2020-2021学年湖北省武汉市青山区八年级(上)期中数学试卷(附答案详解)
- 格式:docx
- 大小:480.48 KB
- 文档页数:23
2020-2021学年湖北省武汉市八年级上册期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一个三角形的两条边长分别为3和7,则第三边的长可能是( )A. 3B. 7C. 10D. 112.下列图形一定是轴对称图形的是( )A. 平行四边形B. 正方形C. 三角形D. 梯形3. 4.一个n边形的内角和等于它的外角和,则n=( )A. 3B. 4C. 5D. 64.下列图形中有几个具有稳定性?( )A. 三个B. 四个C. 五个D. 六个5.下列各条件不能作出唯一直角三角形的是( )A. 已知两直角边B. 已知两锐角C. 已知一直角边和一锐角D. 已知斜边和一直角边6.如图,△ABC≌△DEF,则∠E的度数为( )A. 80°B. 40°C. 62°D. 38°7.如图,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是()A. a=0B. a=0.5C. a=1D. a=28. 如图,△ABC 中,∠BAC =100°,DF ,EG 分别是AB ,AC 的垂直平分线,则∠DAE 等于( )A. 50°B. 45°C. 30°D. 20°9. 如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A ˈ处,折痕为DE.如果∠A =α,∠CEA ′=β,∠BDA ˈ=γ,那么下列式子中正确的是( )A. γ=2α+βB. γ=α+2βC. γ=α+βD. γ=180∘−α−β10. 如图,等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连接PQ 交AC 于点D ,则下列结论中不一定正确的是( )A. PD =DQB. DE =12ACC. AE =12CQD. PQ ⊥AB二、填空题(本大题共6小题,共18.0分)11. 已知点A (a ,4)关于y 轴的对称点B 的坐标为(−2,b ),则a +b =______ .12. 已知等腰三角形的一个内角是70°,则它的底角为______.13. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC 于点D ,AD =3,则BC =______.14. AD 是△ABC 的边BC 上的中线,AB =6,AC =4,则边BC 的取值范围是______ ,中线AD 的取值范围是______ .15. 如图,∠AOB =30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP =6,△PMN 的周长最小值为______.16.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC=______°.三、解答题(本大题共8小题,共72.0分)17.如图,AD=BC,AC=BD.求证:∠A=∠B.18.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=1∠B,∠C=50°.求2∠BAC的度数.(AB+BC+19.如图所示,O是△ABC内的一点,试说明:OA+OB+OC>12CA).20.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA−PC2|的值最大.21.已知,如图,AB=AE,∠B=∠E,BC=ED,∠CAF=∠DAF.求证:AF⊥CD.22.如图:在△ABC中,BF=CF,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.23.如图,△ABE和△ACD都是等边三角形,BD与CE相交于点O.(1)求证:△AEC≌△ABD;(2)求∠BOC的度数.24.如图:已知A(a,0)、B(0,b),且a、b满足(a−2)2+|2b−4|=0.(1)如图1,求△AOB的面积;(2)如图2,点C在线段AB上(不与A、B重合)移动,AB⊥BD,且∠COD=45°,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90°至PE,直线AE交y轴,点Q,当P点在x轴上移动时,线段BE和线段BQ中,请判断哪条线段长为定值,并求出该定值.答案1.B.2.B.3.B.4.A.5.B.6.D.7.C.8.D9.A.10.D.11.6.12.55°或70°.13.9.14.2<BC<10,1<AD<5.15.616.75°或35°.17.【答案】证明:连接CD,在△BCD和△ADC中,∴△BCD≌△ADC(SSS),∴∠A=∠B.18.解:设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.∵BD=BA,∴∠BAD=∠BDA=50°+x°,∵∠B+∠BAD+∠BDA=180°,即2x+50+x+50+x=180,解得x=20.∴∠BAD=∠BDA=50°+20°=70°,∴∠BAC=∠BAD+∠DAC=70°+20°=90°.19.解:∵在△ABO中,OA+OB>AB,同理可得:OA+OC>CA,OB+OC>BC,∴2(OA+OB+OC)>AB+BC+CA,(AB+BC+CA).∴OA+OB+OC>1220.解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.21.证明:在△ABC与△AED中,AB=AE∠B=∠E,BC=ED∴△ABC≌△AED(SAS),∴AC=AD,∵∠CAF=∠DAF,即AF为∠CAD的角平分线,∴AF⊥CD.22.证明:∵BD⊥AC于D,CE⊥AB于E,∴∠BEF=∠CDF=90°,在△BEF与△CDF中,∠BEF=∠CDF,∠EFB=∠DFCBF=CF∴EF=DF,∵FE⊥AB,FD⊥AC,∴AF平分∠BAC.23.解:(1)证明:∵△ABE和△ACD是等边三角形,∴AE=AB,AD=AC,∠EAB=60°,∠DAC=60°,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,∴△AEC≌△ABD;(2)由(1)得△AEC≌△ABD,∴∠AEC=∠ABD,∵∠AFE=∠BFO(对顶角),在△AEF中,∠AEF+∠EFA+∠EAF=180°,在△BFO中,∠FBO+∠BFO+∠FOB=180°,∴∠EAB=∠EOB=60°,∴∠BOC=180°−∠EOB=120°.24.解:(1)∵(a−2)2+|2b−4|=0,∴a−2=0,2b−4=0,∴a=2,b=2,∴A(2,0)、B(0,2),∴OA=1,OB=1,∴△AOB的面积=12×2×2=2;(2)如图2,证明:将△AOC绕点O逆时针旋转90°得到△OBF,∵∠OAC=∠OBF=∠OBA=45°,∠DBA=90°,∴∠DBF=180°,∵∠DOC=45°,∠AOB=90°,∴∠BOD+∠AOC=45°,∴∠FOD=∠BOF+∠BOD=∠BOD+∠AOC=45°,在△ODF与△ODC中,OF=OC∠FOD=∠COD OD=OD,∴△ODF≌△ODC(SAS),∴DC=DF,DF=BD+BF,(3)解:BQ是定值,作EF⊥OA于F,在FE上截取PF=FD,∵∠BAO=∠PDF=45°,∴∠PAB=∠PDE,∠PED=135°,∴∠BPA+∠EPF=90°,∠EPF+∠PED=90°,∴∠BPA=∠PED,在△PBA与△EPD中,PF=PD∠BPA=∠PED PB=PE∴△PBA≌EPD(SAS),∴AP=ED,∴FD+ED=PF+AP,即:FE=FA,∴∠FEA=∠FAE=45°,∴∠QAO=∠EAF=∠OQA=45°,∴OA=OQ=2,∴BQ=4.。
青山区2020-2021学年度第一学期期末质量检测八年级数学试卷本试卷满分为120分考试用时120分钟一、你一定能选对!(本大题共有10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上,将对应的答 案标号涂黑.5 .下列计算正确的是 青山区教育局教研室命制2021年1月2.3. 4. A. x 壬 1 C. x=lD. x=-l点A(-3, 2)关于x 轴对称的点的坐标是 A.⑶ 2) B. (-2, 3) C. (-3,-2)D. (2,-3)下列各式从左到右的变形,是因式分解的是 B. X 2-2X +1 = (X -1)2C. X 2+3X -4 = X (X +3)-4D. y 2- y = y(y —— y1. 下列垃圾分类标识的图案中,不是轴对称图形的是 D.A. a3・a3 = 2a3B. a6+a3=a2C. (-3) -2=-9D. (3a3) 2=9a6A.C.6 .若一个多边形的外角和与它的内角和相等,则这个多边形是二、填空题(本大题共有6小题,每小题3分,共18分) 下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置.工_ 211 .若分式一^的值为0,则乂= 2x+l12 .数0.000 02用科学记数法表示为:A.六边形B.五边形C.四边形D.三角形7.下列各式与,-相等的是u-baA. ----- 7(a-b)2a 2 - abB. ----- r(a ®D.——a+b8.如图,在仆ABC 中, NBAC 的度数为NB=74。
,边AC 的垂直平分线交BC 于点D,交AC 于点E,若AB+BD=BC,则A. 74°B. 69°C. 65°D. 60°9.如图,RSABC 中,ZACB=90°, CA=CB, NBAD= NADE=60。
,DE=3, AB=10, CE 平分NACB,DE 与CE 相交于点E, 则AD 的长为 A. 4B. 13C. 6.5第8题图 第9题图10.对于正数x,规定f(x)=」一,例如:1+xf(2019)+f(2020)的值为 3 3f(3)= —— =二,则3---- )+f( 2020 20191)+...+f(-)+f(l)+A. 2021B. 2020C. 2019.5D. 2020.5BD. 7则a ACP 周长的最小值为 cm.15 .如图,用四个大小、形状完全相同的小长方形围成了一个大正方形,如果大正方形的而积为3,且m=3n, 那么图中阴影部分的面积是16 .如图,在四边形ABCD 中,AB=BC,点E 为对角线AC 与BD 的交点,NAEB = 70。
2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.将方程x2−8x=10化成一元二次方程的一般形式,其中二次项系数为1,常数项为()A. −8B. 8C. 10D. −102.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.3.若将抛物线y=2x2向上平移3个单位,所得抛物线的解析式为()A. y=2x2+3B. y=2x2−3C. y=2(x−3)2D. y=2(x+3)24.如图,在⊙O中,∠BOC=100°,则∠A等于()A. 100°B. 50°C. 40°D. 25°5.抛物线y=−3(x−1)2−2的顶点坐标是()A. (1,2)B. (−1,2)C. (−1,−2)D. (1,−2)6.用配方法解方程x2+10x+9=0,配方正确的是()A. (x+5)2=16B. (x+5)2=34C. (x−5)2=16D. (x+5)2=257.如图,Rt△ABC中,∠BAC=30°,∠C=90°,将△ABC绕点A旋转,使得点C的对应点C′落在AB上,则∠BB′C′的度数为()A. 12°B. 15°C. 25°D. 30°8.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参赛球队的个数是()A. 5个B. 6个C. 7个D. 8个9.如图,四边形ABCD为⊙O的内接四边形,∠AOD+∠BOC=180°.若AD=2,BC=6,则△BOC的面积为()A. 3B. 6C. 9D. 1210.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个相等的实数根.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.已知方程x2−4x+1=0的两个根是x1和x2,则x1+x2=______.12.已知点A(−2,a)与点B(b,3)关于原点对称,则a−b=______13.已知点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,则y1,y2的大小关系是:y1______y2.(填“>”或“<”)14.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程是______.15.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加______m.16.如图,矩形ABCD中,AB=2,AD=√3,O为AB的中点,将OA绕着点O旋转得到OE,连接DE.以DE为边作等边△DEF(点D、E、F按顺时针方向排列),连接CF,则CF的最小值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:x2−x−1=0.四、解答题(本大题共7小题,共64.0分)18.二次函数y=ax2−2x+c中的x,y满足如表:x…−10123…y…0−3−4−3m…(1)求抛物线的解析式;(2)求m的值.19.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.20.请用无刻度直尺画出下列图形,并保留作图痕迹.(1)将线段AB绕点B顺时针旋转90°,得到线段BD;(2)过C作线段AB的垂线段CE,垂足为E;(3)作∠ABD的角平分线BF.21.如图,AB为⊙O的直径,C是⊙O上的一点,连接AC,BC.D是BC⏜的中点,过D作DE⊥AB于点E,交BC于点F.(1)求证:BC=2DE;(2)若AC=6,AB=10,求DF的长.22.某超市销售一种成本为每千克40元的水产品,若按每千克50元销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1)直接写出月销售量y(千克)与售价x(元/千克)之间的函数关系式:______;月销售利润w(元)与售价x(元/千克)之间的函数关系式:______;(2)该超市想在月销售量不低于250千克的情况下,使月销售利润达到8000元,销售单价应定为每千克多少元?(3)售价定为每千克多少元时会获得最大利润?求出最大利润.23.[学习概念]有一组对角互余的凸四边形称为对余四边形.[理解运用](1)如图1,在对余四边形ABCD中,连接AC,∠D=30°,∠ACD=105°,AB=AC,求∠BAD的度数;(2)如图2,在凸四边形ABCD中,DA=DB,DA⊥DB,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形?并证明你的结论;(3)[拓展提升]如图3,在对余四边形ABCD中,∠A=45°.∠ABD+∠BDC=180°,BC=4.求AB+CD的长.24.已知抛物线y=ax2经过点A(2,1).(1)求抛物线的解析式;(2)如图1,直线l经过点A且与抛物线对称轴右侧交于点B,若△ABO的面积为6,求直线l的解析式;(3)如图2,直线CD与抛物线交于C、D两点,与y轴交于点(0,m),直线PC、PD与抛物线均只有一个公共点,点P的纵坐标为n,求m与n的数量关系.答案和解析1.【答案】D【解析】解:方程整理得:x2−8x−10=0,其中二次项系数为1,常数项为−10.故选:D.方程整理后为一般形式,找出二次项系数与一次项系数即可.此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c= 0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.【答案】C【解析】解:A、B、D中图形都不是中心对称图形,C中图形是中心对称图形,故选:C.根据中心对称图形的概念判断即可.本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:由“上加下减”的原则可知,将二次函数y=2x2向上平移3个单位可得到函数y=2x2+3,故选:A.直接根据“上加下减、左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.4.【答案】B∠BOC=50°.【解析】解:∵∠BOC=100°,∴∠A=12故选:B.根据圆周角定理可求得∠A=50°.本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.【答案】D【解析】解:∵y=−3(x−1)2−2是抛物线的顶点式,∴顶点坐标为(1,−2).故选:D.直接根据顶点式的特点求顶点坐标.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).6.【答案】A【解析】解:x2+10x+9=0,x2+10x=−9,x2+10x+52=−9+52,(x+5)2=16.故选:A.移项,配方(方程两边都加上一次项系数的一半的平方),即可得出答案.本题考查了用配方法解一元二次方程的应用,关键是能正确配方.7.【答案】B【解析】解:由旋转的性质可知,∠B′AB=∠BAC=30°,AB=AB′,(180°−30°)=75°,∴∠ABB′=∠AB′B=12∵∠BCB=90°,∴∠BB′C=90°−75°=15°,故选:B.利用旋转的性质,三角形面积和定理求解即可.本题考查旋转变化的性质,三角形内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.【答案】B【解析】解:设参赛球队的个数是x,每个队都要赛(x−1)场,但两队之间只有一场比赛,由题意得:x(x−1)2=15,解得:x1=6,x2=−5(不合题意,舍去),则参赛球队的个数是6个;故选:B.根据赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=x(x−1)2,由此列出方程,然后求解即可.本题考查了由实际问题抽象一元二次方程的应用,读懂题意,得到总场数与球队之间的关系是解决本题的关键.9.【答案】A【解析】解:延长BO交⊙O于E,连接CE,则∠COE+∠BOC=180°,∠BCE=90°,即CE⊥BC,∵∠AOD+∠BOC=180°,∴∠AOD=∠COE,∴AD⏜=CE⏜,∴AD=CE=2,∵BC=6,∴△BEC的面积为12BC⋅CE=12×6×2=6,∵OB=OE,∴△BOC的面积=12△BEC的面积=12×6=3,故选:A.延长BO交⊙O于E,连接CE,可得∠COE+∠BOC=180°,∠BCE=90°,由∠AOD+∠BOC=180°,∠AOD=∠COE,推出AD=CE=2,根据三角形的面积公式可求得△△BEC的面积.BEC的面积为6,由OB=OE,可得△BOC的面积=12本题主要考查了圆心角所对弧、弦的关系,圆周角定理,三角形面积公式,正确作出辅助线是解决问题的关键.10.【答案】C【解析】【分析】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为;抛物线与y轴的交点坐标抛物线,当a>0,抛物线开口向上;对称轴为直线x=−b2a为(0,c);当b2−4ac>0,抛物线与x轴有两个交点;当b2−4ac=0,抛物线与x轴有一个交点;当b2−4ac<0,抛物线与x轴没有交点.由抛物线与x轴有两个交点得到b2−4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=−1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(−1,2)得a−b+c=2,由抛物线的对称轴为直=−1得b=2a,所以c−a=2;根据二次函数的最大值问题,当x=−1时,线x=−b2a二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,所以说方程ax2+bx+c−2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−b2a=−1,∴b=2a,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,∴方程ax2+bx+c−2=0有两个相等的实数根,所以④正确.故选C.11.【答案】4【解析】解:根据题意得x1+x2=−−41=4.故答案为4.根据根与系数的关系求解.本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.12.【答案】−5【解析】解:由题意,得:a=−3,b=2,a−b=−3−2=−5,故答案为:−5.根据关于原点对称的点的坐标,可得答案.本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a,b是解题关键.13.【答案】>【解析】解:∵点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,∴当x=−2时,y1=12−2=10,当x=1时,y2=3−2=1,∴y1>y2,故答案为>.将点A(−2,y1),点B(1,y2)分别代入y=3x2−2,求出相应的y1、y2,即可比较大小.本题考查二次函数的图象上点的特点;能够用代入法求二次函数点的坐标是解题的关键.14.【答案】36(1−x)2=25【解析】【分析】本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.可先表示出第一次降价后的价格,那么第一次降价后的价格×(1−降低的百分率)=25,把相应数值代入即可求解.【解答】解:第一次降价后的价格为36×(1−x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1−x)×(1−x),则列出的方程是36(1−x)2=25.故答案为:36(1−x)2=25.15.【答案】(2√6−4)【解析】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(−2,0),到抛物线解析式得出:a=−0.5,所以抛物线解析式为y=−0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=−1时,对应的抛物线上两点之间的距离,也就是直线y=−1与抛物线相交的两点之间的距离,可以通过把y=−1代入抛物线解析式得出:−1=−0.5x2+2,解得:x=±√6,所以水面宽度增加到2√6米,比原先的宽度当然是增加了2√6−4,故答案为:(2√6−4).根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=−1代入抛物线解析式得出水面宽度,即可得出答案.此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.16.【答案】2√3−1【解析】解:如图,连接DO,延长OA到T,使得AT=OA,连接DT,FT,CT.∵四边形ABCD是矩形,∴∠OAD=90°,∵AD=√3,OA=OB=1,=√3,∴tan∠AOD=ADAO∴∠AOD=60°,∠ADO=30°,∴OD=2AO,∵AO=AT,∴OT=2AO,∴OT=OD,∴△ODT 是等边三角形,∵△DEF 是等边三角形,∴∠ODT =∠EDF =60°,DO =DT ,DE =DF ,∴∠DEO =∠FDT ,∴△DEO≌△FDT(SAS),∴FT =OE =OA =1,∵∠B =90°,BT =2+1=3,BC =√3,∴CT =√BT 2+BC 2=√32+(√3)2=2√3,∵CF ≥CT −TF ,∴CF ≥2√3−1,∴CF 的最小值为2√3−1.故答案为:2√3−1.如图,连接DO ,延长OA 到T ,使得AT =OA ,连接DT ,FT ,CT.证明△DEO≌△FDT(SAS),推出FT =OE =OA =1,利用勾股定理求出CT ,根据CF ≥CT −TF ,可得CF ≥2√3−1,由此即可解决问题.本题考查旋转变换的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.【答案】解:x 2−x −1=0,x =−b±√b 2−4ac 2a=1±√1+42×1=1±√52, ∴x 1=1+√52,x 2=1−√52.【解析】本题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式.确定a ,b ,c 的值,然后检验方程是否有解,若有解,代入公式即可求解.解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a 、b 、c 的值.18.【答案】解:(1)由题意可知,抛物线y =ax 2−2x +c 经过(−1,0),(0,−3), ∴{a +2+c =0c =−3, 解得:{a =1c =−3, 所以抛物线的解析式为:y =x 2−2x −3;(2)把x=3代入y=x2−2x−3,可得y=9−6−3=0,所以m=0.【解析】(1)取两组对应值代入y=ax2−2x+c得到关于a、c的方程组,然后解方程组即可;(2)把x=3代入二次函数的解析式求解即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.【答案】解:设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+ 2x)cm,根据题意得:(80+2x)(50+2x)=5400,解得:x1=−70(不符合题意,舍去),x2=5.答:金色纸边的宽度为5cm.【解析】设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题目条件列出方程,求出其解就可以.本题考查了根据矩形的面积公式的列一元二次方程解决实际问题的运用及一元二次方程解法的运用.解答时检验根是否符合题意是容易被忽略的地方.20.【答案】解:(1)如图,线段BD即为所求.(2)如图,线段CE即为所求.(3)如图,射线BF即为所求.【解析】(1)根据旋转变换的性质画出图形即可.(2)取格点T,连接CT交AB于点E,线段CE即为所求.(3)取格点,G,H,连接GH,AD交于点F,作射线BF,射线BF即为所求.本题考查作图−旋转变换,角平分线,垂线段等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:延长DE交⊙O于点G,如图所示:∵AB为⊙O的直径,DE⊥AB,∴DE=GE,BD⏜=BG⏜,∵D是BC⏜的中点,∴CD⏜=BD⏜=BG⏜,∴BC⏜=DG⏜,∴BC=DG=2DE;(2)解:连接BD、OD,如图所示:∵CD⏜=BG⏜,∴∠DBC=∠BDF,∴DF=BF,∵AB为⊙O的直径,AB=10,∴∠ACB=90°,OB=OD=5,∴BC=√AB2−AC2=√102−62=8,BC=4,由(1)得:DE=12∵DE⊥AB,∴OE=√OD2−DE2=√52−42=3,∴BE=OB−OE=2,设DF=BF=a,则EF=4−a,在Rt△BEF中,由勾股定理得:22+(4−a)2=a2,,解得:a=52∴DF=5.2【解析】(1)延长DE交⊙O于点G,先由垂径定理得DE=GE,BD⏜=BG⏜,再证出BC⏜=DG⏜,由圆心角、弧、弦的关系即可得出结论;(2)连接BD、OD,先由圆周角定理得∠DBC=∠BDF,得DF=BF,由圆周角定理得BC=4,再由勾股定理求出OE=3,则BE=∠ACB=90°,勾股定理得BC=8,则DE=12OB−OE=2,设DF=BF=a,则EF=4−a,然后在Rt△BEF中,由勾股定理得出方程,解方程即可.本题考查了圆周角定理、垂径定理、圆心角、弧、弦的关系、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.22.【答案】y=−10x+1000w=−10x2+1400x−40000【解析】解:(1)月销售量y(千克)与售价x(元/千克)之间的函数关系式:y=500−10(x−50)=−10x+1000,即y=−10x+1000;月销售利润w(元)与售价x(元/千克)之间的函数关系式:w=(x−40)y=(x−40)(−10x+1000)=−10x2+1400x−40000,即w=−10x2+1400x−40000,故答案为:y=−10x+1000,w=−10x2+1400x−40000;(2)根据题意得:−10x2+1400x−40000=8000,解得:x1=80,x2=60,又∵月销售量不低于250千克,则有:−10x+1000≥250,解得:x≤75,∴x1=80>75(舍去),答:销售单价应定为60元时,月销售利润达到8000元;(3)由(2)得:w=−10x2+1400x−40000=−10(x−70)2+9000,∵a=−10<0,∴抛物线的开口向下,抛物线有最高点,函数有最大值,当x=70时,w取最大值,最大值为9000元,答:售价定为每千克70元时会获得最大利润?最大利润为9000元.(1)根据一个月可售出500千克,减去因涨价而减少的数量得到月销售量y(千克)与售价x(元/千克)之间的函数关系式,根据(售价−成本)×月销售量得到月销售利润w(元)与售价x(元/千克)之间的函数关系式;(2)将月销售利润8000元代入w=−10x2+1400x−40000,解方程即可得到结果;(3)将w=−10x2+1400x−40000化为顶点式就可以求出结果.本题考查了二次函数的应用,一元二次方程的运用,解答时求出函数的解析式是解题的关键.23.【答案】解:(1)∵四边形ABCD是对余四边形,依题意得,∠B+∠D=90°,∵∠D=30°,∴∠B=90°−∠D=60°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACD=105°,∴∠BCD=∠ACB+∠ACD=165°,在四边形ABCD中,∠BAD=360°−∠B−∠ACD−∠D=360°−60°−165°−30°= 105°;(2)四边形ABCD为对余四边形,证明:∵AD⊥BD,∴∠ADB=90°,∵DA=DB,∴∠BAD=∠ABD=45°,如图2,过点D作DM⊥CD,使CD=CM,连接CM,BM,∴∠DMC=∠DCM=45°,∵∠ADB=∠CDM=90°,∴∠ADB+∠BDC=∠CDM+∠BDC,∴∠ADC=∠BDM.在△ADC和△BDM中,{DA=DB∠ADC=∠BDM DC=DM,∴△ADC≌△BDM(SAS),∴AC=BM.在Rt△MDC中,根据勾股定理得,CM2=CD2+DM2=2CD2,∵2CD2+CB2=AC2,∴CM2+CB2=BM2,∴△BCM是直角三角形,且∠BCM=90°,∵∠DCM=45°,∴∠DCB=∠BCM−∠DCM=45°,∴∠DCB+∠DAB=90°,∴四边形ABCD为对余四边形;(3)如图3,过点B作BE⊥BC交CD的延长线于点E,∵四边形ABCD为对余四边形,依题意得,∠A+∠C=90°,∵∠A=45°,∴∠C=∠E=45°=∠A,∵∠ABD+∠BDC=180°,∠BDE+BDC=180°,∴∠ABD=∠EDB,在△ABD和△EDB中,{∠A=∠E∠ABD=∠EDB BD=DB,∴△ABD≌△EDB(AAS),∴AB =ED ,EB =BC =4,在Rt △EBC 中,根据勾股定理得,BE 2+BC 2=CE 2,∴CE =4√2, 即AB +CD =4√2.【解析】(1)先根据对余四边形求出∠B =60°,进而得出∠ACB =60°,∠BCD =165°,最后用四边形内角和定理,即可得出结论;(2)先判断出∠BAD =∠ABD =45°,进而判断出∠ADC =∠BDM ,即可判断出△ADC≌△BDM(SAS),得出AC =BM.再根据勾股定理得出CM 2=CD 2+DM 2=2CD 2,进而判断出∠BCM =90°,即可得出结论;(3)先判断出∠C =∠E =45°=∠A ,再判断出∠ABD =∠EDB ,进而得出△ABD≌△EDB(AAS),得出AB =ED ,EB =BC =4,最后用勾股定理求出CE =4√2,即可得出结论.此题是四边形综合题,主要考查了新定义,等边三角形的判定和性质,勾股定理,全等三角形的判定和性质,直角三角形的判定和性质,构造出全等三角形是解本题的关键.24.【答案】解:(1)∵抛物线y =ax 2经过点A(2,1). ∴1=4a ,解得a =14,∴抛物线解析式为y =14x 2;(2)∵点A(2,1).∴直线OA 为y =12x ,如图1,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,∴12OE ×2=6,∴OE =6,∴点E(0,6),设直线BE 为y =12x +6,解{y =12x +6y =14x2得{x =6y =9或{x =−4y =4,∴B(6,9),设直线l 的解析式为y =kx +b ,∴{2k +b =16k +b =9,解得{k =2b =−3, ∴直线l 的解析式为y =2x −3;(3)设直线CD 的解析式为y =kx +m ,由{y =kx +m y =14x2去掉y 整理得14x 2−kx −m =0. 设C 、D 的坐标分别为(x C ,y C ),(x D ,y D ),∴x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,由{y =ax +c y =14x 2整理得,14x 2−ax −c =0. ∵CP 与抛物线只有一个公共点,∴△=a 2+c =0,∴c =−a 2,∴14x 2−ax +a 2=0,解得x C =2a ,同理:设直线DP 的解析式为y =bx +d ,可得x D =2b ,∴2a ⋅2b =−4m ,∴ab =−m ,联立{y =ax +c y =bx +d ,即{y =ax −a 2y =bx −b 2, 解得{x =a +b y =ab, ∴P(a +b,ab),∵点P 的纵坐标为n ,∴n =ab =−m .【解析】(1)利用待定系数法求抛物线解析式解答即可;(2)求得直线OA 的解析式,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,根据三角形面积求得OE ,得到E 的坐标,进而求得直线BE 的解析式,与抛物线解析式联立,解方程组求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式;(3)设直线CD 的解析式为y =kx +m ,与抛物线解析式联立整理得14x 2−kx −m =0.根据根与系数的关系得到x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,联立抛物线x2−ax−c=0.根据题意△=a2+c=0,解析式得到14x2−ax+a2=0,解得x C=2a,同理:设直线DP的解析式求得c=−a2,即可得到14为y=bx+d,可得x D=2b,所以4ab=−m,直线CP和直线DP联立,解方程求得交点P((a+b,ab),即可求得n=−m.本题考查了待定系数法求二次函数的解析式,待定系数法求一次函数的解析式,两条直线相交或平行问题,直线与抛物线的交点问题,方程思想的运用是解题的关键.。
î2020~2021 学年度第一学期期中测试八年级数学参考答案一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)题号 1 2 3 4 5 6 7 8 9 10答案C D A B C C C D B B二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分.把答案填在题中横线上.)11.稳定性12.213.1114.AC=AD或∠C=∠D 或∠ABC=∠ABD15.1616.90三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17.解:∵AE平分∠BAC1∴∠BAE=2∠BAC=30°∴∠BAC=60°(3分)∵AD为BC边上的高∴∠ADC=90°又∠CAD=20°∴∠C=(90-20)°=70°(6分)∴∠B=180-∠BAC-∠C=(180-60-70)°=50°(7分)∴∠B的度数为50°(8分)注:本题其它解法参照评分.18.证:∵AB⊥AC,CD⊥BD∴∠A=∠D =90°(2分)在R t△AB C和R t△D C B中ìïAB=D C∵íïB C=C B………… (6分)R t△AB C≌R t△D C B(H L)(7分)∴AC=BD(8分)19.解:(1)设底边长为xcm,则腰长为2xcm,(1分)依题意有:x+2x+2x=35,(2分)解得:x=7,则2x=14(3分)故各边长为7cm,14cm,14cm(4分)(2)①若腰长为9c m,则底边长为35-2×9=17c m,(5分)∵9+9>17,能组成三角形;(6分)②若底边长为9c m,则腰长为(35-9)÷2=13c m,(7分)ïî∵9+13>13,能组成三角形综上,三角形另外两边长为9cm 和17cm 或13cm 和13cm .(8分)20.解:(1)C'(6,-2);(2分)(2) 如图,线段B D 即为所求;(说明:连B 点及其关于A C 的对称点即可)(4分) (3) ①如图,线段CE 即为所求(说明:构造三垂直可得AM⊥AB,再平移至CN , 或直接构造R t △CN P );(6分)②如图,线段AF 即为所求(说明:利用垂心)(8分)注:本题几问其它解法参照评分.21.(1)证明:∵AD∥BE ∴∠A=∠B(1 分) 在△ADC 和△BCE 中ìAD=BC íÐA=ÐB ïAC=BE ∴△ADC≌△BCE(SAS )(3 分) ∴CD=CE(4 分) (2) △BEF 是等腰三角形 ∵△ADC≌△BCE ∴∠ACD =∠BEC (5 分) ∵CD=CE∴∠CDE=∠CED(6 分) 又∠BFE=∠CDE+∠DCF ∠BEF=∠CED+∠BEC ∴∠BFE =∠BEF (7 分) ∴BF=BE即:△BEF是等腰三角形(8分)22.(1)证明:∵AB ∥D F ∴∠A=∠EDF(1 分)在△ABE 和△DFE 中DïîìÐAED=ÐDEF íÐA =ÐEDF ïBE=EF ∴△ABE≌△DFE(AAS )(3 分) ∴AE=DE(4 分)(2) 过 B 作 BH∥DF 交 CA 延长线于点 H .∴∠HBE=∠F=∠AEB ∠H=∠ACF=∠ACB(6 分) ∴BH=HE =BC =5(8 分) ∵CE=3∴CH=HE +CE =8(9 分) 又∠BA D =90°1∴CA=HA= 2CH=4(10 分)注:本题几问其它解法参照评分.23.证(1)如图 1,∵I 为△ABC 三内角平分线的交点1 ∴∠I B C =2 1∠AB C ,∠I C B = 2∠ACB(1 分)在△AB C 中,∠AB C +∠A C B =180°-∠BA C =180°-30°=150°(2 分)在△I B C 中,∠B I C =180°-(∠I B C +∠I C B )1=180°-2 1 (∠AB C +∠A C B )图1=180°- 2×150°=105°(3分)(2)如图2,在AB 上取一点D ,使A D =A C ,连接I A ,D I ,C D (4分) 设∠CBA=2x,则∠ACB=4x∵点 I 为△ABC 三内角平分线的交点∴∠D A I =∠C A I ,∠A C I =∠B C I =2x ,∠AB I =∠C B I =x 又A D =A C ,A I =A I ∴△D A I ≌△C A I ,∴C I =D I ,∠A D I =∠A C I =2x (6分) ∵∠A D I 是△B D I 的外角,图2 ∴∠D I B =∠A D I -∠AB I =2x -x =x =∠AB I ∴D I =B D =I C (7分){⎝{⎝{⎝∴AB =B D +A D =C I +A C (8分) (3)∠AB C =40°(10分)24.(1)点C 的坐标为:(3,7).(3分)(2)如图 1,过 E 作 EH⊥x 轴于点 H∴∠EHD=∠BDE=90°∴∠BDO+∠OBD=∠BDO+∠EDH=90° ∴∠OBD=∠EDH(4 分) 在△OBD 和△HDE 中{3OBD =3EDH|3BOD =3DHE |DB=DE ∴△O B D ≌△HD E (AA S ).∴OB=DH,OD=EH…………(5分)图1 又 OB=OA∴OA+DA=AD+DH=AH=EH∴∠OBA=∠OAB=∠EAH=∠AEH=45°(6 分) ∴∠BAE=180°-∠OAB -∠EAH=90° ∴AB⊥AE(7 分)(3) 如图 2,过 C 作 CG⊥y 轴于点 G∴∠CGB=∠BOA=90°∴∠GCB+∠GBC=∠GBC+∠OBA=90° ∴∠BCG=∠OBA(8 分) 在△BCG 和△AOB 中{3BCG=3OBA |3BGC=3AOB |BC=BA ∴△B C G ≌△A O B (AA S ). ∴CG=OB,BG=OA=4(9 分) 又 OB=BF ∴CG=BF(10 分) 在△CGP 和△FBP 中{3CGP = 3FBP 图 2 |3CPG=3FPB |CG=BF ∴△C G P ≌△FBP (AA S ).∴BP=GP= 1 2 BG=12OA=2(12分)。
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 1.5D. -2.12. 如果a < b,那么下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 < b - 1C. -a > -bD. -a < -b3. 下列函数中,自变量x的取值范围是全体实数的是()A. y = 1/xB. y = √xC. y = x²D. y = |x|4. 在等腰三角形ABC中,若底边BC的长度为6cm,腰AB的长度为8cm,那么顶角A的度数是()A. 30°B. 45°C. 60°D. 75°5. 下列各图中,能正确表示y = kx + b(k ≠ 0)的是()(此处省略图片,假设为选项A、B、C、D四幅图)6. 已知一次函数y = kx + b的图象经过点A(2,3)和B(-1,-1),则该函数的解析式为()A. y = 2x - 1B. y = -2x + 1C. y = x + 1D. y = -x + 17. 在直角坐标系中,点P的坐标为(3,-4),点Q在x轴上,且PQ的长度为5,则点Q的坐标是()A. (8,0)B. (-2,0)C. (-8,0)D. (2,0)8. 如果a² + b² = 1,那么a + b的取值范围是()A. (-1, 1)B. (-√2, √2)C. [0, √2]D. (-√2, 0) ∪ (0, √2)9. 下列关于一元二次方程的根的判别式,正确的是()A. △ = b² - 4ac > 0,方程有两个不相等的实数根B. △ = b² - 4ac = 0,方程有两个相等的实数根C. △ = b² - 4ac < 0,方程没有实数根D. 以上都是10. 下列各数中,不是有理数的是()A. √4B. -√9C. 0D. √-1二、填空题(每题5分,共25分)11. 若m² - 4m + 3 = 0,则m的值为__________。
2020-2021学年湖北省武汉市八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A. 1cmB. 2cmC. 7cmD. 10cm2.下列图案中,是轴对称图形的是()A. B. C. D.3.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定4.用三个正多边形镶嵌成一个平面时,若前两种是正方形和正六边形,则第三种是()A. 正十二边形B. 正十边形C. 正八边形D. 正三角形5.如图所示,△ABC≌△BDA,如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 6cmB. 4cmC. 7cmD. 不能确定6.7.正多边形的一个内角等于144°,则该多边形是正()边形.A. 8B. 9C. 10D. 117.如果两个三角形有两边及一角对应相等,那么这两个三角形()A. 一定全等B. 一定不全等C. 不一定全等D. 面积相等8.如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OA1B1,求∠A1OB的度数()A. 100°B. 70°C. 40°D. 30°9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.其中正确的是()A. ①②④B. ①②③C. ②③④D. ①③10.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是()A. ①②③B. ①②④C. ①③④D. ①②③④二、填空题(本大题共6小题,共18.0分)11.△ABC中,∠A=80°,∠B=3∠C,则∠B=______ °.12.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是______ cm.13.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,△ABC的面积是7,DE=2,AB=4,则AC长是______.14.如图,平面直角坐标系中有一正方形OABC,点C的坐标为(−2,−1),则点A坐标为______,点B坐标为______.15.如图,在△ABC中,AB=AC,∠BAC=90°,点E在边AC上,连接BE,过点A作AD⊥BE于点D,连接DC,若AD=4,则△ADC的面积为______.16.等边三角形ABC的边长为6,点E在AC边上从点A向点C运动,同时点F在BC边上从点C向点B运动,速度相同,连接AF,BE相交于点P.当点E从点A运动到点C时,则点P经过的路径长______ .三、解答题(本大题共8小题,共72.0分)17.已知等腰三角形的一边长等于5,另一边长等于9,求这个三角形的周长.18.如图,已知AC、BD相交于点O,AD=BC,AC=BD,求证:OA=OB.19.如图,在△ABC中,AB=AC,∠BAC=80°,D是AC上一点,E是BC延长线上一点,连接BD,DE,若∠ABD=20°,BD=DE,求∠CDE的度数.20.如图,△ABC中,AB=AC,∠DBC=∠DCB,求证:直线AD是线段BC的垂直平分线.21.四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.求证:(1)△CBE≌△CDF;(2)AB+DF=AF.22.等腰Rt△ABC中,∠ACB=90°,AC=BC,点G是BC上一点,CF⊥AG于E,BF⊥CF,D为AB中点,连接DF.(1)求证:△AEC≌△CFB;(2)求证:EF=√2DF.23.如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=374,求△AED的面积.24.在平面直角坐标系中,点A、B分别在x轴、y轴上,直线l是第一、三象限的夹角平分线,P为直线l上的一点,且AP⊥AB,AP=AB(1)如图1,若点A坐标为(−1,0),试求点B的坐标(2)如图2,点Q位于点P的右侧,且PQ//x轴,连接AQ,E为y轴正半轴上一点,且AE=AQ,请探究线段OE、PQ、OB三者之间的数量关系?(3)如图3,在(1)的条件下,M为线段PB上的一点,且M(34 , 14),试求∠PAO+∠MAP的度数.答案和解析1.【答案】C【解析】解:设第三根小棒的长度为xcm,由题意得:6−4<x<6+4,解得:2<x<10,故选:C.根据三角形的三边关系可得6−4<第三根小棒的长度<6+4,再解不等式可得答案.此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.【答案】B【解析】【分析】此题主要考查了轴对称图形,关键是正确确定对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A.不是轴对称图形,故此选项错误;B.是轴对称图形,故此选项正确;C.不是轴对称图形,故此选项错误;D.不是轴对称图形,故此选项错误.故选B.3.【答案】B【解析】【分析】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.根据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选B.4.【答案】A【解析】【分析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断.本题考查正多边形的镶嵌问题.【解答】解:正方形的每个内角是90°,正六边形每个内角是180°−360°÷6=120°,∵360°−90°−120°=150°,∴第三种正多边形的每个内角是150°又正十二边形每个内角是180°−360°÷12=150°,故第三种正多边形是正十二边形.故选A.5.【答案】B【解析】解:∵△ABC≌△BDA,∴BC=AD,∵AD=4cm,∴BC=4cm,故选B.根据全等三角形的性质得出BC=AD,代入求出即可.本题考查了全等三角形的性质的应用,解此题的关键是能根据全等三角形的性质得出BC=AD,注意:全等三角形的对应边相等,对应角相等.6.【答案】C【解析】试题分析:设正多边形是n边形,由题意得(n−2)×180°=144°n.解得n=10,故选C.考点:多边形内角与外角.7.【答案】C【解析】【分析】本题主要考查对全等三角形的判定的理解和掌握,能熟练地运用全等三角形的判定定理进行推理是解此题的关键.根据全等三角形的判定定理判断即可.【解答】解:非直角三角形的两个三角形有两边及一角对应相等,这一角必须是两边的夹角对应相等,才能根据SAS,判断两个三角形全等,否则不能,例如若AB=DE,AC=DF,∠A=∠F,而△ABC和△DEF不一定全等,面积也不一定相等,故选:C.8.【答案】B【解析】解:∠BOB1=100°,∠AOB=30°,则∠A1OB=∠BOB1−∠AOB=100°−30°=70°.故选B.根据∠A1OB=∠BOB1−∠AOB即可求解.本题考查了图形的旋转,正确确定旋转角是关键.9.【答案】A【解析】【分析】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠BEC=90°,即可判断出正确的结论.∠AED=∠AEF+∠FED=12【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB,∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∠BEC=90°,所以①正确.∴∠AED=∠AEF+∠FED=12故选A.10.【答案】D【解析】解:∵∠CAD=30°,AC=AD,∴∠ACD=∠ADC=75°,∵CE⊥CD,∴∠ECA=165°,①正确;∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE,∴BE=AD,③正确;∵BC=AD,∴BE=BC,②正确;过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,∴DM=12AD=12BC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°−∠ACD=15°,∠MDC=90°−∠ACD=15°,在△CMD和△DNC中,{∠CMD=∠CND ∠MDC=∠NCD CD=CD,∴△CMD≌△DNC,∴CN=DM=12AC=12BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确,故选:D.①根据:∠CAD=30°,AC=BC=AD,CE⊥CD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;③根据CE⊥CD,∠ACB=90°,AC=BC,利用SAS求证△ACD≌△BCE即可得出结论;②由③的结论,等量代换即可;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得DM=12BC,求证△CMD≌△DNC,可得CN=DM=12AC=12BC,从而得出CN=BN.然后即可得出结论.此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握.11.【答案】75【解析】解:∵∠A=80°,∴∠B+∠C=180°−80°=100°,∵∠B=3∠C,∴3∠C+∠C=100°,∠C=25°,∴∠B=75°.故答案为:75.根据三角形内角和定理可得∠B+∠C=180°−80°=100°,然后再把∠B=3∠C代入可得∠C的度数,进而可得∠B的度数.此题主要考查了三角形内角和定理,关键是掌握三角形内角和为180°.12.【答案】17【解析】【分析】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.13.【答案】3【解析】【分析】本题考查了角平分线的性质和三角形的面积公式.利用角平分线上的点到角两边的距离相等是解题的关键,过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DE=DH,再根据S△ABC=S△ABD+S△ACD可得AC的长.【解答】解:如图,过点D作DH⊥AC于H,∵DE⊥AB于点E,AD是△ABC中∠BAC的角平分线,∴DE=DH,∵S△ABC=S△ABD+S△ACD,即12×AB×DE+12×DH×AC=7,∴12×4×2+12×2×AC=7,解得AC=3.故答案为3.14.【答案】(−1,2);(−3,1)【解析】解:如图,过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,∵C(−2,−1),∴OE=2,CE=1,∵四边形OABC是正方形,∴OA=OC=BC,易求∠AOD=∠COE=∠BCF,又∵∠ODA=∠OEC=∠F=90°,∴△AOD≌△COE≌△BCF,∴AD=CE=BF=1,OD=OE=CF=2,∴点A的坐标为(−1,2),EF=2−1=1,点B到y轴的距离为1+2=3,∴点B的坐标为(−3,1).故答案为:(−1,2);(−3,1).过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,根据点C的坐标求出OE、CE,再根据正方形的性质可得OA=OC=BC,再求出∠AOD=∠COE=∠BCF,然后求出△AOD、△COE、△BCF全等,根据全等三角形对应边相等可得AD=CE=BF,OD=OE=CF,然后求解即可.本题考查了正方形的性质,全等三角形的判定与性质,坐标与图形性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形.15.【答案】8【解析】解:如图,作CH⊥AD交AD的延长线于H.∵AD⊥BE,CH⊥AH,∴∠ADB=∠H=∠BAC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAH=90°,∴∠CAH=∠ABD,∵AB=AC,∴△ABD≌△CAH(AAS),∴AD=CH=4,×4×4=8.∴S△ADC=12故答案为8.如图,作CH⊥AD交AD的延长线于H.只要证明△ABD≌△CAH(AAS),推出AD=CH=4,即可解决问题;本题考查全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.16.【答案】4√33π【解析】解:如图,∵△ABC是等边三角形,∴AB=AC=BC=6,∠BAC=∠C=60°.∵点E在AC边上从点A向点C运动,同时点F在BC边上从点C向点B运动,速度相同∴AE=CF.点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形.且∠ABP=∠BAP=30°,∴∠AOB=120°,∵AB=6,∴OA=2√3,∴点P的路径是:nπr180=120π⋅2√3180=4√33π.故答案为:4√3π3.点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,由弧线长公式就可以得出结论.本题考查了等边三角形的性质、圆周角定理、弧线长公式的运用.17.【答案】解:若底边长为5,腰长为9,则它的周长为:5+9+9=23;若底边长为9,腰长为5,则它的周长为:9+5+5=19.故它的周长为23或19.【解析】此题考查了等腰三角形的性质以及三角形三边关系有关知识,分别从若底边长为5,腰长为9与若底边长为9,腰长为5,去分析求解即可求得答案.18.【答案】证明:在△ABD和△BAC中,∵{AD=BC BD=AC AB=BA,∴△ABD≌△BAC(SSS),∴∠ABD=∠BAC,∴OA=OB.【解析】【试题解析】本题考查全等三角形的判定和性质,以及等腰三角形的判定,掌握全等三角形的判定方法是解题关键.首先利用SSS证得△ABD≌△BAC,根据全等三角形的性质得出∠ABD=∠BAC,再根据等腰三角形的判定即可得证.19.【答案】解:∵在△ABC中,AB=AC,∠BAC=80°,(180°−80°)=50°,∴∠ABC=∠ACB=12∵∠ABD=20°,∴∠DBC=∠ABC−∠ABD=30°.∵BD=DE,∴∠E=∠DBC=30°,∴∠CDE=∠ACB−∠E=20°.【解析】由等腰三角形的性质以及三角形内角和定理可得∠ABC=∠ACB=50°,那么∠DBC=∠ABC−∠ABD=30°.因为△BDE是等腰三角形,所以∠E=∠DBC=30°,然后根据三角形外角的性质即可求出∠CDE的度数.本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角的性质,求出∠ACB与∠E的度数是解题关键.20.【答案】证明:∵∠DBC=∠DCB,∴DB=DC,∴点D在线段BC的垂直平分线上,∵AB=AC,∴点A在线段BC的垂直平分线上,∴直线AD是线段BC的垂直平分线.【解析】欲证明直线AD是线段BC的垂直平分线,只要证明点A、点D在线段BC的垂直平分线上即可.本题考查线段的垂直平分线的定义,解题的关键是知道一条直线上有两个点在线段BC 的垂直平分线上,那么这条直线是线段BC的垂直平分线,属于中考常考题型.21.【答案】证明:(1)∵AC平分∠BAD,CE⊥AB,CF⊥AD,∴CE=CF.∵∠ABC+∠D=180°,∠ABC+∠EBC=180°,∴∠EBC=∠D,∵∠CEB=∠CFD=90°,∴△CBE≌△CDF.(2)证明:∵CE=CF,AC=AC,∴Rt△ACE≌Rt△ACF.∴AE=AF,∴AB+DF=AB+BE=AE=AF.【解析】本题考查了全等三角形的判定和全等三角形的性质.(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+ DF=AF即可.22.【答案】证明:(1)如图,∵CF⊥AG,BF⊥CF,∴∠BFC=∠CEA=90°,∴∠2+∠3=90°,又∵∠ACB=90°,∴∠1+∠3=90°,∴∠1=∠2,∴在△AEC和△CFB中,{∠BFC=∠CEA∠1=∠2BC=AC,∴△AEC≌△CFB(AAS);(2)连接ED,CD,如图所示:∵D为AB的中点,∴CD=BD=AD,∠CDA=90°,∴∠BCD=∠CBD=45°,∴∠DCF=45°−∠1,∵∠4=∠CAB−∠2=45°−∠2,由(1)知:∠1=∠2,∴∠4=∠DCF,由(1)知:△AEC≌△CFB,∴FC=AE,∴△AED≌△CFD(SAS),∴ED=FD,∠FDC=∠EDA,∴∠FDE=∠CDA=90°,即△FDE是等腰直角三角形,∴EF=√2DF.【解析】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造全等三角形是解题的关键.(1)根据垂直的定义得到∠BCF=∠CAE=90°−∠ACE,根据全等三角形的判定即可得到结论;(2)连接CD,DE,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,根据余角的性质得到∠FBD=∠DCE,由全等三角形的性质得到AE=CF,CE=BF,推出△BFD≌△CDE,由全等三角形的性质得到DF=DE,∠FDB=∠EDC,证得△DEF是等腰直角三角形,即可得到结论.23.【答案】(1)证明:延长DB至E,使BE=CD,连接AE,∵AB=AD,∴∠ABD=∠ADB,∵∠ABE+∠ABD=180°,∠ADC+∠ADB=180°,∴∠ABE=∠ADC,在△ABE和△ADC中,{BE=DC∠ABE=∠ADC AB=AD,∴△ABE≌△ADC,∴∠C=∠E=60°,∴△AEC为等边三角形,∴AC=CE,∵BC+BE=CE,∴BC+CD=AC;(2)证明:∵AB=AD,∴∠ABD=∠ADB,∵∠CAD+∠ADB=∠ACB=60°,∠CAD=∠ABE,∴∠ABE+∠ABD=∠CAD+∠ADB=60°,∴△BEC为等边三角形,过点A作AN//BC交EB于N,∴△ENA为等边三角形,∠NAB=∠ABD,∴AN=AE,∴BN=AC,∴∠NAB=∠ADC,在△BNA和△ACD中,{∠ANB=∠DCA ∠NAB=∠CDA BN=AC,∴△BNA≌△ACD,∴AN=CD,∴CD=AE,延长EF至M使得EF=FM,连接BM,∴△AEF≌△BMF,∴AE=BM,AE//BM,∴BM=CD,∠MBC=∠ECB=60°,∴∠EBM=∠EBC+∠MBC=120°,又∵∠ECD=∠EBM=120°,∴△BEM≌△CED,∴∠BEF=∠CED,∵EF=AE,∴∠EFA=∠EAF,∴∠BEF+∠EBF=∠ACB+∠ABD,∴∠BEF+60°−∠ABD=∠ABD+60°,∴∠BEF=2∠ABD∠CED=2∠ABD;(3)解:由(2)得,△EMD是等边三角形,∴DE=2EF=2×374=372,过点A作AP⊥DE于P,由(2)可证△EFG≌△EAP,∴AP=FG=4,∴S△AED=12DE×AP=12×372×4=37.【解析】(1)延长DB至E,使BE=CD,连接AE,证明△ABE≌△ADC,得到△AEC为等边三角形,根据等边三角形的性质证明;(2)过点A作AN//BC交EB于N,延长EF至M使得EF=FM,连接BM,证明△BNA≌△ACD,△BEM≌△CED,根据全等三角形的性质证明;(3)利用(2)的结论,根据三角形的面积公式计算即可.本题考查的是三角形的知识的综合运用,正确全等三角形的判定定理和性质定理、等边三角形的判定和性质是解题的关键.24.【答案】解:(1)如图1中,作PH⊥x轴于H.∵A(−1,0),∴OA=1,∵PA⊥AB,∴∠PAB=∠AOB=∠PHA=90°,∴∠PAH+∠APH=90°,∠PAH+∠OAB=90°,∴∠APH=∠OAB,∵AP=AB,∴△APH≌△BAO(AAS),∴PH=OA=1,AH=OB,∵直线l是第一、三象限的夹角平分线,∴∠POH=45°,△POH是等腰直角三角形,∴OH=OP=1,H=OA+OH=1+1=2,∴OB=AH=2,∴B(0,−2).(2)结论:OE−OB=PQ.理由:如图2中,作PH⊥x轴于H,QT⊥x轴于T,在OE上截取OK,使得OK=OB,连接AK.∵PQ//x轴,PH⊥x轴,QT⊥x轴,∴四边形PQTH是矩形,∴QT=PH=OA,PQ=TH,∵AE=AQ,∠AOE=∠ATQ=90°,∴△AOE≌△QTA(HL),∴EO=AT,∵OK=OB=AH,∴EK=HT=PQ,∴OE−OB=OE−OK=AT−AH=HT=PQ.(3)如图3中,设AM交直线l于J,直线l交AB于T.∵A(−1,0),M(34,14),∴直线AM 的解析式为y =17x +17,由{y =x y =17x +17,解得{x =16y =16,可得J(16,16), ∵A(−1,0),B(0,−2),∴直线AB 的解析式为y =−2x −2,由{y =−2x −2y =x ,解得{x =−23y =−23,可得T(−23,−23), ∴JA =√(16+1)2+(16)2=5√26,JT =√(16+23)2+(16+23)2=5√26, ∴JA =JT ,∴∠JQT =∠JTA ,∵∠JAT +∠PAM =90°,∠APO +∠JTA =90°,∴∠PAM =∠APO ,∵∠AOT =45°=∠APO +∠PAO ,∴∠PAO +∠MAP =45°.【解析】(1)如图1中,作PH ⊥x 轴于H.证明△APH≌△BAO(AAS)即可解决问题.(2)结论:OE −OB =PQ.如图2中,作PH ⊥x 轴于H ,QT ⊥x 轴于T ,在OE 上截取OK ,使得OK =OB ,连接AK.证明△AOE≌△QTA(HL)即可解决问题.(3)如图3中,设AM 交直线l 于J ,直线l 交AB 于T.想办法证明JA =JT ,推出∠JQT =∠JTA ,推出∠PAM =∠APO 即可解决问题.本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理,一次函数的性质等知识,解题的关键是学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.。
青山区第一学区2019-2020学年度第一学期期中考试八年级数学试卷一.选择题(共10小题,每小题3分,共30分)1.下列图形中轴对称图形是( )A.B. C. . D. .2.下列图形具有稳定性的是( )A. 正方形B. 三角形C. 长方形D. 正五边形3.下列线段能组成三角形的是( )A. 3、4、5B. 5、6、11C. 3、6、10D. 3、3、84.一个三角形中最多可以有( )个直角A . 3 B. 2 C. 1 D. 05.下列条件中一定能判定△ABC ≌△DEF 的是( )A. ∠A =∠D ,∠B =∠E ,∠C =∠FB. ∠A =∠D ,AB =DE ,BC =EFC. AB =DE ,AC =DF ,BC =EFD. AB =DE ,∠A =∠E ,∠B =∠F6.如图所示,将两根钢条,AA BB ''的中点O 连在一起,使,AA BB ''可以绕着点O 自由转动,就做成了一个测量工具,则''A B 的长等于内槽宽AB ,那么判定OAB OA B ≅''的理由是:( )A. SASB. ASAC. AASD. SSS7.如图,在3×3的正方形网格中由四个格点A ,B ,C ,D ,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A. A 点B. B 点C. C 点D. D 点8.如图,△ABC 中,∠ABC 、∠ACB 的角平分线交于点O ,过O 点作MN ∥BC 分别交AB 、AC 于M 、N 两点.AB =7,AC =8,CB =9,则△AMN 的周长是( )A. 14B. 16C. 17D. 159.如图,平面上到两两相交的三条直线a 、b 、c 的距离都相等的点一共有( )A. 1个B. 4个C. 2个D. 3个10.如图,∠AOB =30°,M 、N 分别是边OA 、OB 上的定点,P 、Q 分别是边OB 、OA 上的动点,记∠AMP =∠1,∠ONQ =∠2,当MP +PQ +QN 最小时,则关于∠1、∠2的数量关系正确的是( )A. ∠1+∠2=90°B. 2∠2-∠1=30°C. 2∠1+∠2=180°D. ∠1-∠2=90°二、填空题(本大题共6个小题,每小题3分,共18分)11.三角形形内角和为_______度,三角形外角和为________度,多边形外角和为_______度12.点M (1,2)关于x 轴对称点的坐标为__________.13.如图,在ABC 中,AB AC =,点D 在AC 上,且BD BC AD ==,则A =_____度.14.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B 的坐标.15.一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:°.16.如图,△ABC中,AC =8,AB=10,△ABC的面积为30,AD平分∠BAC,F、E分别为AC、AD上两动点,连接CE、EF,则CE+EF的最小值为_______三、解答题(共8题,共72分)17.已知△ABC中,∠A=2∠B,∠C=∠B+20°求△ABC 的各内角度数.18.如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.19.用一条长为20cm的细铁丝能围成一边长为4cm的等腰三角形吗?若能,请求出各边长;若不能,请说明理由.20.如图,△ABC中A点坐标为(-2,1),B点的坐标为(-1,2)(1) 请在图中建立平面直角坐标系,并写出C点坐标(直接写答案)(2) 作出△ABC关于y轴对称图形△A1B1C1,并直接写出A1、B1、C1三点坐标(3) 在x轴上求作一点M,使△A B1M的周长最小,请找到M点(保留作图痕迹)并直接写出M点坐标21.如图,在等边三角形△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD于Q,求证:(1) BP=2PQ(2) 连PC,若BP⊥PC,求APPQ的值22.已知,AD BE⊥(1) 如图1,若BD=DC,点C在AE的垂直平分线上.AB+BD与DE有什么关系?请给出证明.(2) 如图2,若2B E∠=∠, AB+BD与DE是否还存在(1)中的关系?若存在,请给出证明,若不存在,请说明理由.(3) 若90BAE∠=︒,则AB+AE与AD+BE有怎样的关系?答:AB+AE AD+BE (填“>”,“<”或“=”)23.如图1,Rt△ABC≌Rt△DFE,其中∠ACB=∠DFE=90°,BC=EF.(1)若两个三角形按图2方式放置,AC、DF交于点O,连接AD、BO,则AF与CD数量关系为,BO与AD 的位置关系为 ;(2)若两个三角形按图3方式放置,其中C 、B (D )、F 在一条直线上,连接AE ,M 为AE 中点,连接FM 、CM .探究线段FM 与CM 之间的关系,并证明;(3)若两个三角形按图4方式放置,其中B 、C (D )、F 在一条直线上,点G 、H 分别为FC 、AC 的中点,连接GH 、BE 交于点K ,求证:BK =EK .24.如图,ABC ∆的顶点A (0,3),B (b ,0),C (c ,0)在x 轴上,若2(3)30b c ++-=.(1)请判断ABC ∆的形状并予以证明;(2)如图,过AB 上一点D 作射线交y 轴负半轴与点E ,连CD 交y 轴与F 点.若BD=FD ,求BCD ∠度数.(3)在(2)的条件下,BCD DEF ∠=∠,H 是AB 延长线上一动点,作60CHG ∠=︒,HG 交射线DE 于点G 点,则DG DH AD-的值是否变化?若变化,请说明理由;若不变,请求出该值.。
八年级数学试卷2024.11(请将答案写在答题卡上 满分:120分 时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.下列四种化学仪器的示意图中,是轴对称图形的是()A .B .C .D .2.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是()A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .三角形的稳定性3.若三角形的两边长分别为4和9,则该三角形第三边的长可能是()A .7B .4C .13D .54.若从一个多边形的一个顶点出发,可以作7条对角线.则这个多边形是( )A .七边形B .八边形C .九边形D .十边形5.如图,△ABC ≌△DEF ,BC =6,CF =2.则EC 的长为()第5题图A .2B .3C .4D .56.如图,在△ABC 中,∠C =90°,以点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N为圆心,大于的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D ,若CD =4,AB =7,则△ABD 的面积是()第6题图12MNA .5B .7C .14D .287.在如图的三角形纸片中,AB =8cm ,BC =6cm ,AC =5cm ,沿过点B 的直线折叠这个三角形,使点C 落在边AB 上的点E 处,折痕为BD ,则△AED 的周长为()第7题图A .5cm B .6cmC .7cmD .8cm8.如图,在△ABC 中,AB =BC ,∠ABC =120°,AB 的垂直平分线交AC 于点D .若AC =9,则AD 的长为()第8题图A .2B .3C .4D .59.如图,∠ABD 与∠ACD 的角平分线交于点P ,∠A =60°,∠D =10°,则∠P 为()第9题图A .30°B .25°C .20°D .15°10.如图,在△ABC 中,AB =AC ,BC =6,,直线EF 垂直平分线段AB ,若点D 为边BC 的中点,点G 为直线EF 上一动点,则△BDG 周长的最小值为()第10题图A .12B .13C .10D .14第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卡的指定位置.11.已知点P (a ,2)和点Q (-4,b )关于x 轴对称.则a +b =______.27ABC S △12.若n 边形的内角和与外角和相等.则n =______.13.如图,点D 在AB 上,点E 在AC 上,AB =AC ,请补充一个条件,使△ABE ≌△ACD ,你补充的条件是______.第13题图14.已知等腰三角形一个内角的度数为80°.则这个等腰三角形底角的度数为______.15.如图,在△ABC 中,∠ACB =36°,∠BAC =117°,过A 作AD ⊥BC 于点D ,CO 为△ABC 的角平分线,连接OD ,过O 作OE ⊥AB 交BC 于点E ,交AD 延长线于点F .则下列四个结论,其中一定正确的是______.(填写正确序号)①∠AOC =45°;②;③∠COD =∠B ;④BC -AC =AF .第15题图16.如图,在△ABC 中,∠ACB =90°,∠B =50°,O 是射线CB 上的一个动点,连接OA ,将△ACO 沿着AO 翻折得到△ADO ,当△ADO 的三边与△ABC 的三边有一组边垂直时,则∠AOC =______°.第16题图三、解答题(共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分8分)如图,AD ⊥BC ,垂足为D ,∠1=∠2,∠C =60°.求∠BAC 的度数.AC OEBC BE18.(本题满分8分)如图,AE⊥BC,DF⊥BC,垂足分别为E,F,且BF=CE,AE=DF.求证:AB∥CD.19.(本题满分8分)如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=∠C+10°.求∠C的度数.20.(本题满分8分)如图,在等边△ABC中,D为射线BA上一点,过D作DE∥BC交射线CA于点E,点F为AB边上一点,BF=DE,过F作FH⊥CE,垂足为点H.(1)求证:DF=BC;(2)求证:H为CE中点.21.(本题满分8分)如图,是由边长为1的小正方形组成的15×9的网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点,AB=AC=10,仅用无刻度直尺在给定的网格中完成画图,画图的过程用虚线表示.(1)在BC 上画点D ,使得AD 平分△ABC 的面积;(2)在AB 边上画点E ,使得∠BCE =∠BAD ;(3)M 为AC 边上一点,在AB 边上画点N ,使得AN =AM ;(4)在平面内画点G ,使得NG =2ND .22.(本题满分10分)已知,在△ABC 与△ADE 中,AE =AC ,AB =AD ,∠BAC +∠DAE =180°.(1)如图1,若AB =AC ,AM ⊥BC 于点M .①求证:∠E =∠BAM ;②猜想AM 与DE 之间的数量关系,并证明.(2)如图2,求证:.23.(本题满分10分)如图,O 是△ABM 内一点,OB =OM ,,.(1)已知,△ABC 为等边三角形.①如图1,若点C 与点M 重合,请补充条件:______°,可得结论:OA =OB =OM ;②如图2,若点C 在边AM 上,在①补充的条件下,结论OA =OB =OM 是否仍成立?并说明理由;(2)如图3,请探究当与之间满足什么数量关系时,结论OA =OB =OM 仍然成立,并说明理由.24.(本题满分12分)如图,在平面直角坐标系中,点A (a ,0),点B (0,b ),且a ,b 满足.(1)直接写出△AOB 的面积;(2)如图1,若点C 为线段OB 上一点,连接AC ,作CD ⊥AC ,且CD =AC ,连接BD .求∠DBA 的度数;(3)如图2,在(2)的条件下,连接OD ,点E ,F 分别为OD ,AB 的中点,连接CE ,EF ,请探究线段CE 与EF之间的关系,并证明你的结论.ABC ADE S S =△△BAM α∠=BOM β∠=β=αβ()20a b -=2024~2025学年度第一学期期中质量检测八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)题号12345678910答案CDADCCCBBA二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.)11.-6;12.4;13.AD =AE 或∠B =∠C 或∠AEB =∠ADC 等;14.80°或50°;15.①③④;16.70°或45°或25°.三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17.解:∵AD ⊥BC ∴∠ADC =∠ADB =90°,∴∠1+∠2=90°,∠DAC +∠C =90°∵∠1=∠2,∠C =60°,∴∠1=∠2=45°,∠DAC =90°-∠C =30°∴∠BAC =∠1+∠DAC =45°+30°=75°.注:本题其它解法参照评分.18.证明:∵AE ⊥BC ,DF ⊥BC ,∴∠AEB=∠DFC=90°,∵BF =CE ∴BF -EF =CE -BC 即:BE =CF在△ABE 和△DCF 中 △ABE ≌△DCF (SAS )∴∠B =∠C ∴AB ∥CD .BE CFAEB DFC AE DF =∠=∠=⎧⎪⎨⎪⎩注:本题其它解法参照评分.19.解:∵AB =AD =DC ,∴设∠C =∠DAC =x ° 则∠B =∠ADB =2x .∵∠BAD =∠C +10° ∴∠BAD =(x +10)°在△ABD 中 ∠B +∠BAC +∠C =180° ∴x +10+2x +2x =180.解得:x =34;∴∠C 的度数为34°.20.证明:(1)∵△ABC 为等边△,∴AB =BC ,∠B =∠C =∠BAC =60°∵DE ∥BC ∴∠B =∠D =60°,∠E =∠C =60°.∴∠D =∠E =∠DAE =60°.∴△DAE 为等边△.∴DE =AD .∵BF =DE ∴AB =BF +AF =AD +AF =DF .∵AB =BC ∴DF =BC .(2)连接EF ,CF .在△EDF 和△FBC 中 △EDF ≌△FBC (SAS )∴EF =CF .∵FH ⊥CE ,∴EH =HC .即:H 为CE 中点.注:本题两问其它解法参照评分.21.(1)如图,点D 即为所求;(2)如图,点E 即为所求;(3)如图,点N 即为所求;(4)如图,点G即为所求.DE BF D B DF BC ⎧=∠=∠=⎪⎨⎪⎩注:本题几问其它画法参照评分.22.(1)①证明:∵AE =AC ,AB =AD ,AB =AC ,∴AE =AD ∴∠E =∠D ∴2∠E +∠DAE =180°∵∠BAC +∠DAE =180°,∴∠BAC =2∠E .∵AB =AC ,AM ⊥BC ,∴∠BAC =2∠BAM .∴∠E =∠BAM .②猜想:.证明:过A 作AF ⊥DE 于F .∵AE =AD ∴ ∵AM ⊥BC ∴∠EFA =∠AMB =90°在△EFA 和△AMB 中 △EFA ≌△AMB (AAS )∴.(2)延长EA 至G ,使AE =AG ,连接DG .则∠EAD +∠DAG =180°,∵∠BAC +∠DAE =180° ∴∠DAG =∠BAC在△DAG 和△BAC 中 △DAG ≌△BAC (SAS )∴.注:本题两问其它解法参照评分.12AM ED =12EF FD ED ==E BAM EFA AMB AE AB ∠=∠∠=∠=⎧⎪⎨⎪⎩12EF AM ED ==ADE ADG S S =△△AD AB DAG BAC AE AC =∠=∠=⎧⎪⎨⎪⎩ADG ABC ADE S S S ==△△△23.(1)①补充条件:,可得结论:OA =OB =OM ;②在①补充的条件下,结论OA =OB =OM 成立,理由如下:证明:连接OC ,在BC 上截取BD =CM ,连接OD .∵△ABC 为等边三角形 ∴AB =AC =BC ,∠ACB =60°.∴∠BCM =180°-∠ACM =120°=∠BOM .又∵∠BOM +∠OBC =∠BCM +∠CMO =∠1 ∴∠OBC =∠OMC .在△OBD 和△OMC 中 ∴△OBD ≌△OMC (SAS )∴OD =OC ,∠BOD =∠MOC .∴∠DOC =∠DOM +∠MOC =∠DOM +∠BOD =∠BOM =120°.∴∠OCD =∠ODC =30°.又∵∠ACB =60°∴∠AOC =∠ACB -∠OCD =30°.在△AOC 和△BOC 中 ∴△AOC ≌△BOC (SAS )∴OA =OB .又∵OB =OM ∴OA =OB =OM .(2)解:当时,①中结论OA =OB =OM 成立证明:在AM 上找一点C ,使在BC 上截取BD =CM ,连接OD .又∵∠BOM +∠OBC =∠BCM +∠CMO =∠1 ∴∠OBC =∠CMO.120β=︒OB OMOBD OMC BD MC =∠=∠=⎧⎪⎨⎪⎩AC BC ACO BCO OC OC =∠=∠=⎧⎪⎨⎪⎩12αβ=BCM BOM β∠=∠=在△OBD 和△OMC 中 ∴△OBD ≌△OMC (SAS )∴OD =OC .∠BOD =∠MOC ∴∴∵ ∴∴ ∴∠ACO =∠BCO ∵,∴ ∴∠ABC =∠BAC ∴AC =CB在△ACO 和△BCO 中 ∴△ACO ≌△BCO (SAS )∴AO =OB 又∵OB =OM ∴AO =OB =OM .注:本题几问其它解法参照评分.24.(1)△AOB 的面积为8.(2)作DH ⊥y 轴于H ,∵CD ⊥AC ,∴∠DHC =∠COA =∠DCA =90°.∴∠DCH +∠OCA =∠OCA +∠OAC =90°.∴∠DCH =∠CAO .在△DHC 和△COA 中 ∴△DHC ≌△COA (AAS )∴DH =OC ,CH =OA =OB =4.∴BH +BC =BC +OC.OB OM OBD CMO BD MC =∠=∠=⎧⎪⎨⎪⎩DOC DOM MOC ODM BOD BOM β∠=∠+∠=∠+∠=∠=1902ODC OCD β∠=∠=︒-BCM β∠=180ACB β∠=︒-1902ACO ACB BOC β∠=∠-∠=︒-BCM β∠=12BAC αβ∠==12ABC BCM BAC β∠=∠-∠=AC BC ACO BCO OC OC =∠=∠=⎧⎪⎨⎪⎩DCH CAODHC COA DC CA ∠=∠∠=∠=⎧⎪⎨⎪⎩∴BH =OC =DH .∴∠HBD =∠HDB =45°.∵OA =OB ,∠AOB =90° ∴∠OBA =∠OAB =45°.∴∠DBA =90°.(3)连接OF ,延长FE 交BD 于G ,连接CG ,CF .∵OB =OA ,F 为AB 中点,∴OF ⊥AB .∴∠OFB =∠DBA =90°.∴DB ∥OF .∴∠BDE =∠FOE .∵E 为OD 中点,∴ED =EO ,在△DEG 和△OEF 中 ∵ ∴△DEG ≌△OEF (ASA )∴DG =OF ,EG =EF .∵∠DHA =∠DBA +∠BDH =∠DCA +∠CAH ,∠DBA =∠DCA =90°∴∠BDH =∠CAF .在△GDC 和△FAC 中 ∵ ∴△GDC ≌△FAC (SAS )∴GC =CF ,∠GCD =∠FCA .∴∠GCF =∠DCA =90°.∴△GCF 为等腰直角三角形.∵EG =EF ∴CE ⊥EF ,CE =EF .注:本题两问其它解法参照评分.BDE FOE DEG OEF DE EO ∠=∠∠=∠=⎧⎪⎨⎪⎩DG OF GDC FAC DC AC =∠=∠=⎧⎪⎨⎪⎩。
2023-2024学年湖北省武汉市青山区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列交通标志中,是轴对称图形的是()A. B. C. D.2.要使分式的值存在,则x的取值应满足()A. B. C. D.3.点关于y轴的对称点N的坐标是()A. B. C. D.4.下列计算正确的是()A. B. C. D.5.若一个多边形的内角和与外角和相等,则这个多边形是()A.三角形B.六边形C.五边形D.四边形6.下列各式从左到右的变形,一定正确的是()A. B. C. D.7.如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪拼成一个矩形不重叠无缝隙,则该矩形的面积是()A. B. C. D.8.如图,在中,,,则的度数为()A.B.C.D.9.已知:a,b,c三个数满足:,,,则的值()A. B. C. D.10.如图,等边的边长为2,于点D,E为射线CD上一点,以BE为边在BE左侧作等边,则DF的最小值为()A.1B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
11.______.12.华为Mate20系列搭载了麒麟980芯片,这个被华为称之为全球首个7纳米工艺的AI芯片,拥有8个全球第一,7纳米就是米.数据用科学记数法表示为______.13.计算:______.14.如图,在四边形ABCD中,,,M,N分别是边BC,CD上的动点,当的周长最小时,______15.已知下列结论:①;②;③;④其中正确的有______请填写序号16.在中,,E,D分别是AB,AC边上一点,,,,,,则EB的长=______用含a,b,c的式子表示三、计算题:本大题共3小题,共24分。
17.计算:;18.因式分解:;19.先化简,再求值:,其中四、解答题:本题共5小题,共48分。
解答应写出文字说明,证明过程或演算步骤。
2020-2021八年级数学上期中试卷附答案(5)一、选择题1.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 2.要使分式13a +有意义,则a 的取值应满足( ) A .3a =-B .3a ≠-C .3a >-D .3a ≠ 3.计算()2x y xy x xy--÷的结果为( ) A .1yB .2x yC .2x y -D .xy - 4.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .25.化简2111x x x+--的结果是( ) A .x+1 B .11x + C .x ﹣1 D .1x x - 6.如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A .30°B .40°C .50°D .60°7.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.5 8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 9.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .710.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b11.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4B .480x -480+4x =20C .480x -480+20x =4D .4804x --480x=20 12.已知a b 3132==,,则a b 3+的值为( ) A .1B .2C .3D .27 二、填空题13.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)14.已知x 2+mx-6=(x-3)(x+n),则m n =______.15.如图,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是_____.16.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 17.如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为_____°.18.若分式67x--的值为正数,则x 的取值范围_____. 19.计算:0113()22-⨯+-=______.20.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____. 三、解答题21.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)22.某地有两所大学和两条相交叉的公路,如图所示(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?24.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD ,对角线AC,BD 相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F ,求证OE=OF ;25.已知a =23b =23求下列各式的值:(1)a 2+2ab +b 2 (2)a 2-b 2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.2.B解析:B【解析】【分析】直接利用分式有意义,则分母不为零,进而得出答案.【详解】 解:要使分式13a +有意义, 则a +3≠0,解得:a ≠-3.故选:B .【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键. 3.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===xy xy x xy xyx y x x y xy x x y x y x y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.4.A解析:A【解析】 试题解析:∵分式11x x -+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A .5.A解析:A【解析】【分析】根据分式的加减法法则计算即可.【详解】解:原式=2211(1)(1)1 1111x x x xxx x x x-+--===+ ----故选:A.【点睛】本题考查了分式的加减法,掌握计算法则是解题关键.6.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.7.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.8.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.9.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.10.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.11.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480 x -480+20x=4故答案为:C.【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.12.B解析:B【解析】分析:由于3a×3b=3a+b,所以3a+b=3a×3b,代入可得结论.详解:∵3a×3b=3a+b∴3a+b=3a×3b=1×2=2故选:B.点睛:本题考查了同底数幂的乘法法则的逆用.同底数幂的乘法法则:同底数的幂相乘,底数不变,指数相加.二、填空题13.60【解析】【分析】首先连接AB由题意易证得△AOB是等边三角形根据等边三角形的性质可求得∠AOB的度数【详解】连接AB根据题意得:OB=OA=AB∴△AOB是等边三角形∴∠AOB=60°故答案为:解析:60【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB=OA=AB.14.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m与n的值即可得出mn的值【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m n的值.【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)x-3n,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n=1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.15.33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O 到ABACBC的距离都相等从而可得到△ABC的面积等于周长的一半乘以OD然后列式进行计算即可求解【详解】解:如图连接OA作OE⊥AB解析:33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.【详解】解:如图,连接OA,作OE⊥AB于E,OF⊥AC于F.∵OB、OC分别平分∠ABC和∠ACB,∴OD=OE=OF,∴S △ABC =S △BOC +S △AOB +S △AOC =111222BC OD AC OF AB OE ⋅+⋅+⋅ =()12BC AC AB OD ++⋅ =12×22×3=33. 故答案为:33.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.16.【解析】【分析】分式方程去分母转化为整式方程由分式方程的解为负数求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a 由分式方程解为负数得到1-a<0且1-a≠-1解得:a >1且解析:12a a >≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析17.180°【解析】∵将△ABC 三个角分别沿DEHGEF 翻折三个顶点均落在点O 处∴∠B=∠HOG∠A=∠DOE∠C=∠EOF∠1+∠2+∠HOG+∠EOF+∠DOE=360°∵∠HOG+∠EOF+∠DO解析:180°【解析】∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°, ∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°−180°=180,故答案为180.18.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x >7解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.19.4【解析】【分析】原式第一项利用零指数幂法则化简第二项利用负整数指数幂法则计算最后一项利用绝对值的代数意义化简计算即可得到结果【详解】原式=1×2+2=2+2=4故答案为:4【点睛】本题考查了零指数解析:4【解析】【分析】原式第一项利用零指数幂法则化简,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】原式=1×2+2=2+2=4. 故答案为:4.【点睛】本题考查了零指数幂和负整数指数幂运算,熟练掌握运算法则是解答本题的关键.20.1【解析】【分析】先把每个命题的逆命题写出来再判断逆命题是否成立数出逆命题成立的个数即可得到答案【详解】解:①对顶角相等的逆命题为:相等的角是对顶角不成立(例如:等边三角形中的三个角都相等但不是对顶 解析:1【解析】【分析】先把每个命题的逆命题写出来,再判断逆命题是否成立,数出逆命题成立的个数即可得到答案.【详解】解:①对顶角相等的逆命题为:相等的角是对顶角,不成立(例如:等边三角形中的三个角都相等,但不是对顶角);②全等三角形的对应边相等的逆命题为:对应边相等的三角形是全等三角形,成立(SSS ); ③如果两个实数是正数,它们的积是正数的逆命题为:乘积是正数的两个实数是都是正数,不成立,因为两个负数的乘积也是正数;因此, 只有②正确,故答案是1.【点睛】本题主要考查了命题的逆命题的定义(把一个命题的题设和结论互换可得到其逆命题),能正确写出逆命题是解题的关键.三、解答题21.(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有:20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.22.见解析【解析】【分析】作∠AOB 的角平分线与线段MN 的垂直平分线的交点即所求仓库的位置.【详解】如图所示:点P 即为所求,【点睛】此题考查角平分线的性质,线段垂直平分线的性质,作图—应用与设计作图,解题关键在于掌握作图法则.23.原计划每天加工20套.【解析】【分析】设原计划每天加工x 套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x 套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用24.证明见解析.【解析】试题分析:欲证明OE=OF ,只需推知BD 平分∠ABC ,所以通过全等三角形△ABD ≌△CBD (SSS )的对应角相等得到∠ABD=∠CBD ,问题就迎刃而解了. 试题解析:证明:∵在△ABD 和△CBD 中,AB=CB ,AD=CD ,BD=BD ,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .25.(1)16;(2)【解析】【分析】(1)用完全平方公式将原式变形为2()a b +,然后代入求值;(2)用平方差公式将原式变形为()()a b a b +-,然后代入求值.【详解】解:(1)a 2+2ab +b 22()a b =+2(22=++-16=(2)a 2-b 2()()a b a b =+-(222=++-+-+4=⨯=【点睛】本题考查代数式求值及二次根式的混合运算,掌握完全平方公式和平方差公式将原式正确变形,然后代入计算是解题关键.。
2020-2021学年湖北省武汉市青山区八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列二次根式中,属于最简二次根式的是()A. √7B. √12C. √8D. √1.52.√3−a在实数范围内有意义,则a的取值范围()A. a≥3B. a≤3C. a≥−3D. a≤−33.矩形和菱形都具有的性质是()A. 有一组邻边相等B. 对角线互相平分C. 对角线相等D. 对角线互相垂直4.下列计算正确的是()A. √2+√3=√5B. 3√2−√2=3C. √18+√82=√9+√4 D. 6√13=2√35.若平行四边形中两个内角的度数比为1:2,则其中较大的内角是()A. 45°B. 60°C. 90°D. 120°6.下列说法中能推出△ABC是直角三角形的个数有()①a2=c2−b2;②∠A:∠B:∠C=1:1:2;③a:b:c=1:√3:2;④∠C=∠A−∠B.A. 1个B. 2个C. 3个D. 4个7.下列条件中,能推出▱ABCD为矩形的是()A. AB=BCB. AC平分∠BADC. AC⊥BDD. AC=BD8.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为()A. 125B. 185C. 4D. 2459.如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形,OA3A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,OA1A2A3,△A2A3A4,…的面积分别为S1,S2,S3,….如此下去,则S2021的值为()D. 22020A. 22018B. 22019C. 22019+1210.如图,在正方形ABCD中,O为对角线BD的中点,E为边AB上一点,AF⊥DE于点F,OF=√2,AF=1,则EF的长为()A. 12B. √3C. 13D. √2−1二、填空题(本大题共6小题,共18.0分)11.(−√5)2=______;√8=______.12.如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上点,测得BC=60m,AC=20m,则A,B两点问的距离______m.13.如果√12n是整数,则正整数n的最小值是______.14.如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是______ .15.在▱ABCD中,AB=√6,AD=√2,点A到边BC,CD的距离分别为AE=√3,AF=1,则∠EAF的度数为______ .16.如图,在边长为2的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移,得到△EFG,连接EC,ED,FC,则EC+FC的最小值为______.三、解答题(本大题共8小题,共72.0分)17.计算:+√2;(1)√8−4√12(2)(√80−√40)÷√5.18.如图,菱形ABCD的对角线AC,BD交于点O,且BE//AC,AE//BD,连接EO.(1)试判断四边形AEBO的形状,并说明理由;(2)若CD=6,求OE的长.19.已知直角三角形的两直角边长分别为(2+√3)和(2−√3).求这个直角三角形的斜边长.20.如图,是由边长为1的小正方形构成的10×10网格,每个小正方形的顶点叫做格点.五边形ABCDE的顶点在格点上,仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)五边形ABCDE的周长为______.(2)在AB上找点F,使E,C两点关于直线DF对称;(3)设DF交CE于点G,连接AG,直接写出四边形AEDG的面积;(4)在直线DF上找点H,使∠AHB=135°.21.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家正北方向的4km处,公园D与地铁口和学校的距离分别5km和5√2km.(1)求地铁口、公园和学校三地组成的∠BDC的大小;(2)计算公园与小明家的距离.22.(1)如图1,在▱ABCD中,对角线AC,BD相交于点O,且AB=a,BC=b,AC=m,BD=n.①若AC=BD,则m2=______;(用含a,b的式子表示)若AC⊥BD,则m2=______;(用含a,n的式子表示)②试探索a,b,m,n这四条线段之间的数量关系,并说明理由;(2)如图2,在△EFG中,GH是中线,若FG=6,GH=7,EG=9,则FH的长为______.23.如图,P是菱形ABCD的边BC上一个动点,∠ABC=60°,线段PC的垂直平分线与对角线BD交于点E,连接PE,CE,AP.(1)如图(1),∠BAP=16°,直接写出∠APE的大小;(2)如图(2),试探索线段AB,BP,BE满足怎样的数量关系?并说明理由;(3)如图(3),若AB=1,过点E作EF⊥AP于点F,点P从点B往点C运动至EF最小时停止,直接写出点P的运动路径长.24.如图,在平面直角坐标系中,A,B两点的坐标分别为A(0,a),点B(b,0),且a,b满足:b+4=√a−4+√4−a,点C与点B关于y轴对称,点P,点E分别是x 轴,直线AB上的两个动点.(1)则点C的坐标为______;(2)连接PA,PE.①如图1,当点P在线段BO(不包括B,O两个端点)上运动,若△APE为直角三角形,F为斜边PA的中点,连接EF,OF,试判断EF与OF的关系,并说明理由;②如图2,当点P在线段OC(不包括O,C两个端点)上运动,若△APE为等腰三角形,M为底边AE的中点,连接MO,试探索PA与OM的数量关系,并说明理由;(3)如图3,连PA,CE,设它们所在的直线交于点G,设CE交y轴于点F,连接BG,若OP=OF,则BG的最小值为______.答案和解析1.【答案】A【解析】解:A、√7不能化简,是最简二次根式,符合题意;B、√12=2√3,能化简,不是最简二次根式,不符合题意;C、√8=2√2,能化简,不是最简二次根式,不符合题意;D、√1.5=√6,能化简,不是最简二次根式,不符合题意.2故选:A.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.【答案】B【解析】【分析】本题考查的知识点为:二次根式的被开方数是非负数.根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,3−a≥0,解得a≤3.故选:B.3.【答案】B【解析】解:矩形的性质是:①矩形的四个角度数直角,②矩形的对边相等且互相平行,③矩形对角线相等且互相平分;菱形的性质是:①菱形的四条边都相等,菱形的对边互相平行;②菱形的对角相等,③菱形的对角线互相平分且垂直,并且每条对角线平分一组对角,所以矩形和菱形都具有的性质是对角线互相平分,故选:B.根据矩形的性质和菱形的性质得出即可.本题考查了矩形的性质和菱形的性质,能熟记知识点是解此题的关键.4.【答案】D【解析】解:A、√2+√3,无法计算,故此选项错误;B、3√2−√2=2√2,故此选项错误;C、√18+√82=5√22,故此选项错误;D、6√13=6×√33=2√3,故此选项正确;故选:D.直接利用二次根式的加减运算法则计算得出答案.此题主要考查了二次根式的加减,正确化简二次根式是解题关键.5.【答案】D【解析】解:∵四边形ABCD是平行四边形,∴AB//CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠C=23×180°=120°,故选D.据平行四边形的性质得出AB//CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C即可.本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.【答案】D【解析】解:①a2=c2−b2,即a2+b2=c2,是直角三角形;=90°,是直角三角形;②由∠A:∠B:∠C=1:1:2可得∠C=180°×21+1+2③∵a:b:c=1:√3:2,12+(√3)2=22,∴是直角三角形;④∠C=∠A−∠B可变为∠A=∠C+∠B,根据∠A+∠B+∠C=180°可得∠A+∠A= 180°,解得∠A=90°,因此是直角三角形;故选:D.根据勾股定理逆定理可得①③是否是直角三角形,根据三角形内角和计算出角的度数可判断②④是否是直角三角形.此题主要考查了直角三角形的判定,关键是掌握勾股定理,以及三角形内角和定理.7.【答案】D【解析】解:A、∵AB=BC,∴▱ABCD为菱形,故A选项不合题意;B、∵AC平分∠BAD,∴▱ABCD为菱形,故B选项不合题意;C、∵AC⊥BD,∴▱ABCD为菱形,故C选项不合题意;D、∵AC=BD,∴▱ABCD是矩形,故D选项符合题意;故选:D.根据矩形的判定方法即可一一判断.本题考查了矩形的判定定理,解题的关键是熟练掌握矩形的判定方法.8.【答案】D【解析】解:如图.∵四边形ABCD是菱形,AC=6,AC=3,BD=2OB,∴AC⊥BD,OA=12∵AB=5,∴OB=√AB2−OA2=4,∴BD=2OB=8,∵S菱形ABCD =AB⋅DE=12AC⋅BD,∴DE=12AC⋅BDAB=12×6×85=245.故选:D.由在菱形ABCD中,AB=5,AC=6,利用菱形的性质以及勾股定理,求得OB的长,继而可求得BD的长,然后由菱形的面积公式可求得线段DE的长.此题考查了菱形的性质、勾股定理.注意菱形的对角线互相垂直平分.9.【答案】B【解析】解:∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1=12×1×1=12=21−2,∵∠OAA1=90°,∴OA12=12+12=2,∴OA1=√2,∴OA2=A2A3=√2OA1=2,∴A2B1=2−1=1,∴S2=12×2×1=1=22−2,同理可求:S3=12×2×2=2=23−2,S4=4=24−2,…,∴S n=2n−2,∴S2021的值为22019.故选:B.首先求出S1、S2、S3,然后归纳命题中隐含的数学规律,即可解决问题.本题考查了正方形的性质、等腰直角三角形的性质、三角形面积的计算、规律型等知识;熟练掌握正方形的性质与三角形面积的计算,找出规律是解题的关键.10.【答案】C【解析】解:连接AC,过O点作OG⊥OF交DE于点G,∵四边形ABCD是正方形,O为BD的中点,AC,BD为对角线,∴O为对角线的交点,在正方形ABCD中,AC⊥BD,OA=OD,∵OG⊥OF,∴∠AOF+∠AOG=90°,∠DOG+∠AOG=90°,∴∠AOF=∠DOG,∵AF⊥DE,∴∠FAO+∠1=90°,∵∠GDO+∠2=90°,∠1=∠2,∴∠FAO=∠GDO,在△AOF与△DOG中,{∠AOF=∠DOG OA=OD∠FAO=∠GDO,∴△AOF≌△DOG(ASA),∴AF=DG=1,OG=OF=√2,∴△OFG是直角三角形,∴FG=√OF2+OG2=2,∴FD=FG+GD=3,∵∠BAD=90°,AF⊥DE,∴∠EAF+∠FAD=∠FAD+∠ADF=90°,∠EFA=∠AFD=90°,∴△AFE∽△DFA,∴EFAF =AFDF=13,∴EF=13AF=13,故选:C.连接AC,过O点作OG⊥OF交DE于G,根据正方形的性质和全等三角形的判定和性质解答即可.此题考查正方形的性质,关键是根据ASA证明△AOF≌△DOG和相似三角形的判定和性质解答.11.【答案】5 2√2【解析】解:(−√5)2=5;√8=2√2.故答案为:5,2√2.直接利用二次根式的性质化简得出即可.此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.12.【答案】40√2【解析】解:AB=√BC2−AC2=√602−202=40√2m,故答案为:40√2.在直角三角形中已知直角边和斜边的长,利用勾股定理求得另外一条直角边的长即可.本题考查正确运用勾股定理解题,比较简单,解题的关键是正确的从实际问题中发现直角三角形并对应好直角边和斜边.13.【答案】3【解析】解:∵√12n=√4×3n=2√3n,且√12n是整数;∴2√3n是整数,即3n是完全平方数;∴n的最小正整数值为3.故答案是:3.因为√12n是整数,且√12n=√4×3n=2√3n,则3n是完全平方数,满足条件的最小正整数n为3.主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则√a⋅√b=√ab.除法法则√ba =√b√a.解成一个完全平方数和一个代数式的积的形式.14.【答案】4√5【解析】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB//CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE=√ED2+DC2=√42+82=4√5.故答案为:4√5.根据平行四边形的性质和角平分线的定义可得AD=BC=EB=5,根据勾股定理的逆定理可得∠AED=90°,再根据平行四边形的性质可得CD=AB=8,∠EDC=90°,根据勾股定理可求CE的长.此题主要考查了平行四边形的性质和角平分线的性质,勾股定理的逆定理,勾股定理,关键是掌握平行四边形对边平行且相等.15.【答案】45°或135°【解析】解:如图1所示:∵AF⊥DC,AE⊥CB,∴∠DFA=90°,∠AEB=90°,∵AD=√2,AF=1,∴DF=1,∴∠D=∠DAF=45°,∵四边形ABCD是平行四边形,∴DC//AB,∴∠DAB=135°,∵AB=√6,AE=√3,∴EB=√3,∴∠EAB=45°,∴∠EAF=135°−45°−45°=45°,如图2,过点A作AE⊥CB延长线于点E,过点A作AF⊥CD延长线于点F,同理可得:∠EAB=45°,∠BAD=45°,∠FAD=45°,则∠EAF=135°,故答案为:45°或135°.首先根据题意画出图形,再根据勾股定理可得DF=AF,AE=BE,然后再根据三角形内角和可得∠DAF=45°,∠EAB=45°,根据平行四边形的性质可得AB//CD,进而得到∠D+∠DAB=180°,求出∠DAB的度数,进而可得答案,同理可得出∠EAF另一个度数.此题主要考查了勾股定理的应用,平行四边形的性质,关键是正确计算出∠DAF=45°,∠EAB=45°.16.【答案】2√3【解析】解:在边长为2的菱形ABCD中,∠ABC=60°,∴AB=CD=2,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EF=AB=2,EF//AB,∵四边形ABCD是菱形,∴AB=CD,AB//CD,∴∠BAD=120°,∴EF=CD,EF//CD,∴四边形EFCD是平行四边形,∴ED=FC,∴EC+FC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线AE上,∴作点D关于定直线AE的对称点M,连接CM交BG于O,∴CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=2,AD=1,∴∠ADM=60°,DH=MH=12∴DM=2,∴DM=CD,∵∠CDM=∠MDO+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×√3CD=2√3.2故答案为:2√3.根据菱形的性质得到AB=2,∠ABD=30°,根据平移的性质得到EG=AB=2,EG//AB,推出四边形EFCD是平行四边形,得到ED=FC,于是得到EC+FC的最小值=EC+ED 的最小值,根据平移的性质得到点E在过点A且平行于BD的定直线上,作点D关于定直线的对称点M,连接CM交定直线于AE,解直角三角形即可得到结论.本题考查了轴对称−最短路线问题,菱形的性质,平行四边形的判定和性质,解直角三角形,平移的性质,解题的关键是四边形EFCD是平行四边形、作点D关于定直线AE 的对称点M,将EC+FC的最小值转化为CM的长.17.【答案】解:(1)原式=2√2−2√2+√2=√2;(2)原式=√80÷5−√40÷5=4−2√2.【解析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的除法法则运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:(1)四边形AEBO是矩形.理由:∵BE//AC,AE//BD,∴四边形AEBO是平行四边形,又∵菱形ABCD对角线交于点O,∴AC⊥BD,即∠AOB=90°,∴四边形AEBO是矩形;(2)∵四边形AEBO是矩形,∴EO=AB,∵四边形ABCD是菱形,∴AB=CD.∴EO=CD=6.【解析】(1)先证明四边形AEBO为平行四边形,由菱形的性质可证明∠BOA=90°,从而可证明四边形AEBO是矩形;(2)依据矩形的性质可得到EO=AB,然后依据菱形的性质可得到AB=CD,得OE=CD=6即可.本题主要考查的是菱形的性质、矩形的性质和判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定与性质是解题的关键.19.【答案】解:∵直角三角形的两直角边长分别为(2+√3)和(2−√3),∴斜边长=√(2+√3)2+(2−√3)2=√14.【解析】根据勾股定理列式计算即可得解.本题主要考查勾股定理,比较简单,熟练掌握勾股定理运算是解题的关键.20.【答案】20+√10【解析】解:(1)由题意,AB=BC=CD=√32+42=5,AE=√12+32=√10,DE=5,∴五边形ABCDE的周长=20+√10,故答案为:20+√10.(2)如图,点F即为所求作.(3)四边形AEDG的面积=12×√10×√10+12×5×2=10.(4)如图,点H即为所求作.(1)根据勾股定理求出五边形ABCDE各边的长,相加即可;(2)连接EC,作DF⊥EC交AB于点F即可.(3)分成两个三角形求面积即可.(4)利用等腰直角三角形的性质求解即可.本题考查作图−轴对称变换,勾股定理,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】解:(1)由题意得:BD=5km,CD=5√2km,∠BAC=90°,AB=3km,CA=4km,∴BC=√AB2+AC2=√32+42=5(km),∴BC=BD,∵BC2+BD2=52+52=50,CD2=(5√2)2=50,∴BC2+BD2=CD2,∴△BCD是等腰直角三角形,∠CBD=90°,∴∠BDC=45°;(2)过D作DE⊥AB,交AB的延长线于E,如图所示:则∠DEB=90°,∴∠BDE+∠DBE=90°,由(1)得:∠CBD=90°,∴∠DBE+∠CBA=90°,∴∠BDE=∠CBA,在△BDE和△CBA中,{∠DEB=∠BAC=90°∠BDE=∠CBABD=CB,∴△BDE≌△CBA(AAS),∴DE=BA=3km,BE=CA=4km,∴AE=BE+AB=7(km),∴AD=√DE2+AE2=√32+72=√58(km).【解析】(1)由勾股定理求出BC=5(km)=BD,再由勾股定理的逆定理证△BCD是等腰直角三角形,∠CBD=90°,则∠BDC=45°;(2)过D作DE⊥AB,交AB的延长线于E,证△BDE≌△CBA(AAS),得DE=BA=3km,BE=CA=4km,再由勾股定理求解即可.本题考查了勾股定理、勾股定理的逆定理、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握勾股定理和勾股定理的逆定理,证明△BDE≌△CBA是解题的关键.22.【答案】a2+b24a2−n2√382【解析】解:(1)①∵AC,BD是▱ABCD的对角线,若AC=BD,则ABCD是矩形,∴m2=a2+b2;若AC⊥BD,则ABCD是菱形,∴(m2)2+(n2)2=a2,即m2=4a2−n2;故答案为:a2+b2,m2=4a2−n2;②如图1,作CN⊥AD于N,BM垂直DA延长线于M,∵BM=CN,AB=CD,∴△ABM≌△DCN,∴AM=DN,在Rt△BDM中,BD2=BM2+DM2,即n2=MB2+(MA+AD)2=MB2+MA2+AD2+2MA⋅AD=a2+b2+2MA⋅AD,在Rt△N中,AC2=AN2+CN2,即m2=(AD−DN)2+CN2=AD2+DN2+CN2−2AD⋅DN=a2+b2−2AD⋅DN,∴m2+n2=2(a2+b2)+2MA⋅AD−2DA⋅AD,∵MA=DN,∴m2+n2=2(a2+b2);(2)如图2,将三角形补全成平行四边形,利用上面讨论有:(2FH)2+(2GH)2=2(FG2+EG2),∴FH=√38.2(1)①若AC=BD,则ABCD是矩形,由勾股定理即可;若AC⊥BD,则ABCD是菱形,由勾股定理即可;②作CN⊥AD于N,BM垂直DA延长线于M,先证△ABM≌△DCN,再利用勾股定理得到a,b,m,n这四条线段之间的数量关系;(2)利用(1)的结论即可.本题主要考查平行四边形的性质和勾股定理的应用,关键是对知识的掌握和的运用.23.【答案】解:(1)连接AE,∵∠BAP=16°,∠ABC=60°,∴∠APC=∠BAP+∠ABC=76°,∵四边形ABCD是菱形,线段PC的垂直平分线与对角线BD交于点E,∴AE=CE,PE=CE,∴AE =PE ,∴∠EAP =∠APE ,∠PCE =∠EPC ,∴∠BAP +∠PAE =∠BAE =∠BCE =∠EPC ,设∠BAE =∠BCE =∠EPC =x ,∠APE =y ,∴{16∘+y =x x +y =76∘, 解得{x =46∘y =30∘, ∴∠APE =30°;(2)AB =√3BE −BP ,理由如下:作EF ⊥PC 于F ,∵四边形ABCD 是菱形,∠ABC =60°,BD 是对角线,∴∠EBF =30°,∴EF =12BE ,∴BF =√BE 2−EF 2=√32BE , ∵EF 是PC 的垂直平分线,∴FC =PF =√32BE −BP ,∴AB =BC =BF +FC =√32BE +√32BE −BP =√3BE −BP ,即AB =√3BE −BP ; (3)由题知,当AP ⊥BC 时,EF 最短,∵四边形ABCD 是菱形,∠ABC =60°,∴BP =12AB =12,即点P 的运动路径长为12.【解析】(1)连接AE ,根据外角定义得出∠APC =∠BAP +∠ABC =76°,再根据等腰三角形的性质得出∠BAP +∠PAE =∠BAE =∠BCE =∠EPC ,设∠BAE =∠BCE =∠EPC =x ,∠APE =y ,根据角的关系列出方程组解方程组即可;(2)作EF ⊥PC 于F ,得出BF =√BE 2−EF 2=√32BE ,FC =PF =√32BE −BP ,即可得出AB =BC =BF +FC =√32BE +√32BE −BP =√3BE −BP ; (3)由题意判断当AP ⊥BC 时,EF 最短,求出此时BP 的长度即可.本题主要考查菱形的性质,等腰三角形的性质,垂直平分线的性质,勾股定理等知识点,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.24.【答案】(4,0) 2√10−2√2【解析】解:(1)∵b +4=√a −4+√4−a ,又∵{a −4≥04−a ≥0, ∴a =4,b =−4,∴A(0,4),B(−4,0),∵B ,C 关于y 轴对称,∴C(4,0).故答案为:(4,0).(2)①如图1中,结论:EF =OF .理由:∵∠AEP =∠AOP =90°,AF =FP ,∴EF =12PA ,OF =12PA ,∴EF =OF .②结论:PA =√2OM .理由:如图2中,过点P 作PH ⊥AC 于H ,连接MH ,OH ,PM .∵PA=PE,AM=ME,∴PM⊥AE,∵OA=OB=OC,∠AOB=∠AOC=90°∴∠OAB=∠AOC=∠ACO=45°,∴∠AMP=∠MAH=∠PHA=90°,∴四边形AMPH是矩形,∴AM=PH,PA=MH,∵∠PHC=90°,∠PCH=45°,∴∠HPC=∠PCH=45°,∴PH=CH=AM,在△AOM和△COH中,{AM=CH∠OAM=∠OCH AO=CO,∴△AOM≌△COH(SAS),∴OM=OH,∠AOM=∠COH,∴∠MOH=∠AOC=90°,∴MH=√2OM,∴PA=√2OM.(3)如图3中,取AC的中点T,连接BT,TG.在△AOP和△COF中,{OA=OC∠AOP=∠COF OP=OF,∴△AOP≌△COF(SAS),∴∠OAP=∠PCG,∵∠APO=∠CPG,∴∠AOP=∠PGC=90°,∵AT=TC.∴TG=12AC=12×4√2=2√2,∵A(0,4),C(4,0),AT=CT,∴T(2,2),∵B(−4,0),∴BT=√22+62=2√10,∴BG≥BT−TG,∴BG≥2√10−2√2,∴BG的最小值为2√10−2√2.故答案为:2√10−2√2.(1)利用二次根式的被开方数是非负数求出a,b的值,可得结论.(2)①结论:EF=OF.利用直角三角形斜边中线的性质证明即可.②结论:PA=√2OM.如图2中,过点P作PH⊥AC于H,连接MH,OH,PM.想办法证明PA=MH,MH=√2OM,可得结论.(3)取AC的中点T,连接BT,TG.求出BT,TG,可得结论.本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,直角三角形斜边中线的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。
青山区上学期八年级数学期中测试卷一、选一选,比比谁细心(本大题共12小题,每题3分,共36分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1。
8的立方根为〔〕 C.22.以下图形分别是等边三角形,直角三角形,等腰梯形和矩形〔及长方形〕,其中有且只有三条对称轴的对称图形是〔〕AB C D D C3.如图,ABD BAC,ABD的对应角是〔〕假设AC=BD,那么A。
ACB B。
BACC.BAD D.BDAB 1000A4.等腰三角形的一个内角为,那么这个等腰三角形其他两个内角分别是〔〕A。
40040B。
5050C。
4001000D。
50010005..如图,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是〔〕〔A〕带①去.〔B〕带②去.〔C〕带③②③〔D〕带①和②去.去.①6.以下条件中,不一定能判断三角形全等的是〔〕A。
三条边对应相等B。
两边和一角对应相等C。
两角和其中一角的对应边相等D。
两角和它们的夹角对应相等7.如图,点D在AC的垂直平分线上,AB//CD,假设D=1300,D C,那么BAC=〔〕A.150B200C。
250D。
300AB8.以下计算正确的选项是〔〕A.9=B(2)23D。
4=23=—2。
C。
(3)3=39.如图,有两个长度相等的滑梯,〔及BC=EF〕,左边滑梯C E的高度AC与右边滑梯水平长度DF相等,那么ABC+DFE的度数为〔〕A。
450B。
600C。
900D。
1200D FB A10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换,在自然界和日常生活中,大量地存在这种图形变换〔如图1〕,结合轴对称和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形〔如图2〕的对应点的性质是〔 〕A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行11.以下命题:〔1〕有两边及第三边上的中线对应相等的两个三角形全等, 〔2〕线段是轴对称图形,它只有一条对称轴;〔3〕数a 2 的平方根为 a ;〔4〕假设等腰三角形的一个外角等于88度,那么这个等腰三角形的一个底角为 92度或44度。
2020—2021年武汉市部分学校初二上期中数学试卷含答案解析一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.14.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE确实是∠PRQ的平分线.此角平分仪的画图原理是:依照仪器结构,可得△ABC≌△ADC,如此就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS6.已知等腰三角形的一个内角为40°,则那个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.410.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于__________.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是__________.13.一个多边形的内角和是外角和的2倍,则那个多边形的边数为__________.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是__________.15.各边长度差不多上整数、最大边长为8的三角形共有__________个.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为__________.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直截了当写出∠A与∠BFC的数量关系.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直截了当写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直截了当写出点A2的坐标.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探究∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),连续如此的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是__________.(3)假如把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是__________ (用含有n的代数式表示).22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直截了当写出CE的长.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.2020-2021学年湖北省武汉市部分学校联考八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.【考点】轴对称图形.【分析】依照轴对称图形的概念对各图形分析判定后即可求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选;D.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是查找对称轴.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°【考点】三角形的外角性质.【分析】依照三角形的一个外角等于与它不相邻的两个内角的和列式运算即可得解.【解答】解:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质并准确识图是解题的关键.3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】依照在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:依照三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,把握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.【解答】解:A、依照ASA即可推出△ABC≌△DEF,故本选项正确;B、依照∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、依照AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、依照AAA不能推出△ABC≌△DEF,故本选项错误;故选A.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE确实是∠PRQ的平分线.此角平分仪的画图原理是:依照仪器结构,可得△ABC≌△ADC,如此就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判定全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分明白得题意.6.已知等腰三角形的一个内角为40°,则那个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分那个角为底角和顶角两种情形,利用三角形内角和定理求解即可.【解答】解:当那个内角为顶角时,则顶角为40°,当那个内角为底角时,则两个底角都为40°,现在顶角为:180°﹣40°﹣40°=100°,故选D.【点评】本题要紧考查等腰三角形的性质,把握等腰三角形的两底角相等是解题的关键.7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】第一依照折叠可得AD=BD,再由△ADC的周长为17cm能够得到AD+DC的长,利用等量代换可得BC的长.【解答】解:依照折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.【点评】此题要紧考查了翻折变换,关键是把握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】依照已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而依照“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题能够先依照直观判定得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,依照角平分线的性质求得EF=DE=2,然后依照三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.【考点】剪纸问题.【分析】依照题意直截了当动手操作得出即可.【解答】解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.【点评】本题考查了剪纸问题,难点在于依照折痕逐层展开,动手操作会更简便.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于75°.【考点】三角形内角和定理.【分析】依照已知条件设∠A=3x,∠B=4x,∠C=5x,然后依照三角形的内角和列方程即可得到结果.【解答】解:∵在△ABC中,∠A:∠B:∠C=3:4:5,∴设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,∴x=15°,∴∠C=5x=75°,故答案为:75°.【点评】本题考查了三角形的内角和,熟练把握三角形的内角和是解题的关键.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】依照关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直截了当得到答案.【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).【点评】此题要紧考查了关于x轴对称点的坐标,关键是把握点的坐标的变化规律.13.一个多边形的内角和是外角和的2倍,则那个多边形的边数为6.【考点】多边形内角与外角.【专题】运算题.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴那个多边形是六边形.故答案为:6.【点评】本题要紧考查了多边形的内角和定理与外角和定理,熟练把握定理是解题的关键.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是20cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两边长为4cm和8cm,而没有明确腰、底分别是多少,因此要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①8cm为腰,4cm为底,现在周长为8+8+4=20cm;②8cm为底,4cm为腰,∵4+4=8,∴两边和等于第三边无法构成三角形,故舍去.故它的周长是20cm.故答案为:20cm.【点评】此题要紧考查学生对等腰三角形的性质及三角形的三边关系的把握情形.已知没有明确腰和底边的题目一定要想到两种情形,分类进行讨论,还应验证各种情形是否能构成三角形进行解答,这点专门重要,也是解题的关键.15.各边长度差不多上整数、最大边长为8的三角形共有20个.【考点】三角形三边关系.【分析】利用三角形三边关系进而得出符合题意的答案即可.【解答】解:∵各边长度差不多上整数、最大边长为8,∴三边长能够为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;故各边长度差不多上整数、最大边长为8的三角形共有20个.故答案为:20.【点评】此题要紧考查了三角形三边关系,正确分类讨论得出是解题关键.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【考点】圆周角定理.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.【考点】作图—复杂作图;三角形的面积.【专题】作图题.【分析】(1)过点A作AM⊥BC于M,过点C作CN⊥AB于N,则AM、BN为△ABC的高;(2)依照三角形面积公式得到AM•BC=CN•AB,然后利用比例性质求BC与AB的比值.【解答】解:(1)如图,AM、CN为所作;(2)∵AM、BN为△ABC的高,∴S△ABC=AM•BC=CN•AB,∴===.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种差不多作图的基础上进行作图,一样是结合了几何图形的性质和差不多作图方法.解决此类题目的关键是熟悉差不多几何图形的性质,结合几何图形的差不多性质把复杂作图拆解成差不多作图,逐步操作.也考查了三角形面积公式.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.【考点】全等三角形的判定.【分析】取BC中点D,作直线AD,利用SSS即可证明△ABD≌△ACD.【解答】解:如图,取BC中点D,作直线AD,则直线AD将△ABC分成两个全等的三角形,即△ABD≌△ACD.理由如下:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直截了当写出∠A与∠BFC的数量关系.【考点】三角形内角和定理.【分析】(1)依照角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,再依照三角形内角和定理求出即可;(2)依照角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,然后表示出∠FBC+∠FCB,再依照三角形的内角和等于180°列式整理即可得证.【解答】解:(1)∵∠ABC=42°,∠A=60°,∴∠ACB=78°,∵∠ABC、∠ACB的平分线相交于点F,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°﹣(∠FBC+∠FCB)=120°;(2)∠BFC=90°+A,理由是:∵∠ABC与∠ACB的平分线相交于点F,∴∠FBC=∠ABC,∠FCB=∠ACB,∴∠FBC+∠FCB=(∠ABC+∠ACB),在△FBC中,∠BFC=180°﹣(∠FBC+∠FCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直截了当写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直截了当写出点A2的坐标.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)先作出各点关于y轴的对称点,再顺次连接即可;(2)连接AB1交y轴于点P,利用待定系数法求出直线AB1的解析式,进而可得出P点坐标;(3)找出点A关于直线BC的对称点,并写出其坐标即可.【解答】解:(1)如图所示;(2)设直线AB1的解析式为y=kx+b(k≠0),∵A(﹣1,5),B1(1,0),∴,解得,∴直线AB1的解析式为:y=﹣x+,∴P(0,2.5);(3)如图所示,A2(﹣6,0).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探究∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),连续如此的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是360°.(3)假如把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是360°(n﹣2)(用含有n的代数式表示).【考点】翻折变换(折叠问题).【分析】(1)运用折叠原理及四边形的内角和定理即可解决问题;(2)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',又知∠B=∠B',∠C=∠C',∠A=∠A',故能求出∠1+∠2+∠3+∠4+∠5+∠6的度数和;(3)利用(1)(2)的运算方法:类比得出答案即可.【解答】解:(1)连接AA′,∵∠1=∠BAA′+∠AA′E,∠2=∠CAA′+∠AA′D,∴∠1+∠2=∠BAA′+∠AA′E+∠CAA′+∠AA′D=∠BAC+∠DA′E,又∵∠BAC=∠DA′E,∴∠1+∠2=2∠BAC;(2)∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',∵∠B=∠B',∠C=∠C',∠A=∠A',∴∠1+∠2+∠3+∠4+∠5+∠6=2(∠B+∠C+∠A)=360°;(3)∠1+∠2+∠3+…+∠2n=2(∠B+∠C+∠A)(n﹣2)=360°(n﹣2).【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何差不多知识,把握折叠的性质是解决问题的关键.22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】(1)求证AB=AC,确实是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB于E,OF⊥AC于F,那么能够用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC 来实现;(2)思路和辅助线同(1)证得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰△ABC 中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)【点评】本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先依照已知条件或求证的结论确定三角形,然后再依照三角形全等的判定方法,看缺什么条件,再去证什么条件.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直截了当写出CE的长.【考点】全等三角形的判定与性质.【分析】(1)依照SAS证明△ACD≌△BDE即可;(2)依照全等三角形得出AC=BD,进而得出BD=BC,利用角的运算即可解答;(3)过E作EF⊥AB于F,DH⊥BC于H,依照等腰直角三角形的性质求出EF的长,依照题意求出∠CED=∠DEF,依照角平分线的性质求出EH=EF,依照等腰三角形的性质得到答案.【解答】证明:(1)在△ACD与△BDE中,,∴△ACD≌△BDE(SAS),(2)∵△ACD≌△BDE,∴AC=BD,CD=DE,∵AC=BC,∴BD=BC,∴∠BCD=67.5°,∴∠CED=∠BCD=67.5°,∴∠BED=112.5°;(3)过E作EF⊥AB于F,DH⊥BC于H,∵EF⊥AB,∠B=45°,∴EF=BF=1,∵∠FEB=45°,∠CED=67.5°,∴∠DEF=67.5°,∴∠CED=∠DEF,又DH⊥BC,EF⊥AB,∴EH=EF=1,∵DC=DE,DH⊥BC,∴CE=2EH=2.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质以及等腰三角形的性质,把握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.【考点】全等三角形的判定与性质.【分析】(1)①依照等腰直角三角形的性质得出∠CBA=45°,再利用角平分线的定义解答即可;②延长CE交BA的延长线于点G得出CE=GE,再利用AAS证明△ABD≌△ACG,利用全等三角形的性质解答即可;(2)过点A作AH⊥AE,交BE于点H,证明△ABH≌△ACE,进而得出CE=BH,利用等腰直角三角形的判定和性质解答即可.【解答】解:(1)①∵在△ABC中,∠BAC=90°,AB=AC,∴∠CBA=45°,∵BD平分∠ABC,∴∠DBA=22.5°,∵CE⊥BD,∴∠ECD+∠CDE=90°,∠DBA+∠BDA=90°,∵∠CDE=∠BDA,∴∠ECD=∠DBA=22.5°;②延长CE交BA的延长线于点G,如图1:∵BD平分∠ABC,CE⊥BD,∴CE=GE,在△ABD与△ACG中,,∴△ABD≌△ACG(AAS),∴BD=CG=2CE;(2)结论:BE﹣CE=2AF.过点A作AH⊥AE,交BE于点H,如图2:∵AH⊥AE,∴∠BAH+∠HAC=∠HAC+∠CAE,∴∠BAH=∠CAE,在△ABH与△ACE中,,∴△ABH≌△ACE(ASA),∴CE=BH,AH=AE,∴△AEH是等腰直角三角形,∴AF=EF=HF,∴BE﹣CE=2AF.【点评】本题考查的是全等三角形的判定和性质,正确的构建出与所求和已知相关的全等三角形,是解答本题的关键.。
DCABD C B A2020-2021学年青山区2020-2021度第一学期八年级期末测试数学试卷本试卷120分 考试用时120分钟一、选一选(本大题共1 2小题,每小题3分,共36分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答寒的代号在答题卡上将对应的答案标号涂黑。
1.下列运算中,正确的是A . x 2x 3=5x B . x+x 2=x 3 C . 2x 3÷x 2=x D .(2x )3=23x2.若2 x 在实数范围内有意义,则x 的取值范围是( )A. x≥-2B. x≠-2 .C. x≥2D. x≠23.下列各点,不在函数y=2x -1的图象上的是( ) A .(2,3) B .(-9,-5) C .(O ,-1) D .(-1,0)4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )5.估计与28最接近的整数是( )A .4B . 5 C.6 D . 76.下列各式:①XL 一xy';②X2一xy+2y2;③_X2+ y2;④X2—2xy+y2,其中能用 公式法分解因式的有A .1个B .2个C .3个D .4个 7.下列计算:①2+3=5;②2a 3·3a 2= 6a 6;③(2x+y)(x -3y)=2x 2-5xy -3y 2; ④(x+ y)2=x 2+ y 2.其中计算错误的个数是( )A.O 个B.l 个 C .2个 D.3个8.如图,点A 在线段BC 的垂直平分线上,AD=DC ,∠ A=28°, 则∠BCD 的度数为( )A . 76° .B . 62°C . 48°D . 38°xyP1OEBCADEDBACS (千米)t (分)40109.已知a+b=2,则a 2-b 2 +4b 的值是( )A . 2B . 3C . 4D . 610.如果直线y=ax+2与直线y=bx -3相交于x 轴上的同一点,则a:b 等于 ( )A . -32 B .32 C.-23 D .23 11.甲、乙两人以相同路线前往距离工作单位10km 的培训中心 参加学习.图中l 甲、,l 乙分别表示甲、乙两人前往目的地所走的路程S (km)随时间t (分)变化的函数图象,以下说法:①乙比甲 提前12分钟到达;②甲的平均速度为15千米/小时;⑧乙走了 8km 后遇到甲;④乙出发6分钟后追上甲,其中正确的有( ) A .4个 B .3个 C .2个 D .1个12.如图: △ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD, CE ⊥CD,且CE=CD ,连接BD. DE. BE ,则下列结论:①∠ECA=165°,②BE=B C;③AD⊥ BE;④BDCD=1. 其中正确的是( )A .①②③ B.①②④ C .①⑧④ D.①②⑧④二、填一填(每题3分,共12分)13.计算:(2a )3=_____, 24x 2y-(-6xy)=_________, ,2)3(- =___14.若1+-b a 与42++b a 互为相反数,则1+b a =______.15.如图,点D 、E 在△ABC 的BC 边上,.∠ BAD=∠CAE ,要推理得出 △ABF ≌△ACD,可以补充的一个条件是__________________. (不添加辅助线,写出一个即可).16.如图,直线l 1 y 1:= kx+b 与直线l 2:y 2=mx+n 交点为 P(1,1),当y 1>y 2>0时,x 的取值范围是________.xy1OE D ABCPFAD三、解下列各题(本大题有9小题,共72分) 17.(本题6分)计算:(21x 4y 3 -35x 3y 2+7x 2y 2)÷(-7x 2y )18. (本题6分)分解因式:9x 2y- 6xy 2+ y 319. (本小题6分)如图,△ABC 中,AB=AC, BD 上AC 于点D , CE ⊥AB 于点E . 求证:BD=CE20. (本题7分)先化简,后求值:[(x 2+y 2)-(x —y)2+2y(x —y)]÷4y,其中2x-y =18.21. (本题7分)(1)点(1,3)沿X 轴的正方向平移4个单位得到的点的坐标是_________(2)直线y=3x 沿x 轴的正方向平移4个单位得到的直线解析式为____________ (3)若直线l 与(2)中所得的直线关于直线x=2对称,试求直线l 的解析式.22. (本题8分)如图,点A 、C 分别在一个含45°的直角三角板HBE 的两条直角边BH 和BE 上,且BA=BC ,过点C 作BE 的垂线CD ,过E 点作EF 上AE 交∠DCE 的角平分线于F 点,交HE 于P .(1)试判断△PCE 的形状,并请说明理由. (2)若∠HAE=120°,AB=3,求EF 的长.E ABCDEA CB D Fx 乙地甲地B 省A 省捐赠省台数(台)调运灾区 23.(本题10分)玉树地震发生后,根据救灾指挥中心的信息,甲、乙两个重灾区急需一种 大型挖掘机,甲地需要27台,乙地需要25台;A 、B 两省获知情况后慷慨相助,分别捐赠 该型号挖掘机28台和24台,并将其全部调运往灾区,如果从A 省调运一台挖掘机到甲地耗 资0.4万元,到乙地耗资0.3万元;从B 省调运一台挖掘机到甲地耗资0.5万元,到乙 地耗资0.2万元;设从A 调往甲地x 台挖掘机,A 、B 两省将捐赠的挖掘机全部调往灾区共 耗资y 万元:(1)请完成表格的填空:(2)求出y 与x 之间的函数关系式,并直接写出 自变量x 的取值范围(3)画出这个函数的图象,结合图象说明若要使总耗资不超过16.2万元,有哪几种调运方案?哪种调运方案的总耗资最少?24. (本题10分)如图1,AD∥BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E 在线段AB 上. (1)填空:∠ADE=____°; (2)求证: AB=BC;(3)如图2所示,若F 为线段CD 上一点,∠FBC=30°,求FCDF的值.x yDC A M 1O B xyDA 1OBP25. (本题12分)如图1:直线y= kx+4k (k ≠0)交x 轴于点A ,交y 轴于点C ,点M (2,m)为直线AC 上一点,过点M 的直线BD 交x 轴于点B ,交y 轴于点D . (1)求OAOC的值(用含有k 的式子表示.); (2)若S ∆BOM =3S ∆DOM ,且k 为方程(k+7)(k+5)-(k+6)(k+5=29的根,求直线BD 的 解析式.(3)如图2,在(2)的条件下,P 为线段OD 之间的动点(点P 不与点O 和点D 重合),OE 上AP 于E ,,DF 上AP 于F ,下列两个结论:①DF OE AE +值不变;②DFOEAE -值不变,请你判断其中哪一个结论是正确的,并说明理由并求出其值,青山区2020—2021度第一学期八年级期末测试题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDABDBDCABD二、填空题 题号13141516。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!12021-2022学年湖北省武汉市八年级上学期期中数学试题及答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是( )A.B.C.D.2.(3分)等腰三角形两边的长分别为3cm和5cm,则这个三角形的周长是( )A.11cm B.13cm C.11cm或13cm D.不确定3.(3分)如图,在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是( )A.SAS B.ASA C.SSS D.HL4.(3分)如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有( )A.1个B.2个C.3个D.4个5.(3分)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是( )A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等6.(3分)下列说法正确的有( )个.①任何数的0次幂都等于1;②等腰三角形底边的中点到两腰的距离相等;③有一个角是60°的等腰三角形是等边三角形;④到三角形三条边距离相等的点是三角形三条中线的交点;⑤到三角形三个顶点距离相等的点是三角形三边垂直平分线的交点.A.1 B.2 C.3 D.47.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为( )A.110° B.115° C.125° D.130°8.(3分)如图,OP平分∠AOB,PC⊥OA,点D是OB上的动点,若PC=5cm,则PD的长可以是( )A.2cm B.3cm C.4cm D.6cm9.(3分)点O在△ABC(非等边三角形)内,且OA=OB=OC,则点O为( )A.△ABC的三条角平分线的交点B.△ABC的三条高线的交点C.△ABC的三条边的垂直平分线的交点D.△ABC的三条边上的中线的交点10.(3分)下列说法不正确的是( )A.面积相等的两个三角形全等B.全等三角形对应边上的中线相等C.全等三角形的对应角的角平分线相等D.全等三角形的对应边上的高相等二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(2,3)关于y轴的对称点Q的坐标为 .12.(3分)一个多边形的每一个外角为30°,那么这个多边形的边数为 .13.(3分)如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为 .14.(3分)如图所示,已知△ABC的周长是10,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=1,则△ABC的面积是 .15.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后得到A1坐标是(a,﹣b),则经过第2021次变换后所得的点A2021坐标是 .16.(3分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3= .三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F是OM 上的另一点,连接DF,EF.求证∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是 ,∠BAC的大小是 ,此时三条线段AD,BD,BC之间的数量关系是 【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ =MQ+QP.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.D.2.C.3.C.4.C.5.C.6.C.7.B.8.D.9.C.10.A.二.填空题(共6小题,满分18分,每小题3分)11.(﹣2,3).12.12.13.108°或72°.14.5.15.(a,﹣b).16.58°.三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】见解析【解析】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS).18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.【答案】见解析【解析】∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.【答案】见解析【解析】(1)作图如图所示.(2)∵DE是AC的平分线,∴DA=DC,EA=EC,又∵DC=6,∴AC=2DC=12,又∵△ABC的周长=AB+BC+AC=32,∴AB+BC=32﹣AC=32﹣12=20,∴△BEC的周长=BE+EC+BC,=BE+EA+BC=AB+BC=20.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.【答案】见解析(1)如图,△A′B′C'即为所求,点B′的坐标为(4,0);(2)△ABC的面积为:3×4﹣2×3﹣2×4﹣1×2=12﹣3﹣4﹣1=4;(3)∵点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,∴m﹣1=﹣2,n+1=﹣3,解得m=﹣1,n=﹣4.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.【答案】见解析【解析】(1)证明:如图1,连接AC,∵CE⊥AB,E为AB的中点,∴AC=BC,∵AD⊥BC,D为BC的中点,∴AB=BC;(2)证明:如图2,∵D,E分别是BC,AB的中点,AB=BC,∴BE=BD,在Rt△BEF和Rt△BDF中,,∴Rt△BEF≌Rt△BDF(HL),∴EF=FD,∵FE⊥AB,FD⊥BC,∴点F在∠EBD的平分线上,即BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F是OM 上的另一点,连接DF,EF.求证∠DFO=∠EFO.【答案】见解析【解析】证明:∵OM是∠AOB的平分线,CD⊥OA,CE⊥OB,垂足分别为D、E,∴∠FOD=∠FOE,CD=CE,∠CDO=∠CEO=90°,又∵OC=OC,在△DFO和△EFO中,,∴△DFO≌△EFO(SAS),∴∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上【答案】见解析【解析】(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是________,∠BAC的大小是________,此时三条线段AD,BD,BC之间的数量关系是________【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ=MQ+QP.【答案】见解析【解析】【探究发现】∵将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,∴∠ADB=∠A1DB,∠CDA1=∠CDA2,∠ABD=∠DBC,∠DCA1=∠DCA2,AD=A1D=A2D,∵点B,D,A2三点共线,∴∠A2DC=∠ADB,∴∠ADB=∠A1DB=∠CDA1=∠CDA2,∵∠ADB+∠A1DB+∠CDA1=180°,∴∠ADB=60°,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=2∠DBC,∵∠ADB=∠DBC+∠ACB=3∠DBC=60°,∴∠DBC=20°,∴∠ACB=40°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵∠DCA1=∠DCA2=40°∴∠BCA2=80°,∠BA2C=180°﹣80°﹣20°=80°,∴∠BCA2=∠BA2C,∴BC=A2B=BD+A2D=BD+AD,故答案为:60°,100°,BC=BD+AD;【应用拓展】(1)如图,将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,以A2C为边作等边三角形A2CF,连接BF,由【探究发现】可知:∠ABC=∠ACB=∠A2CD=40°,A1C=A2C,A2B=BC,AB=BA1,∠BCA2=∠BA2C=80°,∴∠CBE=140°,∵AE=BC,AB=A1B,∴BE=A1C,∵△A2CF是等边三角形,∴∠A2CF=∠CA2F=60°,A2F=A2C=CF,∴A2F=CF=BE,∠BA2F=140°=∠BCF=∠EBC,且BC=BC,∴△EBC≌△FCB(SAS),∴∠FBC=∠ECB,∵A2F=BE,∠BA2F=140°=∠EBC,BC=A2B∴△EBC≌△FA2B(SAS)∴∠BCE=∠A2BF,∴∠BCE=∠A2BF=∠FBC,且∠A2BC=20°∴∠BCE=10°;(2)如图3,将△MNQ沿MN翻折,得到△MNC,延长MC交直线PN于点E,将△MPQ沿MP翻折,得到△MPA,延长MA,交直线NP于点B,延长MN使NF=NQ,连接EF,∵∠MNP=60°,∠MPN=70°,∴∠NMP=50°,且∠NMQ=20°,∴∠QMP=30°,∴∠MQP=80°,∵将△MNQ沿MN翻折,得到△MNC,将△MPQ沿MP翻折,得到△MPA,∴∠NMQ=∠NMC=20°,∠CNM=∠MNQ=60°,CN=NQ,∠QMP=∠PMA=30°,MQ=AM,QP=AP,∠QPM=∠MPA=70°,∠MQP=∠MAP=80°,∴∠APB=180°﹣∠QPM﹣∠MPA=40°,∠EMB=100°∵∠MAP=∠B+∠APB,∴∠B=40°=∠APB,∴AP=AB,∠MEB=180°﹣∠B﹣∠EMB=40°,∴∠B=∠MEB=40°,∴ME=MB=AM+AB=MQ+PQ,∵∠ENF=∠MNQ=60°=∠MNC,∴∠CNE=∠ENF=60°,且CN=NQ=NF,EN=EN,∴△EFN≌△ECN(SAS)∴∠CEN=∠FEN=40°,∴∠MEF=80°,∴∠MFE=180°﹣∠EMF﹣∠MEF=80°,∴∠MEF=∠MFE=80°,∴MF=EM,∴MN+NF=MQ+PQ,∴MN+NQ=MQ+PQ。
2020-2021八年级数学上期中试卷附答案一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.李老师开车去20km 远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km ,则正好到达,如果设原来的行驶速度为xkm/h ,那么可列分式方程为 A .20201010x x -=+ B .20201010x x -=+ C .20201106x x -=+ D .20201106x x -=+ 3.如图,在△ABC 中,过点A 作射线AD ∥BC ,点D 不与点A 重合,且AD≠BC ,连结BD 交AC 于点O ,连结CD ,设△ABO 、△ADO 、△CDO 和△BCO 的面积分别为和,则下列说法不正确的是( )A .B .C .D .4.关于x 的分式方程2x a1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠- D .a 1>且a 2≠ 5.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .116.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形. A .6B .5C .8D .77.已知x+y=5,xy=6,则x 2+y 2的值是( ) A .1 B .13 C .17 D .258.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A.2a+b B.4a+b C.a+2b D.a+3b 9.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 410.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 11.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.1212.如图,△ABC与△A1B1C1关于直线MN对称,P为MN上任一点,下列结论中错误的是( )A.△AA1P是等腰三角形B.MN垂直平分AA1,CC1C.△ABC与△A1B1C1面积相等D.直线AB、A1B的交点不一定在MN上二、填空题13.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是_________. 14.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.15.若4a 4﹣ka 2b+25b 2是一个完全平方式,则k=_____. 16.在代数式11,,52x xx +中,分式有_________________个. 17.若分式62m -的值是正整数,则m 可取的整数有_____. 18.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 19.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.20.因式分解:x 2y ﹣y 3=_____.三、解答题21.先化简,再求值:222284()24a a a a a a+-+÷--,其中a 满足方程2410a a ++=. 22.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成. (1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由. 23.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个等腰三角形的底边长和腰长. 24.解方程:22111x x x -=--. 25.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.C解析:C 【解析】设原来的行驶速度为xkm/h ,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x -=+,故选C. 点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.3.D解析:D 【解析】 【分析】根据同底等高判断△ABD 和△ACD 的面积相等,即可得到,即,同理可得△ABC 和△BCD 的面积相等,即.【详解】∵△ABD 和△ACD 同底等高,, ,即△ABC 和△DBC 同底等高,∴∴故A,B,C 正确,D 错误.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.4.D解析:D 【解析】 【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围. 【详解】分式方程去分母得:x 12x a +=+,即x 1a =-, 因为分式方程解为负数,所以1a 0-<,且1a 1-≠-, 解得:a 1>且a 2≠, 故选D . 【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.5.C解析:C 【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断. 【详解】设第三边长为x ,则有 7-3<x<7+3, 即4<x<10,观察只有C 选项符合, 故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.6.B解析:B 【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形. 故选B .【点睛】本题考查的知识点为:从n 边形的一个顶点出发,可把n 边形分成(n-2)个三角形.7.B解析:B 【解析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.8.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.9.A解析:A【解析】【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【详解】∵2n+2n+2n+2n=2,∴4×2n=2,∴2×2n=1,∴21+n=1,∴1+n=0,∴n=﹣1,故选A.【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).10.C解析:C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.11.A解析:A【解析】【分析】根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.【详解】在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.【点睛】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.12.D解析:D【解析】【分析】根据轴对称的性质即可解答.【详解】∵△ABC与△A1B1C1关于直线MN对称,P为MN上任意一点,∴△A A1P是等腰三角形,MN垂直平分AA1、CC1,△ABC与△A1B1C1面积相等,∴选项A、B、C选项正确;∵直线AB,A1B1关于直线MN对称,因此交点一定在MN上.∴选项D错误.故选D.【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.二、填空题13.a>-1【解析】分析:先去分母得2x+a=x-1可解得x=-a-1由于关于x 的方程=1的解是正数则x >0并且x-1≠0即-a-1>0且-a-1≠1解得a <-1且a≠-2详解:去分母得2x+a=x-1解析:a>-1 【解析】分析:先去分母得2x+a=x-1,可解得x=-a-1,由于关于x 的方程21x ax +-=1的解是正数,则x >0并且x-1≠0,即-a-1>0且-a-1≠1,解得a <-1且a≠-2. 详解:去分母得2x+a=x-1, 解得x=-a-1,∵关于x 的方程21x ax +-=1的解是正数, ∴x >0且x≠1,∴-a-1>0且-a-1≠1,解得a <-1且a≠-2, ∴a 的取值范围是a <-1且a≠-2. 故答案为a <-1且a≠-2.点睛:本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.14.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66 【解析】 【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数. 【详解】解:∵五边形ABCDE 为正五边形, ∴108EAB ∠=度,∵AP 是EAB ∠的角平分线, ∴54PAB ∠=度, ∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒. 故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.15.±20【解析】∵4a4-ka2b+25b2是一个完全平方式∴4a4-ka2b+25b2=(2a2±5b)2=4a4±20a2b+25b2∴k=±20故答案为:±20解析:±20【解析】∵4a4-ka2b+25b2是一个完全平方式,∴4a4-ka2b+25b2=(2a2±5b)2=4a4±20a2b+25b2,∴k=±20,故答案为:±20.16.1【解析】【分析】判断分式的依据是看分母中是否含有字母如果含有字母则是分式如果不含有字母则不是分式【详解】解:是整式是分式是整式即分式个数为1故答案为:1【点睛】本题主要考查分式的定义注意数字不是字解析:1【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:15x+是整式,1x是分式,2x是整式,即分式个数为1,故答案为:1【点睛】本题主要考查分式的定义,注意数字不是字母,判断分母的关键是分母中有字母. 17.3458【解析】【分析】根据此分式的值是正整数可知m-2是6的约数而6的约数是1236然后分别列出四个方程解之即可得出答案【详解】解:∵分式的值是正整数∴m-2=1或2或3或6∴m=3或4或5或8故解析:3,4,5,8【解析】【分析】根据此分式的值是正整数可知m-2是6的约数,而6的约数是1,2,3,6,然后分别列出四个方程,解之即可得出答案.【详解】解:∵分式62m-的值是正整数,∴m-2=1或2或3或6,∴m=3或4或5或8.故答案为3,4,5,8.【点睛】本题考查了分式的有关知识.理解m-2是6的约数是解题的关键.18.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.19.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.20.y(x+y)(x-y)【解析】【分析】(1)原式提取y再利用平方差公式分解即可【详解】原式=y(x2-y2)=y(x+y)(x-y)故答案为y(x+y)(x-y)【点睛】此题考查了提公因式法与公式法解析:y(x+y)(x-y)【解析】【分析】(1)原式提取y,再利用平方差公式分解即可.【详解】原式=y(x2-y2)=y(x+y)(x-y),故答案为y(x+y)(x-y).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.211 443a a =++.【解析】试题分析:把原式括号里的第二项提取﹣1,然后把原式的各项分子分母都分解因式,找出括号里两项分母的最简公分母,利用分式的基本性质对括号里两项进行通分,然后利用同分母分式的减法运算法则:分母不变,只把分子相减,计算出结果,然后利用分式的除法法则:除以一个数等于乘以这个数的倒数,变形为乘法运算,约分后即可把原式化为最简分式,把a 满足的方程变形后,代入原式化简后的式子中即可求出值.试题解析:原式=28[](2)(2)(2)(2)(2)a a a a a a a a +-⨯--++- =2(2)8(2)(2)(2)(2)a a a a a a a a +-⨯-++- =2(2)(2)(2)(2)(2)a a a a a a a -⨯-++- =2211(2)44a a a =+++ ∵2410a a ++=,∴241a a +=-, ∴原式=11143=-+. 考点:分式的化简求值.22.(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元【解析】【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【详解】解:(1)设甲队单独完成这项目需要x 天,则乙队单独完成这项工程需要2x 天, 根据题意,得611161x x 2x ⎛⎫++= ⎪⎝⎭, 解得x =30经检验,x =30是原方程的根,则2x =2×30=60 答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y 天, 则有11y 13060⎛⎫+= ⎪⎝⎭, 解得y =20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.23.底边长为4cm ,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC 的腰长为xcm ,则AD =DC =12xcm ,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线.设△ABC 的腰长为xcm ,则AD =DC =12xcm. 分下面两种情况解:①AB +AD =x +12x =9, ∴x =6. ∵三角形的周长为9+15=24(cm), ∴三边长分别为6cm ,6cm ,12cm. 6+6=12, 不符合三角形的三边关系,舍去;②AB +AD =x +12x =15, ∴x =10. ∵三角形的周长为24cm , ∴三边长分别为10cm ,10cm ,4cm ,符合三边关系.综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.24.原方程无解.【解析】试题分析:观察可得最简公分母是21x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程两边都乘以21x -,得:()2121x x x +-=-, 去括号得2221x x x +-=-,移项合并得1x =.检验:当1x =时,210x -=,所以原方程无解.25.12x +;15【解析】【分析】 先算括号里面的,再算除法,最后求出a 的值代入进行计算即可.【详解】 原式()22224321112x x x x x x x x ⎛⎫-+-+--=+⋅ ⎪--+⎝⎭ ()2211122x x x x x +-=⋅=-++.解方程2430x x -+=得3x =或1x =(舍去). 代入化简后的式子得原式1125x ==+. 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键。
2020-2021学年湖北省武汉市青山区八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,是轴对称图形的是()A. B. C. D.2.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.3.下列长度的三根木棒能组成三角形的是()A. 5,6,10B. 4,4,8C. 3,4,8D. 6,7,144.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是()A. (−2,1)B. (2,1)C. (−2,−1)D. (2,−1)5.已知,正n边形的每一个内角是144°,则n的值是()A. 6B. 8C. 10D. 126.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A. 10B. 7C. 5D. 47.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B. 36°C. 45°D. 70°8.如图,在等腰△ABC中,AB=AC,∠BAC=120°,分别以点AC的长为半径画弧,两弧交于M,N两C,A为圆心、大于12点,作直线MN分别交CB,CA于点E,F,则线段BE与线段EF的数量关系是()A. BE=2EFB. 5BE=3EFC. 3BE=2EFD. BE=4EF9.如图,在△ABC中,点E和F分别是AC,BC上一点,EF//AB,∠BCA的平分线交AB于点D,∠MAC是△ABC的外角,若∠MAC=α,∠EFC=β,∠ADC=γ,则α、β、γ三者间的数量关系是()A. β=α+γB. β=2γ−αC. β=α+2γD. β=2α−2γ10.如图,在△ABC中,∠ACB=90°,AC=BC,E、F为AC、BC上的动点,且CF=AE,连接BE,AF,当BE+AF取得最小值时,则AE:BF的值为()A. 0.5B. 1C. √2D. 2二、填空题(本大题共6小题,共18.0分)11.如图,木工师傅做完窗框后,常像图中那样钉上一条斜拉的木条,这样做的数学原理是利用三角形的______ .12.如图,△ABC≌△DEF,BC=7,EC=5,则CF的长为______ .13.若从一个n边形的一个顶点出发,最多可以引8条对角线,则n=______ 。
14.如图,已知∠CAB=∠DAB,要使△ABC≌△ABD,则应添加的一个条件是______ .(填一种即可)15.如图,△ABC中,∠ABC,∠ACB的角平分线交于点O,过O点作MN//BC分别交AB,AC于M,N两点,AB=7,AC=9.则△AMN的周长是______ .16.如图,△ABC中,AB=AC,∠BAC=90°,点D为AB上一定点,点E、F分别为边AC、BC上的动点,当△DEF的周长最小时,∠FDE=______ °.三、解答题(本大题共8小题,共72.0分)17.如图,在△ABC中,AD⊥BC于点D,AE平分∠BAC,若∠BAE=30°,∠CAD=20°,求∠B的度数.18.如图,AB⊥AC,CD⊥BD,垂足分别为A,D,AB=DC.求证:AC=BD.19.用一条长为35cm的细绳围成一个等腰三角形.(1)如果底边长是腰长的一半,求各边长;(2)能围成有一边长为9cm的等腰三角形吗?如果能,请求出它的另两边.20.如图,在7×6的网格中,横、纵坐标均为整数的点叫做格点,如A(4,0)、B(1,1)、C(6,2)都是格点,请用无刻度直尺画出下列图形,并保留作图痕迹.(1)直接写出点C关于x轴的对称点C的坐标:______ ;(2)画出线段BD,使BD⊥AC于点D;(3)①画出线段CE,使CE⊥AB于点E;②画出线段AF,使AF⊥BC于点F.21.已知:如图,C是AB上一点,点D,E分别在AB两侧,AD//BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.22.已知,在△ABC中,D是AC上一点,BF交AC于点E,连接DF.(1)如图1,BE=EF,AB//DF.求证:AE=DE;(2)如图2,点D与点C重合,∠A=90°,∠ACB=∠ECF,∠F=∠AEB.若CE=3,BC=5,求AC的长.23.已知,点I为△ABC三个内角平分线的交点,∠ACB=2∠ABC.(1)如图1,若∠BAC=30°,求∠BIC的度数;(2)如图2,求证:AB=AC+CI;(3)若AC=BI,则∠ABC=______ °.24.在平面直角坐标系中,点A的坐标为(4,0),点B为y轴正半轴上的一个动点,以B为直角顶点,AB为直角边在第一象限作等腰Rt△ABC.(1)如图1,若OB=3,则点C的坐标为______ ;(2)如图2,若OB=4,点D为OA延长线上一点,以D为直角顶点,BD为直角边在第一象限作等腰Rt△BDE,连接AE,求证:AE⊥AB;(3)如图3,以B为直角顶点,OB为直角边在第三象限作等腰Rt△OBF.连接CF,交y轴于点P,求线段BP的长度.答案和解析1.【答案】C【解析】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意;故选:C.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.本题考查的是轴对称图形的概念,掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合是解题的关键.2.【答案】D【解析】解:线段BE是△ABC的高的图是选项D.故选:D.根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.3.【答案】A【解析】解:A、5+6>10,能够组成三角形;B、4+4=8,不能构成三角形;C、3+4<8,不能构成三角形;D、7+6<14,不能组成三角形.故选:A.根据三角形的三边关系“任意两边之和大于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.【答案】A【解析】解:点P(2,1)关于y轴对称的点的坐标是(−2,1).故选A.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.【答案】C【解析】解:∵正n边形的每一个内角都等于144°,∴每一个外角都是180−144=36(度),∴n=360÷36=10.故选:C.首先计算出每一个外角的度数,利用外角和除以外角度数可得边数.此题主要考查了多边形的内角与外角,关键是掌握多边形的内角与相邻的外角互补.6.【答案】C【解析】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=12BC⋅EF=12×5×2=5,故选:C.作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.7.【答案】B【解析】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,,设∠A=∠ABD=x,则∠BDC=2x,∠C=180°−x2,可得2x=180°−x2解得:x=36°,则∠A=36°,故选:B.利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x 的方程,求出方程的解得到x的值,即可确定出∠A的度数.此题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.8.【答案】D【解析】解:连接AE.∵AB=AC,∠CAB=120°,∴∠B=∠C=30°,∵MN是线段AC的垂直平分线,∴EC=EA,∴∠C=∠EAC=30°,∴∠BAE=120°−∠CAE=90°,∵∠AFE=90°,∴AF=2EF,BE=2AE,∴BE=4EF.故选:D.连接AE.利用直角三角形30度的性质解决问题即可.本题考查作图−基本作图,线段的垂直平分线的性质,等腰三角形的性质,直角三角形30度角的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.【答案】B【解析】解:∵EF//AB,∠EFC=β,∴∠B=∠EFC=β,∵CD平分∠BCA,∴∠ACB=2∠BCD,∵∠ADC是△BDC的外角,∴∠ADC=∠B+∠BCD,∵∠ADC=γ,∴∠BCD=γ−β,∵∠MAC是△ABC的外角,∴∠MAC=∠B+∠ACB,∵∠MAC=α,∴α=β+2(γ−β),即β=2γ−α,故选:B.根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD,根据∠ADC是△BDC的外角,得到∠ADC=∠B+∠BCD,由三角形外角的性质得到∠MAC=∠B+∠ACB,于是得到结果.本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.10.【答案】B【解析】解:如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵C,D关于AB对称,∴DA=DB,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,∴∠CAD=∠CBD=∠ADC=∠C=90°,∴四边形ACBD是矩形,∵CA=CB,∴四边形ACBD是正方形,∵在△ACF和△DAE中,{CF=AE∠C=∠EAD=90°CA=DA,∴△ACF≌△DAE(SAS),∴AF=DE,∴AF+BE=ED+EB,∵CA垂直平分线段DH,∴ED=EH,∴AF+BE=EB+EH,∵EB+EH≥BH,∴AF+BE的最小值为线段BH的长,∴当点E在BH上时,BE+AF取得最小值,此时:在△AHE和△CBE中,{∠AEH=∠BEC∠HAE=∠BCE=90°AH=BC,∴△AHE≌△CBE(AAS),∴AE=CE=12AC,∴CF=AE=12BC,∴BF=12BC=12AC,∴AE:BF的值为1,故选:B.作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE,由“SAS”可证△ACF≌△DAE,可得AF=DE=HE,可得当点E在BH上时,BE+AF取得最小值,由“AAS”可证△AHE≌△CBE,可得AE=CE=12AC,即可求解.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,轴对称的性质等知识,确定点E的位置是本题的关键.11.【答案】稳定性【解析】解:这是利用了三角形的稳定性.故答案为:稳定性.三角形的特性之一就是具有稳定性.主要考查了三角形的性质中的稳定性,关键是根据三角形的稳定性解答.12.【答案】2【解析】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∴CF=EF−EC=7−5=2,故答案为:2.根据全等三角形的对应边相等得到EF=BC=5cm,计算即可得到结果.本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.13.【答案】11【解析】解:设多边形有n条边,则n−3=8,解得n=11。