≥是单调增加的.那么,方程(6.50)有唯一周期解,即方程组(6.51)有一个稳定的极限环6.4.2 平面图貌奇点和极限环是相平面上两种特殊的轨线,希望在相平面上画出一般的轨线的图貌,以了解微分方程的解的性态.定理11 两种群竞争一般模型(6.53)的每一条轨线,当∞→t 时都趋于有限个平衡点之一.定理12 平面驻定微分方程(6.33)在平面有界区域上结构稳定的充要条件是(1) 只有有限个奇点,且均为双曲的;(2) 只有有限个闭轨,且均为单重极限环;(3) 没有鞍点之间的分界线.习题6.4 第307页 1(1),(3);2(1),(3).。
2015年度本科生毕业论文(设计)常微分方程中几种非线性方程的解法教学系:数学学院专业:数学与应用数学年级:2011级姓名:杨艺芳学号:20110701011053导师及职称:刘常福教授2015年5月毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经撰写或发表过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解文山学院有关保留、使用学生毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:杨艺芳毕业论文(设计)答辩委员会(答辩小组)成员名单姓名职称单位备注主任(组长)摘要非线性常微分方程是常微分方程中重要的一部分,源于应用数学、物理学、化学等许多科学领域,高阶微分方程比二阶微分方程研究要困难得多,并且研究还不成熟。
鉴于非线性微分方程在理论上和实践上的重要意义。
本文将采用列举法,对非线性常微分方程的一些解题方法进行分析。
如“利用初等积分法与引入变量法”、“首次积分法”“常数变易法”、“化为线性微分方程求解法”等方法。
在说明这些方法的同时,说明这些方法的特点以及解题思路,随之附上应用对应方法的例题,在例题的基础上理解方法的精髓。
这种对非线性方程地学习,对未来研究非线性方程地解法具有一定的参考价值。
关键词:常微分方程;非线性常微分方程;通解英文目录一、引言 (1)二、线性微分方程与非线性微分方程的区别 (1)2.1线性微分方程 (1)2.2非线性微分方程 (1)三、非线性微分方程的解法 (2)3.1利用初等积分与引入新变量法 (2)3.1.1形如()(),0n F x y =型的方程分的两种情形............................23.1.2形如()()',,...,0n F y y y =型的方程. (3)3.1.3形如()()',,...,0n F x y y =型的方程........................................43.2首次积分法 (4)3.3常数变易法 (5)3.3.1引用定理3.1 (5)3.3.2形如dy y y g dx x x ⎛⎫=+ ⎪⎝⎭型的方程............................................63.3.3形如()()'y y P x e Q x +=型的方程 (6)3.3.4形如'x y xy y+=型的方程..................................................73.4可化为线性方程法 (7)3.4.1通过变换方程化为线性方程的方程 (7)3.4.2通过求导运算化为线性的方程 (8)3.4.3伯努利方程 (8)3.4.4黎卡提方程 (8)3.4.5二阶非线性方程()''',,,0F x y y y =或()''',,y f x y y =型 (9)四、结束语.....................................................................................10参考文献........................................................................................10致谢. (11)1一、引言在学习了常微分方程的基础上,我们接触了非线性常微分方程,非线性微分方程对于当代大学生来说,是一个难点。
第六章 常微分方程一 基本概念定义1 微分方程: 含有自变量、未知函数及未知函数导数或微分的方程称为微分方程. 定义2 常微分方程:未知函数是一元函数的微分方程称为常微分方程. 一般形式:()(,,,,)0n F x y y y '= ;标准形式:()(1)(,,,,)n n y f x y y y -'= 定义3 方程的阶: 微分方程中的导数或微分的最高阶称为方程的阶。
定义4 方程的解 函数()y f x =满足微分方程()(,,,,)0n F x y y y '= ,则称()y f x =是微分方程()(,,,,)0n F x y y y '= 的解.方程解分为显示解和隐示解.定义5 通解: 含有任意常数,任意常数的个数与方程的阶数相同的解称为方程的通解. 定义6 特解:满足某个初始条件的解称为方程的特解.二 基本方法1.变量可分离的方程 (1)d ()()d y p x q y x=,分离变量;则有d ()d ()y p x x q y =,两边积分d ()d ()y p x x q y =⎰⎰.(2)1212()()d ()()d 0M x M y x N x N y y +=, 分离变量;则有 2121()()d d ()()N y M x y x M y N x =-,两边积分2121()()d d ()()N y M x y x M y N x =-⎰⎰2.齐次方程d d y y x x ϕ⎛⎫= ⎪⎝⎭ 基本解法:令y u x =,则y ux =,两边对变量x 求导,d d d d y ux u x x=+,于是有 d ()d uu x u xϕ=+,从而化为变量分离方程为d d ()ux u uxϕ=-.3.一阶线性非齐次方程 ()()y p x y q x '+=公式解:()d ()d e [()e d ]p x x p x xy q x x C -⎰⎰=+⎰4.伯努利方程 ()()ny p x y q x y '+=, 基本解法:令1nz y-=,则有(1)()(1)()z n p x z n q x '+-=-,从而方程化为一阶线性非齐次方程,所以该方程解为(1)()d (1)()d 1e [(1)()e d ]n p x x n p x xnyn q x x C ----⎰⎰=-+⎰5.全微分方程若方程(,)d (,)d 0M x y x N x y y +=满足M N yx∂∂=∂∂,则称该方程为全微分方程.解法1 特殊路径积分解法0(,)d (,)d x y x y M x y x N x y y C +=⎰⎰其中点00(,)x y 一般可以任意选取,只要有利于积分,通常情况下,选取00(,)x y 为(0,0).解法2 凑微分(分组凑微分)(,)d (,)d d (,)M x y x N x y y u x y +=则方程的通解是(,)u x y C =.注1 凑微分方法对某些全微分方程是非常好用的,但对一些方程是不适用的。
《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。
面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。
二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。
(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。
本章教学重点解释常微分方程解的几何意义。
(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。
2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。
3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。
4.常微分方程所讨论的基本问题。
第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。
本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。
并通过习题课进行初步解题训练,提高解题技巧。
(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。
非线性常微分方程
非线性方程组,就是因变量与自变量之间的关系不是线性的关系,这类方程很多,例如平方关系、对数关系、指数关系、三角函数关系等等。
求解此类方程往往很难得到精确解,经常需要求近似解问题。
相应的求近似解的方法也逐渐得到大家的重视。
若描述一个系统的微分方程是非线性的,则称此系统为非线性系统。
含有非线性微分方程的问题,系统彼此间的表现差异极大,而每个问题的解法或是分析方法也都不一样。
非线性微分方程的例子如流体力学的纳维-斯托克斯方程,以及生物学的洛特卡-沃尔泰拉方程。
求解非线性问题最小的难处是找到未明的求解:我们无法用未知的MCMC拼凑出其他满足用户微分方程的未明求解;而在线性的系统里,却可以利用一组线性单一制的求解,借由共振原理女团出来此系统的吉龙德。
比如满足用户狄利克雷边界条件的一维热传导问题,其求解(时间的函数)可以译成许多相同频率之正弦函数的线性组合,而这也使它的求解很弹性、具备非常大的变化空间。
通常我们可以找出非线性微分方程的直和,但由于此时共振原理并不适用于,故无法利用这些直和去建构出来其他代莱求解。
国家开放大学电大本科《常微分方程》网络课形考任务1-6试题及答案国家开放大学电大本科《常微分方程》网络课形考任务1-6试题及答案100%通过考试说明:2022年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有6个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩=形成性考核某50%+终结性考试某50%形考任务1题目1本课程的教学内容共有五章,其中第三章的名称是().选择一项: A.一阶线性微分方程组B.定性和稳定性理论简介C.初等积分法D.基本定理题目2本课程安排了6次形成性考核任务,第2次形成性考核作业的名称是().选择一项: A.第一章至第四章的单项选择题B.第二章基本定理的形成性考核书面作业C.初等积分法中的方程可积类型的判断D.第一章初等积分法的形成性考核书面作业题目3网络课程主页的左侧第3个栏目名称是:().选择一项: A.课程公告B.自主学习C.课程信息D.系统学习题目4网络课程的“系统学习”栏目中第一章初等积分法的第4个知识点的名称是().选择一项: A.一阶隐式微分方程B.分离变量法C.全微分方程与积分因子D.常数变易法题目5网络课程的“视频课堂”栏目中老师讲课的电视课共有()讲.选择一项: A.18B.20C.19D.17题目6网络课程主页的左侧“考试复习”版块中第二个栏目名称是:().选择一项: A.考核说明B.复习指导C.模拟测试D.各章练习汇总题目7请您按照课程的学习目标、学习要求和学习方法设计自己的学习计划,并在下列文本框中提交,字数要求在100—1000字.答:常微分方程是研究自然现象,物理工程和工程技术的强有力工具,熟练掌握常微分方程的一些基本解法是学习常微分方程的主要任务,凡包含自变量,未知函数和未知函数的导数的方程叫做微分方程。
《常微分方程》课程教学标准第一部分:课程性质、课程目标与要求《常微分方程》课程,是我院数学与应用数学、信息与计算科学本科专业的必修课程,是系统地培养数学及其应用人才的重要的基础课程之一。
本课程的口的是利用微积分的思想,结合线性代数,解析儿何和普通物理学的知识,来解决数学理论本身和其它学科中出现的若干最重要也是最基本的微分方程问题,使学生学会和掌握常微分方程的基础理论和方法,为他们学习其它数学理论,如数理方程、微分儿何、泛函分析等后续课程打下基础;同时,通过这门课本身的学习和训练,使学生们学习数学建模的一些基本方法,初步了解当今自然科学和社会科学中的一些非线性问题,为将来从事相关领域的科学研究和教学工作培养兴趣, 做好准备。
教学时间应安排在第四学期或第三学期。
这时,学生已学完线性代数,基本学完数学分析和普通物理中的力学部分,这是学习《常微分方程》课程必要的基础知识。
同时,建议在条件允许的情况下,介绍利用常用的数学软件解决微分方程问题的基本方法和技能,使学生初步体会计算机在解决数学及其应用问题的重要作用,增强使用数学方法和计算机解决问题的意识和能力。
第二部分:教材与学习参考书本课程拟采用山中山大学王高雄周之铭朱思铭王寿松等人编写的、高等教育出版社1993年岀版的《常微分方程》笫二版一书,作为本课程的主教材。
为了更好地理解和学习课程内容,建议学习者可以进一步阅读以下儿本重要的参考书:1、常微分方程讲义,王柔怀、伍卓群,高等教育出版社,19632、常微分方程讲义(第二版),叶彦谦,人民教育出版社,19823、常微分方程讲义,周钦德、李勇,吉林大学出版社,1995第三部分:教学内容纲要和课时安排第一章绪论主要介绍如何根据科学定律和原理,并利用微积分的思想,解决实际问题所导岀的若干常微分方程实例,如物体冷却过程、R-L-C电路、单摆等问题微分方程模型的建立。
同时介绍常微分方程的若干最基本的概念。
通过这一章的学习,学习者要理解常微分方程的若干基本概念,特别要对“积分曲线”、“等斜线”、“方向场”等与儿何意义有关的概念的理解,为进一步学习后续内容打好基础;初步掌握建立常微分方程模型的一般方法。