不同雷诺数下方柱绕流的数值模拟
- 格式:pdf
- 大小:2.81 MB
- 文档页数:5
不同雷诺数下的圆柱绕流数值模拟研究引言:圆柱绕流是流体力学领域中一个经典的、被广泛研究的问题。
在众多的工业应用中,圆柱绕流的研究对于风力发电机组的设计优化、管道内部液体运动的控制等方面具有重要实际意义。
雷诺数是描述流体流动的一个无量纲参数,它与流体的流速、流体的粘性有关。
本文将对不同雷诺数下的圆柱绕流进行数值模拟研究。
方法:数值模拟是一种有效的研究流体力学问题的方法,它能够通过计算机模拟得到流体的速度场、压力场等关键参数,从而进一步分析流体的特性。
在本文中,我们将使用计算流体力学方法进行圆柱绕流的数值模拟研究。
结果与讨论:我们选取了不同雷诺数的圆柱绕流作为研究对象,分别为200、400、600、800和1000,通过数值模拟得到了不同雷诺数下的圆柱绕流的速度场和压力场等关键参数。
首先,我们分析了速度场的分布。
通过数值模拟可以得到圆柱绕流过程中流体速度的分布情况。
随着雷诺数的增加,流体速度场呈现出不同的特征。
在雷诺数较低的情况下,流体绕圆柱流动的速度场分布较为简单,流速主要集中在圆柱前部和尾部。
随着雷诺数的增加,流体速度场呈现出更复杂的结构,流速分布更加均匀。
其次,我们研究了压力场的分布。
通过数值模拟可以得到圆柱绕流过程中流体压力的分布情况。
在不同雷诺数下,圆柱周围存在不同的压力区域。
当雷诺数较低时,圆柱前后表面存在较大的压差,压力分布较为不均匀。
而当雷诺数增加时,压力分布更加均匀,圆柱表面的压力变化较小。
最后,我们研究了绕流过程中的阻力情况。
通过数值模拟得到了不同雷诺数下圆柱绕流过程中的阻力系数。
我们发现,随着雷诺数的增加,阻力系数逐渐增大。
这是因为当雷诺数较低时,流体绕圆柱流动的速度较低,阻力较小;而当雷诺数增加时,流体流动速度较高,阻力也逐渐增大。
结论:本文通过数值模拟的方式研究了不同雷诺数下的圆柱绕流问题。
通过分析速度场、压力场和阻力系数等关键参数,我们得出了以下结论:随着雷诺数的增加,流体速度场更加复杂,流速分布更加均匀;压力场分布更加均匀,圆柱表面的压力变化较小;阻力系数随着雷诺数的增大而增加。
不同雷诺数下倾斜圆柱绕流三维数值模拟研究近年来,研究倾斜圆柱绕流特性引起了学界的广泛关注。
圆柱绕流可分为水平和垂直两类,其中倾斜圆柱绕流为一种特殊的二维绕流状态,它在一定雷诺数范围内具有更复杂的流场结构特性,并且受水文物理过程的影响更为显著,研究其特性更为重要。
本研究使用时间和空间设置,以带边界流作为边界条件,利用基于六边形网格的数值模拟方法研究不同雷诺数下的倾斜圆柱绕流特性。
实验参数包括:倾斜角度α=20°,Re=1000 ~ 10000,向心轴比例范围为0.5 ~ 2.0,圆柱入口处外提升速度Um=0.3 ~ 0.8,及空气密度ρ=1。
有鉴于此,本研究根据不同雷诺数和向心轴比例,计算出倾斜圆柱绕流特性。
首先,主要考察不同雷诺数Re下倾斜圆柱绕流的流态特性,包括在不同位置的压力梯度,流场动量,温度梯度,流态结构以及涡度等信息。
其次,重点考察不同向心轴比例和轴向外提升速度下倾斜圆柱绕流的流态特性,包括压降,动量,温度梯度,以及不同方向的涡度分布。
结果表明,不同的雷诺数和向心轴比例会对倾斜圆柱绕流的流动特性产生明显不同的影响。
随着雷诺数的增大,压力梯度增大,动量梯度减小,温度梯度增大,涡度明显减少,圆柱内部的流场会变得更加复杂,气泡变小,而且其会从一种混合流场演变为一种逆流的流场结构。
另外,随着向心轴比例的增加,轴向外提升速度的变化会出现显著影响,但随着向心轴比例的增加,压力梯度会逐渐减小,动量梯度增大,温度梯度变化不大,涡度分布也会有较大变化。
研究结果表明,在不同雷诺数和向心轴比例范围内,倾斜圆柱绕流的流动特性会发生明显的变化。
本研究对于进一步理解流动特性和确定流动行为有重要的理论意义,同时也为实际工程的设计提供了参考。
总的来说,本研究通过应用数值模拟方法研究不同雷诺数下倾斜圆柱绕流特性,得出上述结论。
未来可以将此模拟实验方法应用于建立更复杂物理系统的研究,以更深入地理解绕流特性和其流动性质。
A辑第16卷第1期 水动力学研究与进展 Ser.A,V ol.16,N o.1 2001年3月 JOURNAL OF HYDRODYNAM ICS M ar.,2001文章编号:1000-4874(2001)01-0101-10高雷诺数下双圆柱绕流的数值模拟廖 俊1, 景思睿2(1.华中理工大学能源科学与工程学院,湖北武汉430074;2.西安交通大学能源与动力工程学院,陕西西安710049) 摘 要: 本文使用表面涡法研究高雷诺数下不同排列方式双圆柱绕流的流动状态。
计算了双圆柱在并列、串列及级列的情况下的各种流动结构,涡街的变化及作用在圆柱上的受力情况。
本文结果清楚地描述了双圆柱绕流复杂的流动状况,计算结果与实验显示的流动状况十分相似,斯特罗哈数和阻力系数与实验结果符合得很好。
关 键 词: 表面涡方法;圆柱绕流;数值模拟;涡街中图分类号: O357.1 文献标识码:A1 引言对多圆柱的绕流研究在工程实际中有很重大的意义,例如管束的热交换,反应堆,高大建筑物,海洋平台及桥梁等。
当流体流过圆柱体时,由于涡的脱落,使圆柱体上产生交变作用力。
这种作用力导致柱体的振动及材料的疲劳,而使结构损坏,产生严重的后果。
如水电站的蒸发塔,就曾经由于安装位置不正确,导致多个塔之间强烈影响、振动并使塔损坏,悬索桥也发生过类似事例,悬索共振而使桥倒塌。
由于多个柱体流动状况复杂、多变,导致对于柱体上作用力大小和方向极其复杂,实验测量非常困难,在实际工程中就需要用数值模拟的方式确定其流动状况,估计出柱体上的作用力大小、方向,以便工程参数的确定。
在多圆柱绕流研究中最多的是双圆柱绕流,双圆柱绕流按圆柱的不同排列方式可以分为三类:串列,两圆柱相对来流方向呈前后排列;并列,两圆柱相对来流方向呈并排排列;级列,两圆柱呈前后交叉排列。
对于柱体绕流的数值模拟方式可以分两大类,一类为网格法,另一类为无网格法。
网格法主要有有限差分法、有限元法。
FLUENT仿真计算不同雷诺数下的圆柱绕流。
尾迹与旋涡脱落经典图如下:Re=1 无分离流动Re=20 尾流中一对稳定的弗普尔旋涡Re=100 圆柱后方形成有规律的涡街Re=3900Re=100000 随着Reynolds数增大,涡道内部向湍流过度,直到全部成为湍流Re=1000000 超临界区,分离点后移,尾流变窄,涡道凌乱,涡随机脱落Re=10000000 极超临界区,分离点继续后移,尾流变窄,湍流涡道重新建立。
图3 Cd随Re的变化曲线图3中实曲线是由Wieselsberger,A.Roshko以及G.W.Jones和J.J.Walker测量数据绘制得到,图中圆点部分是FLUENT计算值在Re=106(超临界区),从经典数据和我们的计算结果都可以看到,圆柱体的平均阻力系数急剧下降。
这是因为在Re=3×105附近,边界层流动由层流状态转变为湍流状态,虽然湍流边界层流动的摩擦阻力较层流边界层大,但它从物面的分离较晚,所以形成较小的尾流区。
由于钝体绕流的阻力主要是压差阻力,所以此时物体的总阻力有了一个明显的下降。
入口VELOCITY_INLET,出口OUTFLOW,上下WALL.Re=1,20,100,二维层流模型。
Re=3900后,三维大涡模型计算不准与网格划分与一些参数设置有关。
1。
圆柱中心离上下边界(wall)的距离大于10D(D为圆柱直径),影响较小。
2。
湍流模型采用大涡模型(LES)。
是目前最复杂,最完善的一种湍流模型。
试验曲线来自,《Boundary-Layer Theory》, Dr.HERMANN SCHLICHTING, Translated by Dr.J.KESTIN,Seventh Edition,用MATLB绘制4.阻力系数的求法请参考此论坛我发的教程FLUENT三分立系数的求法。
不同雷诺数下圆柱绕流多重分形研究圆柱绕流是一种常见的流体力学问题,其中水流绕过一个圆柱体时会产生涡流。
雷诺数是衡量流体动态特征的重要参数,它可以用来表示流体的粘性、压力和流速之间的相对关系。
在不同雷诺数下,圆柱绕流的形态可能会有所不同。
在低雷诺数(Re < 40)的情况下,流体的粘性较大,因此圆柱绕流的形态会呈现出较为平滑的涡旋结构。
随着雷诺数的增加,流体的粘性会逐渐减小,圆柱绕流的形态也会逐渐变得复杂。
在雷诺数较高的情况下(Re > 40),圆柱绕流的形态会呈现出多重分形的特征,即流体中出现了多个涡旋结构,这种现象被称为“多重涡旋”。
在研究圆柱绕流多重分形的过程中,通常会使用数值模拟的方法来研究圆柱绕流的动态特征。
常用的数值模拟方法包括有限差分法、有限元法和有限体积法等。
这些方法可以用来求解流体动力学方程,从而研究不同雷诺数下圆柱绕流的形态变化。
在研究圆柱绕流多重分形的过程中,还可以使用实验方法来研究圆柱绕流的形态变化。
例如,可以使用流动可视化的方法来观察圆柱绕流的形态,或者使用绕流量测量仪器来测量绕流的强度。
除了使用数值模拟和实验方法研究圆柱绕流的多重分形之外,还可以使用理论分析的方法来研究这一现象。
例如,
可以使用流体力学的理论模型来分析圆柱绕流的形态变化,或者使用分形理论来研究圆柱绕流的多重分形现象。
总的来说,圆柱绕流多重分形是一个比较复杂的研究课题,需要综合运用数值模拟、实验和理论分析的方法才能全面地研究这一现象。
圆柱绕流的数值模拟张玉静 20070360204 过控(2)班化工与能源学院摘要:使用计算流体力学软件FLUENT,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为5,20,40,100时的绕流流动,得到流场的流函数等值线图和速度矢量图。
计算结果表明:当雷诺数增加时,流动表现出一系列不同的构造。
当Re=5时,流动不发生分离,其后未形成旋涡,当Re=20,40,100时,流体发生分离,其后形成旋涡,且旋涡随着Re的增大而增大。
利用计算流体力学软件FLUENT可以成功地模拟圆柱绕流问题,反映出流动特性。
关键词:圆柱绕流;FLUENT;雷诺数Abstract:Uniform flow around a mounting cylinder is simulated with the application of FLUENT software while Reynolds number is 5,20,40,100. Stream function and velocity vector distributions are indicated. The results show that a series of construction appears as Reynolds number increases. When Re is 5, Flow separation does not occur, and it does not form vortex . When Re is 20,40,100, Flow separation occurs, and it forms vortex. V ortex increases with the increase of Re. Using computational fluid dynamics software FLUENT can successfully simulate flow around cylindrical, reflect the flow characteristic.Key words:Flow around a circular cylinder;FLUENT;Reynolds number1 圆柱绕流理论分析研究的状况一个世纪以来,圆柱绕流一直是众多理论分析、实验研究及数值模拟对象。