建筑声环境第十一章_室内声学原理
- 格式:ppt
- 大小:522.00 KB
- 文档页数:52
第10章建筑声学基本知识1. 声音的基本性质① 声波的绕射当声波在传播途径中遇到障板时.不再是直线传播,而是绕到障板的背后改变原來的传播方向,在它的背后继续传播 的现象。
② 声波的反射当声波在传播过程中遇到一块尺寸比波长人得多的障板时,声波将被反射。
③ 声波的散射(衍射)当声波传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中, 这种现象称为散射,或衍射。
④ 声波的折射像光通过棱镜会弯曲,介质条件发生某些改变时,虽不足以引起反射,但声速发生了变化,声波传播方向会改变。
这 种由声速引起的声传播方向改变称之为折射。
白天向下弯曲 夜晚向上弯曲 顺风向下弯曲 逆风向上弯曲 ⑤ 声波的透射与吸收当声波入射到建筑构件(如顶棚,墙)时,声能的一部分被反射,一部分透过构件,还有一部分由于构件的振动 或声音在英内部传播时介质的摩擦或热传导而被损耗(吸收)。
根据能量守恒定理:E 0 = E z + £a + E r£0一一单位时间入射到建筑构件上总声能;E r 一一构件反射的声能;E a 一一构件吸收的声能;E r 一一透过构件的声能。
透射系数T = E r /E Q ;反射系数/=E Z /£0;实际构件的吸收只是优,但从入射波和反射波所在空间考虑问题,常常定义吸声系数为:⑥ 波的干涉和驻波1 •波的干涉:当具冇相同频率、相同相位的两个波源所发出的波相遇叠加时,在波逼叠的区域内某些点处,振动始终 彼此加强、而在另一些位置,振动始终互相削弱或抵消的现彖"2•驻波:两列同频率的波在同一直线匕相向传播时,可形成驻波。
2•声音的计量① 声功率指声源在单位时间内向外辐射的声能。
符号 单位:瓦(W )或微瓦(屮)。
②声强声波—振动在弹性介质中传播] 声波的传播特性声波波长越长绕射的现象越明显。
定义1:是指在单位时间内,改点处垂直于声波传播方向的单位團积上所通过的声能。
建筑声学原理引言在建筑设计和施工过程中,声学设计是一个重要的环节,它关系到建筑的音质、隔音效果以及整体舒适度。
本文档将介绍建筑声学的基础原理,以供相关专业人士参考。
声波的传播声波是由物体振动产生的能量,通过介质(如空气、水或固体)传播的一种波动现象。
在空气中,声波是一种纵波,其传播速度受温度、湿度和气压等因素的影响。
反射与吸收当声波遇到障碍物时,会发生反射、折射和衍射等现象。
在室内环境中,声波的反射对音质影响较大。
为了减少不必要的反射,设计师会使用吸音材料来吸收声波能量,降低回声和混响时间。
混响时间混响时间是指声音在空间内衰减到原始强度的百万分之一所需的时间。
它是衡量房间音质的一个重要指标。
过长或过短的混响时间都会影响语音清晰度和音乐表现力。
隔声与隔音隔声是指阻止声波从一个区域传到另一个区域的能力。
这通常涉及到建筑材料的选择和墙体结构的设计。
隔音则更侧重于减少噪音对人的影响,例如使用双层窗户来隔绝交通噪音。
声学设计的应用在实际应用中,声学设计需要考虑多种因素,包括室内外环境、使用功能、预算限制等。
例如,音乐厅需要优秀的音响效果,而图书馆则需要安静的阅读环境。
结论建筑声学是一个综合性很强的领域,它不仅涉及物理学的知识,还需要建筑师、工程师和声学顾问之间的紧密合作。
通过对声学原理的了解和应用,可以显著提升建筑的功能性和使用体验。
---以上内容为建筑声学原理的基本介绍,旨在提供理论知识框架和实践指导原则,以帮助读者更好地理解和应用建筑声学。
请注意,具体项目设计还需结合实际情况和专业计算进行。
第十一章室内声学原理室内声学是研究声波在封闭的室内环境中传播和反射的学科。
在建筑设计和音响工程中,了解室内声学原理非常重要,因为它直接影响着室内环境的音质和声音的可听性。
本文将介绍一些常见的室内声学原理。
首先,室内声学中一个重要的参数是声反射。
当声波遇到一个表面时,一部分能量会被反射回去,一部分会被吸收,而另一部分会被传播进入另一片区域。
声反射的大小取决于表面的材质和形状,以及声波的入射角度。
例如,光滑的硬表面会产生高强度的反射,而吸音板等吸声材料则会减少反射。
第二个与室内声学相关的重要参数是声衰减。
声衰减描述的是声波在传播过程中能量的损失。
室内空间的各种材质和家具都会对声波产生衰减作用,这将导致声音的衰减,即声音在传播过程中的音量减小。
因此,在设计建筑和音响系统时,需要考虑声衰减以保证声音能够传播到合适的区域。
第三个与室内声学相关的原理是声波的散射。
声波碰撞到不规则表面时会产生散射,这会改变声波的传播方向和强度。
通过合理利用散射现象,可以改善室内的音质。
例如,合理布置吸声板和反射板等材料可以达到声音均匀分布的效果。
另外,室内声学中还有一个概念是如何改善声音的清晰度和可听性。
可听性主要取决于两个因素:语音强度比和回声时间。
语音强度比是指声音源和背景噪声之间的差异。
如果背景噪声很大,那么听到的声音将不够清晰。
而回声时间是指声音从源头传播到听者耳朵之间所需的时间。
如果回声时间过长,也会影响声音的可听性。
为了改善声音的清晰度和可听性,可以通过以下几种方式来处理。
首先,通过增加吸音材料来减少回声时间,例如在墙壁和天花板上安装吸声板。
其次,可以考虑使用声学隔离材料来阻止外部噪声进入室内空间。
此外,还可以通过合理布置扬声器和麦克风的位置,以及优化音频处理系统,来提高声音的清晰度和可听性。
总之,室内声学原理对于设计建筑和音响系统非常重要。
了解声反射、声衰减、声波散射以及声音的清晰度和可听性等概念,可以帮助我们创造出更好的室内音质和声音体验。
建筑知识:建筑室内声学设计的原理与技巧建筑室内声学设计的原理与技巧随着城市化进程的不断加速,人们的生活空间越来越受到关注。
建筑室内声学设计已经成为人们关注的焦点之一,而人们对建筑室内声学设计的要求也越来越高。
本文将介绍建筑室内声学设计的原理与技巧,以供建筑师和设计师参考。
一、声学的基本原理声学是指研究声波在空气,固体,液体,气体和晶体等物质中传播的物理学科学。
声学的基本原理可以分为声源、声波传播和声接收三个部分。
声源:声学中的声源是产生声波的物体或空间。
声源的特点主要是声压及其随时间变化的周期性。
声压是指声波在空气中的压力变化,通常用牛顿/平方米(nPa)或德西贝尔(dB)来表示。
声波传播:声波是一种机械波,它是由物体在某一点振动所产生的,通过空气传送到其他地方。
声波的传播速度与介质的密度和弹性有关。
声波传播可以分为直线传播和衍射传播两种形式。
声接收:声学中的声接收是指声波在空气中碰到接收器所产生的响应。
接收器可以是麦克风、扬声器、录音机和电话等。
二、室内声学设计的基本原理室内声学设计是指在建筑室内进行声学设计的过程。
它包括声源的位置、声波传播路径以及接收器的位置等的优化,以实现音质的最佳效果。
室内声学设计是非常重要的,因为它不仅对建筑的视觉效果有着很大的影响,同时也能够改善建筑物的环境和人们的舒适度。
室内声学设计的基本原理可以分为三个方面。
首先,作为声音发射源的乐器或音响设备的设计是非常重要的。
音响设备的设计应符合声学原理,以实现最优的声音效果。
同时应考虑到声音的传播以及接收的方向。
设计良好的音响设备不仅可以提高音质,还可以使人听得更舒适。
其次,声波传播路径的设计也非常重要。
声波的传播路径可能会受到建筑物,人,物体的反射影响。
因此,为了降低声音的反射和噪声污染,设计师必须考虑使用声学装饰、吸声板、垂直切割面等声学材料。
最后,室内声学设计还要注意阻隔噪声的要求。
建筑物应该采用防噪声材料,防止噪音从外部环境进入建筑物内部,从而保证内部的声音品质。
建筑声学设计的基本原理是什么当我们走进一座宏伟的音乐厅,聆听一场美妙的交响乐;当我们在教室里专注地听讲,清晰地接收老师的每一句话;当我们在安静的图书馆里沉浸于书海,不受外界噪音的干扰……这些舒适的声音体验背后,都离不开建筑声学设计的功劳。
那么,建筑声学设计的基本原理究竟是什么呢?建筑声学设计的核心原理之一是声音的传播与反射。
声音是以波的形式传播的,当它遇到物体表面时,会发生反射、折射和吸收。
在一个封闭的空间里,比如房间或大厅,声音会不断地反射,形成复杂的声场。
我们所听到的声音不仅仅是直接从声源传来的,还包括经过多次反射后的声音。
这就要求在建筑设计中,合理地控制声音的反射路径和时间,以避免产生回声、混响等不良声学现象。
回声,是我们比较容易理解的一种声学问题。
当声音在传播过程中遇到较大的障碍物,如光滑的墙面、大面积的玻璃等,反射回来的声音与原声间隔时间较长,就会被我们明显地感知为回声。
这会严重影响声音的清晰度和可懂度,比如在空旷的体育馆中,如果没有进行声学处理,说话时就很容易产生回声,导致交流困难。
混响则是另一个重要的概念。
当声音在空间中不断反射,逐渐衰减,形成的持续声音效果就是混响。
适量的混响可以使音乐听起来更加丰满、富有空间感,但如果混响时间过长,声音就会变得模糊不清,影响语言的清晰度。
为了控制声音的传播和反射,建筑声学设计师会采用各种手段。
比如,通过改变房间的形状和尺寸,可以调整声音的反射路径和时间。
一个长方形的房间可能会产生明显的驻波现象,导致某些频率的声音被加强或削弱,而不规则形状的房间则可以减少这种情况的发生。
在墙面和天花板的处理上,使用吸音材料可以有效地吸收声音,减少反射。
常见的吸音材料有吸音棉、穿孔板、木质吸音板等。
这些材料的表面通常具有多孔或粗糙的结构,能够将声音的能量转化为热能,从而降低声音的强度。
扩散也是建筑声学设计中的重要手段之一。
通过在墙面或天花板上设置扩散体,可以使声音更加均匀地分布在空间中,避免出现声音集中在某些区域的情况。
第一篇建筑热工学第一章建筑热工学基本知识习题1—1、构成室内热环境的四项气候要素是什么?简述各个要素在冬(或夏)季,在居室内,是怎样影响人体热舒适感的。
答:(1)室内空气温度:居住建筑冬季采暖设计温度为18℃,托幼建筑采暖设计温度为20℃,办公建筑夏季空调设计温度为24℃等。
这些都是根据人体舒适度而定的要求。
(2)空气湿度:根据卫生工作者的研究,对室内热环境而言,正常的湿度范围是30—60%。
冬季,相对湿度较高的房间易出现结露现象。
(3)气流速度:当室内温度相同,气流速度不同时,人们热感觉也不相同。
如气流速度为0和3m/s时,3m/s的气流速度使人更感觉舒适。
(4)环境辐射温度:人体与环境都有不断发生辐射换热的现象.1—2、为什么说,即使人们富裕了,也不应该把房子搞成完全的“人工空间"?答:我们所生活的室外环境是一个不断变化的环境,它要求人有袍强的适应能力。
而一个相对稳定而又级其舒适的室内环境,会导致人的生理功能的降低,使人逐渐丧失适应环境的能力,从而危害人的健康.1—3、传热与导热(热传导)有什么区别?本书所说的对流换热与单纯在流体内部的对流传热有什么不同?答:导热是指同一物体内部或相接触的两物体之间由于分子热运动,热量由高温向低温处转换的现象。
纯粹的导热现象只发生在密实的固体当中。
围护结构的传热要经过三个过程:表面吸热、结构本身传热、表面放热。
严格地说,每一传热过程部是三种基本传热方式的综合过程.本书所说的对流换热即包括由空气流动所引起的对流传热过程,同时也包括空气分子间和接触的空气、空气分子与壁面分子之间的导热过程.对流换热是对流与导热的综合过程。
而对流传热只发生在流体之中,它是因温度不同的各部分流体之间发生相对运动,互相掺合而传递热能的。
1—4、表面的颜色、光滑程度,对外围护结构的外表面和对结构内空气间层的表面,在辐射传热方面,各有什么影响?答:对于短波辐射,颜色起主导作用;对于长波辐射,材性起主导作用。
室内声学原理室内声学设计的主要目的就是设置房间的形状、容积以及吸声、反射材料的分布等,以获取室内良好的声环境和听音环境并避免形成声缺陷。
室内声学的原理包括几何声学原理、扩散声场的假定以及室内声音的增长、稳态和衰减。
剧院观众厅、体育馆、会议厅、礼堂、播音室、教室等封闭空间内,不同于室外自由声场,声波在传播时受到室内各个界面的反射与吸收,声波相互重叠形成复杂的声场,如图 3-2所示,这种室内声场的特征主要有:(1)距离声源有一定距离的接收点上,声能密度比在自由声场中要大,不随距离的平方衰减。
(2)声源在停止发声后,一定的时间里,声场中还存在着来自各个界面的迟到的反射声,产生所谓“混响现象”。
(3)声波与房间产生共振,引起室内声音某些频率的加强或减弱。
(4)由于房间的形状和内装修材料的布置,形成回声、颤动回声及其他各种特殊现象,使得室内声场情况更加复杂,如图 3-1所示。
图 3-1 室内声音传播示意图图 3-2 室内声音反射的几种典型情况A,B—平面反射;C--凸曲面的发散作用;D--凹曲面的聚焦作用1音质设计1.1音质的主观评价和客观参量室内音质的好坏是以听众或演奏者们等使用者能否得到满意的主观感受为判断标准的,涉及人们对语言声和音乐声两种声信号的主观感受。
这种主观感受从五个音质评价标准出发,包括合适的响度、较高的清晰度和明晰度、足够的丰满度、良好的空间感及有无声缺陷和噪声干扰。
每一项音质要求又与一定的客观声场参量相对应。
室内音质设计则是通过建筑设计与构造设计保证各项客观物理指标符合主要的使用功能,以满足人们对良好音质的主观感受的要求。
表2-1给出了不同演场用途房间的声学设计与问题解决。
客观参量主要包含声压级与混响时间、反射声的时间分布与空间分布、两耳互相关函数、初始时延间隙、低音比和温暖感等。
1.2混响设计一般的考虑因素:(1)尺寸——当要求短混响时(语言用厅堂),宜将房间体积减至最小;当要求中等或长混响时(音乐用大厅),则要选择大一些的房间体积。
第11章室内声学原理11.1室内声场:11.1.1室内声场的特征:1、室内声场:在剧院的观众厅、体育馆、教室、播音室等封闭空间内,声波在传播时将受到封闭空间各个界面(墙壁、顶棚、地面等)的反射与吸收,声波相互重叠形成复杂声场,即室内声场。
2、室内声场的特点:①距声源有一定距离的接收点上,声能密度比在自由声场中要大,常不随距离的平方衰减;②声源在停止发生后,在一定的时间里,声场中还存在着来自各个界面的迟到的反射声,产生所谓“混响现象”。
③由于房间的共振,引起室内声音某些频率的加强或减弱;④由于房间的形状和室内装修材料的布置,形成回声、颤动回声及其他各种特异现象。
11.1.2几何声学:1、直达声:从声源直接辐射到接受点的声音。
2、反射声:从不同介质反射回来的声,或是除直射声外的所有声。
3、混响声: 声源停止后——不形成回声的反射声。
4、在封闭室内的声音特性:5、室内声音传播:对于一个听者,接收到的不仅有直达声,而且还有陆续到达的来自顶棚、地面以及墙面的反射声,它们有的是经过一次反射到达听者的,有的则是经过二次甚至多次反射到达的。
6、房间内可能出现的四种声音反射:①图中A与B均为平面反射,所不同的是离声源近者A,由于入射角变化较大,反射声线发散大;②离声源远者B,各入射线近于平行,反射声线的方向也接近以致;③C与D是两种反射效果截然不同的曲面,凸曲面C,使声线束扩散;④凹曲面D则使声音集中于一个区域,形成声音的聚集。
11.2室内声音的增长、稳定与衰减:1、室内声音的增长和稳态过程:①当声源在室内辐射声能时,声波在空间传播,当遇到界面时,部分声能被吸收,部分被反射;②在声波继续传播时,将第二次、第三次以及多次地被反射,这样,在空间就形成了一定的声能密度;③随着声源不断地供给能量,室内声能密度将随时间增加而增加,这就是室内声音增长的过程;④单位时间内声源辐射的声能与室内表面吸收的声能相等,室内声能密度不再增加,而处于稳定状态;⑤在大多数实际的厅堂中,声源发声后,大约1~2s,声能密度即可接近最大值,即稳态声能密度。