小波变换与小波框架
- 格式:doc
- 大小:13.30 KB
- 文档页数:3
Matlab中的小波变换与小波包分析方法详解引言近年来,小波变换在信号处理领域中得到了广泛的应用。
小波变换是一种能够捕捉信号时频特性的有效工具,可以用来分析、压缩和去噪各种类型的信号。
本文将详细介绍Matlab中的小波变换和小波包分析方法,以帮助读者更好地理解和应用这一强大的信号处理技术。
一、小波变换(Wavelet Transform)小波变换是一种将信号分解成不同尺度的基函数的技术。
与传统的傅里叶变换相比,小波变换具有更好的时频局部化特性。
Matlab中提供了丰富的小波分析工具箱,可以方便地进行小波变换的计算。
1.1 小波基函数小波基函数是小波变换的基础。
不同类型的小波基函数适用于不同类型的信号。
在Matlab中,我们可以使用多种小波基函数,如Daubechies小波、Haar小波和Morlet小波等。
1.2 小波分解小波分解是指将信号分解成多个尺度的小波系数。
通过小波分解,我们可以获取信号在不同尺度上的时频特性。
Matlab中提供了方便的小波分解函数,例如'dwt'和'wavedec'。
1.3 小波重构小波重构是指根据小波系数重新构建原始信号。
通过小波重构,我们可以恢复原始信号的时域特性。
在Matlab中,可以使用'idwt'和'waverec'函数进行小波重构。
二、小波包分析(Wavelet Packet Analysis)小波包分析是对小波变换的进一步扩展,它允许对信号进行更精细的分解和重构。
小波包分析提供了一种更灵活的信号分析方法,能够获得更详细的时频特性。
2.1 小波包分解小波包分解是指将信号分解成具有不同频带的小波包系数。
与小波分解相比,小波包分解提供了更高的分辨率和更详细的频谱信息。
在Matlab中,可以使用'wavedec'函数进行小波包分解。
2.2 小波包重构小波包重构是根据小波包系数重新构建原始信号。
小波分析理论及其应用胡安兴(武汉工业学院土木工程与建筑学院,交通091,学号090606119)摘要:小波分析的理论与方法是从Fourier分析的思想方法演变而来的。
就象Fourier 分析分为积分Fourier变换和Fourier级数一样,小波分析也分为(积分)小波变换和小波级数两部分,(积分)小波变换的主体是连续小波变换,多尺度小波变换和s-进小波变换;而小波级数的主体部分是关于小波框架的理论。
小波分析理论深刻,应用广泛,并且仍在迅速发展之中。
本文介绍了小波变换的来源及其发展,以及多分辨率分析的问题,小波分析在图像处理中有非常重要的应用。
关键词:小波分析;多分辨率;图像去噪The wavelet analysis theory and its applicationsHU An-xing(Wuhan institute of industrial, civil engineering and architecture institute, traffic civil 091 Student number: 090606119)Abstract:Wavelet analysis theory and method has evolved from the thinking method of Fourier analysis. As Fourier transform and Fourier series is divided into integral Fourier analysis, wavelet analysis is divided into (integral) two parts, the wavelet transform and wavelet series (integral) the body of the wavelet transform is a continuous wavelet transform and multi-scale wavelet transform and s - into the wavelet transform; And the main body of the wavelet series is about wavelet frame theory. Wavelet analysis theory, applications, and are still in rapid development. This paper introduces the source and development of wavelet transform, and multiresolution analysis, wavelet analysis has very important applications in image processing.Key words: Wavelet analysis; multi- resolution ratio; Image denoising1 引言1.1 问题的提出Fourier变换只能告诉我们信号尺度的范围,而无法给出信号的结构以及它蕴含的大小不同尺度的串级过程,即Fourier变换在时空域中没有任何分辨率。
小波包变换和小波变换小波包变换和小波变换是一种信号分析和处理的方法,它们可以将信号分解成不同尺度和频率的成分,并可以分析和处理这些成分。
下面将对小波包变换和小波变换进行解释。
1. 小波包变换:小波包变换是在小波变换的基础上发展而来的一种方法。
小波包变换将信号分解成多个子带,并对每个子带进行进一步的分解。
相比于小波变换,小波包变换提供了更高的频率分辨率和更细的频率划分。
小波包变换的核心思想是使用不同的小波基函数对信号进行分解。
通过选择不同的小波基函数,可以获得不同尺度和频率的信号成分。
小波包变换可以通过反复迭代的方式,不断将信号分解成更细的频率带,进一步提高频率分辨率。
在每一级分解中,信号被分解成低频和高频两部分,低频部分可以继续进行进一步的分解。
小波包变换的优势在于能够提供更详细的频域信息,可以更好地分析信号的特征和结构。
它在信号处理、图像处理等领域有着广泛的应用,例如信号去噪、特征提取等。
2. 小波变换:小波变换是一种将信号分解成不同频率成分的方法。
通过小波变换,我们可以将信号从时域转换到频域,同时可以分析信号的时间和频率特性。
小波变换的基本思想是使用小波基函数对信号进行分解。
小波基函数是一种具有局部性质的函数,它能够在时域和频域中同时提供较好的分辨率。
通过选择不同的小波基函数,可以获得不同频率范围内的信号成分。
小波变换通过对信号进行连续的分解和重构,可以分析信号的频域特性。
小波变换有多种变体,其中最常用的是离散小波变换(DWT)。
离散小波变换将信号分解成多个尺度和频率的子带,通过这些子带可以分析信号的不同频率成分。
离散小波变换具有高效性和局部性,可以在信号处理中广泛应用,例如信号去噪、压缩等。
总结:小波包变换是在小波变换的基础上发展的一种方法,它能够提供更高的频率分辨率和更细的频率划分。
小波包变换通过选择不同的小波基函数,将信号分解成多个子带,并对每个子带进行进一步的分解。
相比之下,小波变换是将信号分解成不同频率成分的方法,通过选择不同的小波基函数,可以获得不同频率范围内的信号成分。
.语音增强算法研究p584.1小波理论4.1.1小波变换的定义4.1. 2小波去噪原理.4.2小波包变换语音增强方法4.2.1 小波包变换语音增强方法原理4 2. 2 Bark尺度小波包分解4.2.3闽值函数4.2.4 实验仿真4.3小波包变换和听觉掩蔽效应的语音增强方法4.3. 1小波包变换和听觉掩蔽效应的语音增强方法原理4.3. 2实验仿真第四章小波包语音增强算法小波(Wavelets)分析的起源可以追溯到20世纪初,在20世纪80年代后期开始形成一个新兴的数学分支。
小波变换是调和分析这一数学领域半个世纪以来的工作结晶,是傅里叶变换发展史上的里程碑式的进展,近些年来成为国外众多学者共同关注的热点。
它在傅里叶变换的基础上发展而来,但又有极大不同。
传统的信号处理方法是建立在傅立叶变换的基础上,而傅立叶分析使用的是一种全局的变换,要么完全在时域,要么完全在频域,因此无法表达信号的时频局域性质,而这种性质恰恰是非平稳信号(如语音信号)最根本和最关键的性质。
小波分析是建立在泛函分析、傅立叶分析、样条分析及调和分析基础上的新的分析处理工具它又称为多分辨分析,在时域和频域同时具有良好配局部化特性,常被誉为信号分析的“数学显微镜”。
小波变换在时频两域都具有表征信号局部特征的能力,它克服了短时傅立叶变换固定分辨率的缺点,在信号的高频部分,可以获得较好的时间分辨率,在信号的低频部分可以获得较高的频率分辨率,这就使指小波变换具有对信号的自适应性。
它能有效地从信号中提取信息,通过伸缩和平移等运算功能对信号进行多尺度细化分析。
小波分析是目前国际上公认的信号信息获取与处班领域的高新技术,是信号处理的前沿课题,其中小波去噪也是小波分析的主要应用之一,对语音增强的研究不可避免的要利用小波这一有效工具。
小波包变换理论是20世纪80年代中后期逐渐成熟并发展起来的,由于可同时进行时域和频域分析,具有时频局部化和变分辨特征,而且小波函数的选取也很灵活,因此在语音增强中得到了广泛的应用。
小波变换与小波框架
小波分析的理论与方法是从Fourier分析的思想方法演变而来的,就象Fourier分析分为积分Fourier变换和Fourier级数一样,小波分析也分为(积分)小波变换和小波级数两部分,(积分)小波变换的主体是连续小波变换,正尺度小波变换和s-进小波变换;而小波级数的主体部分是关于小波框架的理论.小波分析理论深刻,应用广泛,并且仍在迅速发展之中.本文是作者作为初学者,就小波分析这一理论中比较基本和初步的东西所作的一点归纳和整理,其实,有许多结论已经或明或暗的出现于许多文献中了,只是作者觉得它们叙述得不够适合初学者,尤其是不适合没有工程应用背景的人,这是因为小波分析象Fourier 分析一样,起初都是由应用数学家,物理学家和工程师们发展起来的.本文所得结论比较初步,所用方法基本上属于泛函分析中的一些基本内容,只是稍微需要一点关于拓扑群的知识和Fourier分析的基础知识.本文仅考虑Hilbert
空间L~2(R)及其闭子空间中的小波变换和小波框架等问题.本文主要考虑的问题是:L~2(R)上的连续小波变换,正尺度小波变换和s-进小波变换,以及L~2(R)中的小波框架,因为平移框架在小波框架中具有重要作用,所以也考虑了L~2(R)的闭子空间中的平移框架.事实上,通常的小波分析所研究的问题,在一维情形,概括地说,是研究实直线R上的仿射群R~*×R及其子群和子集在L~2(R)上的酉表示U所诱导的L~2(R)(有时是其闭子空间)中的函数的积分变换的性质及应用.下面作稍具体的一点解释:首先,变换上的仿射变换,所有这样的变换全体做成—个群,记为和凡xB—1(。
m,幻>儿mE 二,bE用是XxR的子群,(丹xRh 一 U习-,巴-nf小>1;左>0,mE 凤n二厂I是R宇XR的一忏集丞它不是群.分别作定义在集合 R’ x B,
H x R;Ri x R和(H x R一上的 ilbert空间 L‘(R’ x R,*-‘dd’1)上’(H x R,a-’i)aa).WIZ(L’)一Hgjh。
zDgj C L‘(B);Vj C 凤且z、八幻P<+co}和尸(厂xz).它们在一维小波分析中有重要作用· JcZ R’:R在 L‘旧J上有如下的酉表示 U: U:R’ X B -- B(LZ(R)(a三a)-- v(o?&〕:z*(s)-- z*(s).f -- v(a,&)j= T6**j.这里(Tbj)(x)= j(-b)。
(D。
j)(。
)= Ial‘/‘j(x/al,子群 R“x B和 R x B以及子集口”X Rk。
在 U作用下得到各自的表示,由这些表示得到下面四个线性算子: Wb:LZ(R)一 LZ(R’ X B;问一
Zdnda ),-.,,….、I 一、1、11——O\。
r卜一十卜卜^广:W卜A广Qa.0]=多矿oa]Dal 2八D——]e. Wb:L\-- L\-X R;Q-
‘deo),。
-…。
-。
、1..、1、矿2 一D\ Ipeap W。
I:W。
IIQ,DI=Illl]Q Zhl——ide.Q>U.叱:L‘(R)一 WI ‘(L‘) f-叱j:(叭j(J,仙。
二=隅V(。
’,6》。
二·叶:尸(印+L勺zX引 jH叱人叫
j(*,*I。
,n。
Z-(m/(。
”,。
”。
川m,。
Z 本文中,把使得Wb为连续且有连续逆的hEL\旧)称为允许小波,若h 为允许基小波,则称 Wb为连续小波变换.同样,把使得 WK 和 WI连续且有连续逆的h分别称为正尺度小波和卜进小波,而相应的叮和W分别称为正贩小波变换和卜进小波变扳.本文中把Wb,们和WI 统称为小波变换恤是相应的矗小波),而把使得叱(正文中没有明确出现)觑且有连续逆的hCL’旧)称为框架小彼,其中。
、称为框架参数,记为小波峨(h,a,t).本文第一章跌于小赃换的,第二章是框架的豺性质,第三章是小波框架和平移框架.具体结果和其它相关内容这里从略.。