武汉市八年级上学期数学期中考试试卷
- 格式:doc
- 大小:413.50 KB
- 文档页数:11
2024—2025学年度第一学期期中考试八年级数学试卷时间: 120分钟满分: 120分一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑1. 下列长度的三条线段中,能组成三角形的是 ( )A. 4, 4, 9B. 5, 6, 10C. 6, 7, 13D. 1, 3, 22. 下列各式运算正确的是 ( )A.(−2a)³=−6a³B.a+a=a²C.a³⋅a²=a⁵D.a⁸÷a⁴=a²3. 下列三个图形中,具有稳定性的图形的个数是( )A. 0个B. 1个C. 2个D. 3个4. 工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,连接OC.可知△OMC≌△ONC, OC便是∠AOB的平分线. 则△OMC≌△ONC的理由是( )A. SSSB. SASC. ASAD. AAS5. 一个多边形的每个外角都是45°,则此多边形是 ( )A. 五边形B. 六边形C. 七边形D. 八边形6. 下面四个三角形中,与图中的△ABC全等的是( )7. 如图, D 是AB 上一点, E 是AC 上一点, BE 和CD 相交于点 F, ∠A =61°,∠ACD =34°,∠ABE=19°, 则∠BFD=( )A. 44°B. 45°C. 53°D. 66°8. 下列说法正确的是 ( )A. 三角形的一个外角大于任何一个内角B. 有两边和其中一边上的高对应相等的两个三角形全等C. 各条边都相等的多边形叫做正多边形D. 三角形的三条高交于一点,这一点不一定在三角形内部9. 如图, 已知四边形ABCD 中, AB=15cm, BC=9cm, CD=10cm, ∠B=∠C, 点E 是线段BA 的三等分点(靠近B 处) .如果点P 在线段BC 上以3cm/s 的速度由点B 向点C 运动,同时,点Q 在线段 CD 上由点 C 向点D 运动.若要使得△BPE 与△CQP 全等,则点Q 的运动速度为( ) cm/s.A. 3B. 3 或 103C.203D. 3 或 20310. 我们定义:一个整式能表示成( a²+b²(a 、b 是整式) 的形式,则称这个整式为“完全式”.例如:因为M =x²+2xy +2y²=(x +y )²+y²(x 、y 是整式) ,所以M 为“完全式”.若 S =x²+4y²−8x +12y +k (x 、y 是整式,k 为常数) 为“完全式”,则k 的值为 ( )A. 23B. 24C. 25D. 26二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定位置.11. 计算:2024°= ; x(x-2)= ; a-b-c=a- ( ) .12. 在△ABC 中, ∠A: ∠B: ∠C=2:3:4, 则∠C= .13. 已知2ᵐ=64,2ⁿ=16,,m, n为正整数, 则2ᵐ⁻ⁿ=.14. 等腰三角形一腰上的高与另一腰的夹角为35°,则它的顶角的大小是 .15. 如图,在△ABC中, ∠ABC和∠ACB的平分线BE、CD相交于点O, 过点O作OM⊥BC于点 M, 则下列结论:①若∠A=50°,则∠BOC=115°;②AEEC =ABBC;③若OM=m,AB+BC+AC=n, 则S ABC=12mn;④平面内到三条直线AB、AC、BC距离相等的点有3个.正确的有 .(只填写序号)16.如图,在△ABC中,∠BAC和∠ACB的平分线相交于点O,OD⊥OA交AB于点D, OE⊥OC交 BC于点E, 连接DE, AC=7, BC=8, △BDE的周长为6, 则AB的长为 .三、解答题(共8大题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形17. (本题8分) 计算: (1)x⋅x⁵+(x³)²+(−2x²)³;(2)(12x²y−8xy²)÷4xy18. (本题8分)如图,点 B、F、C、E在一条直线上,BC=EF,AB=DE.请从下列条件①AB∥DE;②AC=DF;③AC∥DF中添加一个条件证明: ∠A=∠D.19. (本题8分) 先化简, 再求值[(2x+y)(2x−y)−(2x+3y)²]+y,其中6x+5y−2=0.20. (本题8分) 如图, AB∥CD,点E是BC的中点, AE是∠BAD的平分线.(1) 求证: DE 是∠CDA的平分线;(2) 若AB=5, AD+2CD=10, 求CD 的长.21. (本题8分)如图是由小正方形组成的9×9的网格,每个小正方形的顶点叫做格点.如图,A,B,C均为格点,用无刻度直尺在给定网格中完成画图,画图过程用虚线,画图结果用实线.(1) 在图1中, 画△PQC,使得△PQC≌△ABC;(2) 在图1中,过点C画直线m,使得直线m平分△ABC的面积;(3) 在图2中, 画△ABC的高AE;(4) 在图2中, 在高AE上作点 F, 使得∠ABF=45°.22. (本题10分) 我们在学习“整式的乘法公式”时,曾用两种不同的方法计算同一个图形的面积,得到一些代数恒等式。
2020-2021学年湖北省武汉市八年级上册期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一个三角形的两条边长分别为3和7,则第三边的长可能是( )A. 3B. 7C. 10D. 112.下列图形一定是轴对称图形的是( )A. 平行四边形B. 正方形C. 三角形D. 梯形3. 4.一个n边形的内角和等于它的外角和,则n=( )A. 3B. 4C. 5D. 64.下列图形中有几个具有稳定性?( )A. 三个B. 四个C. 五个D. 六个5.下列各条件不能作出唯一直角三角形的是( )A. 已知两直角边B. 已知两锐角C. 已知一直角边和一锐角D. 已知斜边和一直角边6.如图,△ABC≌△DEF,则∠E的度数为( )A. 80°B. 40°C. 62°D. 38°7.如图,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是()A. a=0B. a=0.5C. a=1D. a=28. 如图,△ABC 中,∠BAC =100°,DF ,EG 分别是AB ,AC 的垂直平分线,则∠DAE 等于( )A. 50°B. 45°C. 30°D. 20°9. 如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A ˈ处,折痕为DE.如果∠A =α,∠CEA ′=β,∠BDA ˈ=γ,那么下列式子中正确的是( )A. γ=2α+βB. γ=α+2βC. γ=α+βD. γ=180∘−α−β10. 如图,等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连接PQ 交AC 于点D ,则下列结论中不一定正确的是( )A. PD =DQB. DE =12ACC. AE =12CQD. PQ ⊥AB二、填空题(本大题共6小题,共18.0分)11. 已知点A (a ,4)关于y 轴的对称点B 的坐标为(−2,b ),则a +b =______ .12. 已知等腰三角形的一个内角是70°,则它的底角为______.13. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC 于点D ,AD =3,则BC =______.14. AD 是△ABC 的边BC 上的中线,AB =6,AC =4,则边BC 的取值范围是______ ,中线AD 的取值范围是______ .15. 如图,∠AOB =30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP =6,△PMN 的周长最小值为______.16.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC=______°.三、解答题(本大题共8小题,共72.0分)17.如图,AD=BC,AC=BD.求证:∠A=∠B.18.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=1∠B,∠C=50°.求2∠BAC的度数.(AB+BC+19.如图所示,O是△ABC内的一点,试说明:OA+OB+OC>12CA).20.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得|PA−PC2|的值最大.21.已知,如图,AB=AE,∠B=∠E,BC=ED,∠CAF=∠DAF.求证:AF⊥CD.22.如图:在△ABC中,BF=CF,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.23.如图,△ABE和△ACD都是等边三角形,BD与CE相交于点O.(1)求证:△AEC≌△ABD;(2)求∠BOC的度数.24.如图:已知A(a,0)、B(0,b),且a、b满足(a−2)2+|2b−4|=0.(1)如图1,求△AOB的面积;(2)如图2,点C在线段AB上(不与A、B重合)移动,AB⊥BD,且∠COD=45°,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90°至PE,直线AE交y轴,点Q,当P点在x轴上移动时,线段BE和线段BQ中,请判断哪条线段长为定值,并求出该定值.答案1.B.2.B.3.B.4.A.5.B.6.D.7.C.8.D9.A.10.D.11.6.12.55°或70°.13.9.14.2<BC<10,1<AD<5.15.616.75°或35°.17.【答案】证明:连接CD,在△BCD和△ADC中,∴△BCD≌△ADC(SSS),∴∠A=∠B.18.解:设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.∵BD=BA,∴∠BAD=∠BDA=50°+x°,∵∠B+∠BAD+∠BDA=180°,即2x+50+x+50+x=180,解得x=20.∴∠BAD=∠BDA=50°+20°=70°,∴∠BAC=∠BAD+∠DAC=70°+20°=90°.19.解:∵在△ABO中,OA+OB>AB,同理可得:OA+OC>CA,OB+OC>BC,∴2(OA+OB+OC)>AB+BC+CA,(AB+BC+CA).∴OA+OB+OC>1220.解:作图如下:(1)如图,△A1B1C1.(2)如图,△A2B2C2.(3)如图,点P即为所求.21.证明:在△ABC与△AED中,AB=AE∠B=∠E,BC=ED∴△ABC≌△AED(SAS),∴AC=AD,∵∠CAF=∠DAF,即AF为∠CAD的角平分线,∴AF⊥CD.22.证明:∵BD⊥AC于D,CE⊥AB于E,∴∠BEF=∠CDF=90°,在△BEF与△CDF中,∠BEF=∠CDF,∠EFB=∠DFCBF=CF∴EF=DF,∵FE⊥AB,FD⊥AC,∴AF平分∠BAC.23.解:(1)证明:∵△ABE和△ACD是等边三角形,∴AE=AB,AD=AC,∠EAB=60°,∠DAC=60°,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,∴△AEC≌△ABD;(2)由(1)得△AEC≌△ABD,∴∠AEC=∠ABD,∵∠AFE=∠BFO(对顶角),在△AEF中,∠AEF+∠EFA+∠EAF=180°,在△BFO中,∠FBO+∠BFO+∠FOB=180°,∴∠EAB=∠EOB=60°,∴∠BOC=180°−∠EOB=120°.24.解:(1)∵(a−2)2+|2b−4|=0,∴a−2=0,2b−4=0,∴a=2,b=2,∴A(2,0)、B(0,2),∴OA=1,OB=1,∴△AOB的面积=12×2×2=2;(2)如图2,证明:将△AOC绕点O逆时针旋转90°得到△OBF,∵∠OAC=∠OBF=∠OBA=45°,∠DBA=90°,∴∠DBF=180°,∵∠DOC=45°,∠AOB=90°,∴∠BOD+∠AOC=45°,∴∠FOD=∠BOF+∠BOD=∠BOD+∠AOC=45°,在△ODF与△ODC中,OF=OC∠FOD=∠COD OD=OD,∴△ODF≌△ODC(SAS),∴DC=DF,DF=BD+BF,(3)解:BQ是定值,作EF⊥OA于F,在FE上截取PF=FD,∵∠BAO=∠PDF=45°,∴∠PAB=∠PDE,∠PED=135°,∴∠BPA+∠EPF=90°,∠EPF+∠PED=90°,∴∠BPA=∠PED,在△PBA与△EPD中,PF=PD∠BPA=∠PED PB=PE∴△PBA≌EPD(SAS),∴AP=ED,∴FD+ED=PF+AP,即:FE=FA,∴∠FEA=∠FAE=45°,∴∠QAO=∠EAF=∠OQA=45°,∴OA=OQ=2,∴BQ=4.。
A 、B 、C 、D 、 八年级上学期期中测试题(二)一、选择题(每小题3分,共36分) 1.下列平面图形中,不是..轴对称图形的是( )2.在实数-3,0.21,π2,18,0.001,0.20202中,无理数的个数为( )A 、1B 、2C 、3D 、4 3.在直角坐标系中点(-6,3)关于y 轴的对称点的坐标是( )A .(-6,3)B .(-6,-3)C .(6,3)D .(6,-3)4.若△ABC 与△DEF 全等,A 和E ;B 和D 分别是对应点,•则下列结论错误的是( ) A .BC=EF B .∠B=∠D C .∠C=∠F D .AC=EF 5.下列计算正确的是( )A .93=±B .3273-=C .42-=-D .382--= 6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF ;②AB=DE,∠B=∠E,BC=EF ; ③∠B=∠E,BC=EF,∠C=∠F ;④AB=DE,AC=DF,∠B=∠E . 其中,能使△ABC ≌△DEF 的条件共有 (A)1组 (B)2组 (C)3组 (D)4组 7.如图,在△ABC 中,∠BAC=120°,AB 、AC 的垂直平分线分别交BC 于D 、E 则∠DAE=( )A .50°B .60°C .65°D .80°8.下列条件中,不能判定两个直角三角形全等的是( ) A .一锐角和斜边对应相等 B .两条直角边对应相等 C .斜边和一直角边对应相等 D .两个锐角对应相等 9.下列说法正确的是( )A .一个数的算术平方根等于它本身的数只有0B .一个数的平方根等于它的立方根的数只有1C .一个数的平方根等于它的倒数的数只有±1D .一个数的立方根等于它的倒数的数只有±1 10.如图所示,点A 为∠MON 的角平分线上一点,过A 任作一直线分别与∠MON 的两边交于B 、C ,P 为BC 的中点,过P 作BC 的垂线交OA 于点D 。
湖北省武汉市2021~2022年度第一学期期中考试卷八年级数学(考试时间 100分钟全卷满分 120分)学校:___________姓名:___________班级:___________考号:___________ 题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)等腰三角形两边的长分别为3cm和5cm,则这个三角形的周长是()A.11cm B.13cm C.11cm或13cm D.不确定3.(3分)如图,在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是()A.SAS B.ASA C.SSS D.HL4.(3分)如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个5.(3分)为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等6.(3分)下列说法正确的有()个.①任何数的0次幂都等于1;②等腰三角形底边的中点到两腰的距离相等;③有一个角是60°的等腰三角形是等边三角形;④到三角形三条边距离相等的点是三角形三条中线的交点;⑤到三角形三个顶点距离相等的点是三角形三边垂直平分线的交点.A.1 B.2 C.3 D.47.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°8.(3分)如图,OP平分∠AOB,PC⊥OA,点D是OB上的动点,若PC=5cm,则PD的长可以是()A.2cm B.3cm C.4cm D.6cm9.(3分)点O在△ABC(非等边三角形)内,且OA=OB=OC,则点O为()A.△ABC的三条角平分线的交点B.△ABC的三条高线的交点C.△ABC的三条边的垂直平分线的交点D.△ABC的三条边上的中线的交点10.(3分)下列说法不正确的是()A.面积相等的两个三角形全等B.全等三角形对应边上的中线相等C.全等三角形的对应角的角平分线相等D.全等三角形的对应边上的高相等二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(2,3)关于y轴的对称点Q的坐标为.12.(3分)一个多边形的每一个外角为30°,那么这个多边形的边数为.13.(3分)如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为.14.(3分)如图所示,已知△ABC的周长是10,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=1,则△ABC的面积是.15.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后得到A1坐标是(a,﹣b),则经过第2021次变换后所得的点A2021坐标是.16.(3分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F 是OM上的另一点,连接DF,EF.求证∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A 落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是,∠BAC的大小是,此时三条线段AD,BD,BC之间的数量关系是【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ=MQ+QP.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.D.2.C.3.C.4.C.5.C.6.C.7.B.8.D.9.C.10.A.二.填空题(共6小题,满分18分,每小题3分)11.(﹣2,3).12.12.13.108°或72°.14.5.15.(a,﹣b).16.58°.三.解答题(共8小题,满分72分)17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】见解析【解析】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS).18.(8分)在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.【答案】见解析【解析】∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.19.(8分)如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法).(2)连接CE,如果△ABC的周长为32,DC的长为6,求△BCE的周长.【答案】见解析【解析】(1)作图如图所示.(2)∵DE是AC的平分线,∴DA=DC,EA=EC,又∵DC=6,∴AC=2DC=12,又∵△ABC的周长=AB+BC+AC=32,∴AB+BC=32﹣AC=32﹣12=20,∴△BEC的周长=BE+EC+BC,=BE+EA+BC=AB+BC=20.20.(8分)如图,在平面直角坐标系中,A(﹣1,2)、B(﹣4,0)、C(﹣3,﹣2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C',并写出点B′的坐标;(2)请直接写出△ABC的面积;(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,请直接写出m、n的值.【答案】见解析【解析】(1)如图,△A′B′C'即为所求,点B′的坐标为(4,0);(2)△ABC的面积为:3×4﹣2×3﹣2×4﹣1×2=12﹣3﹣4﹣1=4;(3)∵点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,∴m﹣1=﹣2,n+1=﹣3,解得m=﹣1,n=﹣4.21.(8分)如图,D,E分别是BC,AB的中点,AD⊥BC于D,CE⊥AB于E,AD,CE交于点F.(1)证明:AB=BC;(2)连接BF,求证:BF是∠B的平分线.【答案】见解析【解析】(1)证明:如图1,连接AC,∵CE⊥AB,E为AB的中点,∴AC=BC,∵AD⊥BC,D为BC的中点,∴AB=BC;(2)证明:如图2,∵D,E分别是BC,AB的中点,AB=BC,∴BE=BD,在Rt△BEF和Rt△BDF中,,∴Rt△BEF≌Rt△BDF(HL),∴EF=FD,∵FE⊥AB,FD⊥BC,∴点F在∠EBD的平分线上,即BF是∠B的平分线.22.(10分)如图,OM是∠AOB的平分线,C是OM上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.F 是OM上的另一点,连接DF,EF.求证∠DFO=∠EFO.【答案】见解析【解析】证明:∵OM是∠AOB的平分线,CD⊥OA,CE⊥OB,垂足分别为D、E,∴∠FOD=∠FOE,CD=CE,∠CDO=∠CEO=90°,又∵OC=OC,在△DFO和△EFO中,,∴△DFO≌△EFO(SAS),∴∠DFO=∠EFO.23.(10分)在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上【答案】见解析【解析】(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵DE∥AC,∴∠EDA=∠F AD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A 落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是________,∠BAC的大小是________,此时三条线段AD,BD,BC之间的数量关系是________【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ=MQ+QP.【答案】见解析【解析】【探究发现】∵将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,∴∠ADB=∠A1DB,∠CDA1=∠CDA2,∠ABD=∠DBC,∠DCA1=∠DCA2,AD=A1D=A2D,∵点B,D,A2三点共线,∴∠A2DC=∠ADB,∴∠ADB=∠A1DB=∠CDA1=∠CDA2,∵∠ADB+∠A1DB+∠CDA1=180°,∴∠ADB=60°,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=2∠DBC,∵∠ADB=∠DBC+∠ACB=3∠DBC=60°,∴∠DBC=20°,∴∠ACB=40°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵∠DCA1=∠DCA2=40°∴∠BCA2=80°,∠BA2C=180°﹣80°﹣20°=80°,∴∠BCA2=∠BA2C,∴BC=A2B=BD+A2D=BD+AD,故答案为:60°,100°,BC=BD+AD;【应用拓展】(1)如图,将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,以A2C为边作等边三角形A2CF,连接BF,由【探究发现】可知:∠ABC=∠ACB=∠A2CD=40°,A1C=A2C,A2B=BC,AB=BA1,∠BCA2=∠BA2C=80°,∴∠CBE=140°,∵AE=BC,AB=A1B,∴BE=A1C,∵△A2CF是等边三角形,∴∠A2CF=∠CA2F=60°,A2F=A2C=CF,∴A2F=CF=BE,∠BA2F=140°=∠BCF=∠EBC,且BC=BC,∴△EBC≌△FCB(SAS),∴∠FBC=∠ECB,∵A2F=BE,∠BA2F=140°=∠EBC,BC=A2B∴△EBC≌△F A2B(SAS)∴∠BCE=∠A2BF,∴∠BCE=∠A2BF=∠FBC,且∠A2BC=20°∴∠BCE=10°;(2)如图3,将△MNQ沿MN翻折,得到△MNC,延长MC交直线PN于点E,将△MPQ沿MP翻折,得到△MP A,延长MA,交直线NP于点B,延长MN使NF=NQ,连接EF,∵∠MNP=60°,∠MPN=70°,∴∠NMP=50°,且∠NMQ=20°,∴∠QMP=30°,∴∠MQP=80°,∵将△MNQ沿MN翻折,得到△MNC,将△MPQ沿MP翻折,得到△MP A,∴∠NMQ=∠NMC=20°,∠CNM=∠MNQ=60°,CN=NQ,∠QMP=∠PMA=30°,MQ=AM,QP=AP,∠QPM=∠MP A=70°,∠MQP=∠MAP=80°,∴∠APB=180°﹣∠QPM﹣∠MP A=40°,∠EMB=100°∵∠MAP=∠B+∠APB,∴∠B=40°=∠APB,∴AP=AB,∠MEB=180°﹣∠B﹣∠EMB=40°,∴∠B=∠MEB=40°,∴ME=MB=AM+AB=MQ+PQ,∵∠ENF=∠MNQ=60°=∠MNC,∴∠CNE=∠ENF=60°,且CN=NQ=NF,EN=EN,∴△EFN≌△ECN(SAS)∴∠CEN=∠FEN=40°,∴∠MEF=80°,∴∠MFE=180°﹣∠EMF﹣∠MEF=80°,∴∠MEF=∠MFE=80°,∴MF=EM,∴MN+NF=MQ+PQ,∴MN+NQ=MQ+PQ。
2020-2021学年湖北省武汉市八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.有4cm和6cm的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,下列长度的小棒可选的是()A. 1cmB. 2cmC. 7cmD. 10cm2.下列图案中,是轴对称图形的是()A. B. C. D.3.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定4.用三个正多边形镶嵌成一个平面时,若前两种是正方形和正六边形,则第三种是()A. 正十二边形B. 正十边形C. 正八边形D. 正三角形5.如图所示,△ABC≌△BDA,如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 6cmB. 4cmC. 7cmD. 不能确定6.7.正多边形的一个内角等于144°,则该多边形是正()边形.A. 8B. 9C. 10D. 117.如果两个三角形有两边及一角对应相等,那么这两个三角形()A. 一定全等B. 一定不全等C. 不一定全等D. 面积相等8.如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OA1B1,求∠A1OB的度数()A. 100°B. 70°C. 40°D. 30°9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.其中正确的是()A. ①②④B. ①②③C. ②③④D. ①③10.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是()A. ①②③B. ①②④C. ①③④D. ①②③④二、填空题(本大题共6小题,共18.0分)11.△ABC中,∠A=80°,∠B=3∠C,则∠B=______ °.12.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是______ cm.13.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,△ABC的面积是7,DE=2,AB=4,则AC长是______.14.如图,平面直角坐标系中有一正方形OABC,点C的坐标为(−2,−1),则点A坐标为______,点B坐标为______.15.如图,在△ABC中,AB=AC,∠BAC=90°,点E在边AC上,连接BE,过点A作AD⊥BE于点D,连接DC,若AD=4,则△ADC的面积为______.16.等边三角形ABC的边长为6,点E在AC边上从点A向点C运动,同时点F在BC边上从点C向点B运动,速度相同,连接AF,BE相交于点P.当点E从点A运动到点C时,则点P经过的路径长______ .三、解答题(本大题共8小题,共72.0分)17.已知等腰三角形的一边长等于5,另一边长等于9,求这个三角形的周长.18.如图,已知AC、BD相交于点O,AD=BC,AC=BD,求证:OA=OB.19.如图,在△ABC中,AB=AC,∠BAC=80°,D是AC上一点,E是BC延长线上一点,连接BD,DE,若∠ABD=20°,BD=DE,求∠CDE的度数.20.如图,△ABC中,AB=AC,∠DBC=∠DCB,求证:直线AD是线段BC的垂直平分线.21.四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.求证:(1)△CBE≌△CDF;(2)AB+DF=AF.22.等腰Rt△ABC中,∠ACB=90°,AC=BC,点G是BC上一点,CF⊥AG于E,BF⊥CF,D为AB中点,连接DF.(1)求证:△AEC≌△CFB;(2)求证:EF=√2DF.23.如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=374,求△AED的面积.24.在平面直角坐标系中,点A、B分别在x轴、y轴上,直线l是第一、三象限的夹角平分线,P为直线l上的一点,且AP⊥AB,AP=AB(1)如图1,若点A坐标为(−1,0),试求点B的坐标(2)如图2,点Q位于点P的右侧,且PQ//x轴,连接AQ,E为y轴正半轴上一点,且AE=AQ,请探究线段OE、PQ、OB三者之间的数量关系?(3)如图3,在(1)的条件下,M为线段PB上的一点,且M(34 , 14),试求∠PAO+∠MAP的度数.答案和解析1.【答案】C【解析】解:设第三根小棒的长度为xcm,由题意得:6−4<x<6+4,解得:2<x<10,故选:C.根据三角形的三边关系可得6−4<第三根小棒的长度<6+4,再解不等式可得答案.此题主要考查了三角形的三边关系,关键是掌握三边关系定理:三角形两边之和大于第三边.角形的两边差小于第三边.2.【答案】B【解析】【分析】此题主要考查了轴对称图形,关键是正确确定对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A.不是轴对称图形,故此选项错误;B.是轴对称图形,故此选项正确;C.不是轴对称图形,故此选项错误;D.不是轴对称图形,故此选项错误.故选B.3.【答案】B【解析】【分析】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.根据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选B.4.【答案】A【解析】【分析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断.本题考查正多边形的镶嵌问题.【解答】解:正方形的每个内角是90°,正六边形每个内角是180°−360°÷6=120°,∵360°−90°−120°=150°,∴第三种正多边形的每个内角是150°又正十二边形每个内角是180°−360°÷12=150°,故第三种正多边形是正十二边形.故选A.5.【答案】B【解析】解:∵△ABC≌△BDA,∴BC=AD,∵AD=4cm,∴BC=4cm,故选B.根据全等三角形的性质得出BC=AD,代入求出即可.本题考查了全等三角形的性质的应用,解此题的关键是能根据全等三角形的性质得出BC=AD,注意:全等三角形的对应边相等,对应角相等.6.【答案】C【解析】试题分析:设正多边形是n边形,由题意得(n−2)×180°=144°n.解得n=10,故选C.考点:多边形内角与外角.7.【答案】C【解析】【分析】本题主要考查对全等三角形的判定的理解和掌握,能熟练地运用全等三角形的判定定理进行推理是解此题的关键.根据全等三角形的判定定理判断即可.【解答】解:非直角三角形的两个三角形有两边及一角对应相等,这一角必须是两边的夹角对应相等,才能根据SAS,判断两个三角形全等,否则不能,例如若AB=DE,AC=DF,∠A=∠F,而△ABC和△DEF不一定全等,面积也不一定相等,故选:C.8.【答案】B【解析】解:∠BOB1=100°,∠AOB=30°,则∠A1OB=∠BOB1−∠AOB=100°−30°=70°.故选B.根据∠A1OB=∠BOB1−∠AOB即可求解.本题考查了图形的旋转,正确确定旋转角是关键.9.【答案】A【解析】【分析】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠BEC=90°,即可判断出正确的结论.∠AED=∠AEF+∠FED=12【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB,∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∠BEC=90°,所以①正确.∴∠AED=∠AEF+∠FED=12故选A.10.【答案】D【解析】解:∵∠CAD=30°,AC=AD,∴∠ACD=∠ADC=75°,∵CE⊥CD,∴∠ECA=165°,①正确;∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE,∴BE=AD,③正确;∵BC=AD,∴BE=BC,②正确;过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,∴DM=12AD=12BC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°−∠ACD=15°,∠MDC=90°−∠ACD=15°,在△CMD和△DNC中,{∠CMD=∠CND ∠MDC=∠NCD CD=CD,∴△CMD≌△DNC,∴CN=DM=12AC=12BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确,故选:D.①根据:∠CAD=30°,AC=BC=AD,CE⊥CD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;③根据CE⊥CD,∠ACB=90°,AC=BC,利用SAS求证△ACD≌△BCE即可得出结论;②由③的结论,等量代换即可;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得DM=12BC,求证△CMD≌△DNC,可得CN=DM=12AC=12BC,从而得出CN=BN.然后即可得出结论.此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握.11.【答案】75【解析】解:∵∠A=80°,∴∠B+∠C=180°−80°=100°,∵∠B=3∠C,∴3∠C+∠C=100°,∠C=25°,∴∠B=75°.故答案为:75.根据三角形内角和定理可得∠B+∠C=180°−80°=100°,然后再把∠B=3∠C代入可得∠C的度数,进而可得∠B的度数.此题主要考查了三角形内角和定理,关键是掌握三角形内角和为180°.12.【答案】17【解析】【分析】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.13.【答案】3【解析】【分析】本题考查了角平分线的性质和三角形的面积公式.利用角平分线上的点到角两边的距离相等是解题的关键,过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DE=DH,再根据S△ABC=S△ABD+S△ACD可得AC的长.【解答】解:如图,过点D作DH⊥AC于H,∵DE⊥AB于点E,AD是△ABC中∠BAC的角平分线,∴DE=DH,∵S△ABC=S△ABD+S△ACD,即12×AB×DE+12×DH×AC=7,∴12×4×2+12×2×AC=7,解得AC=3.故答案为3.14.【答案】(−1,2);(−3,1)【解析】解:如图,过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,∵C(−2,−1),∴OE=2,CE=1,∵四边形OABC是正方形,∴OA=OC=BC,易求∠AOD=∠COE=∠BCF,又∵∠ODA=∠OEC=∠F=90°,∴△AOD≌△COE≌△BCF,∴AD=CE=BF=1,OD=OE=CF=2,∴点A的坐标为(−1,2),EF=2−1=1,点B到y轴的距离为1+2=3,∴点B的坐标为(−3,1).故答案为:(−1,2);(−3,1).过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,根据点C的坐标求出OE、CE,再根据正方形的性质可得OA=OC=BC,再求出∠AOD=∠COE=∠BCF,然后求出△AOD、△COE、△BCF全等,根据全等三角形对应边相等可得AD=CE=BF,OD=OE=CF,然后求解即可.本题考查了正方形的性质,全等三角形的判定与性质,坐标与图形性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形.15.【答案】8【解析】解:如图,作CH⊥AD交AD的延长线于H.∵AD⊥BE,CH⊥AH,∴∠ADB=∠H=∠BAC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAH=90°,∴∠CAH=∠ABD,∵AB=AC,∴△ABD≌△CAH(AAS),∴AD=CH=4,×4×4=8.∴S△ADC=12故答案为8.如图,作CH⊥AD交AD的延长线于H.只要证明△ABD≌△CAH(AAS),推出AD=CH=4,即可解决问题;本题考查全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.16.【答案】4√33π【解析】解:如图,∵△ABC是等边三角形,∴AB=AC=BC=6,∠BAC=∠C=60°.∵点E在AC边上从点A向点C运动,同时点F在BC边上从点C向点B运动,速度相同∴AE=CF.点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形.且∠ABP=∠BAP=30°,∴∠AOB=120°,∵AB=6,∴OA=2√3,∴点P的路径是:nπr180=120π⋅2√3180=4√33π.故答案为:4√3π3.点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,由弧线长公式就可以得出结论.本题考查了等边三角形的性质、圆周角定理、弧线长公式的运用.17.【答案】解:若底边长为5,腰长为9,则它的周长为:5+9+9=23;若底边长为9,腰长为5,则它的周长为:9+5+5=19.故它的周长为23或19.【解析】此题考查了等腰三角形的性质以及三角形三边关系有关知识,分别从若底边长为5,腰长为9与若底边长为9,腰长为5,去分析求解即可求得答案.18.【答案】证明:在△ABD和△BAC中,∵{AD=BC BD=AC AB=BA,∴△ABD≌△BAC(SSS),∴∠ABD=∠BAC,∴OA=OB.【解析】【试题解析】本题考查全等三角形的判定和性质,以及等腰三角形的判定,掌握全等三角形的判定方法是解题关键.首先利用SSS证得△ABD≌△BAC,根据全等三角形的性质得出∠ABD=∠BAC,再根据等腰三角形的判定即可得证.19.【答案】解:∵在△ABC中,AB=AC,∠BAC=80°,(180°−80°)=50°,∴∠ABC=∠ACB=12∵∠ABD=20°,∴∠DBC=∠ABC−∠ABD=30°.∵BD=DE,∴∠E=∠DBC=30°,∴∠CDE=∠ACB−∠E=20°.【解析】由等腰三角形的性质以及三角形内角和定理可得∠ABC=∠ACB=50°,那么∠DBC=∠ABC−∠ABD=30°.因为△BDE是等腰三角形,所以∠E=∠DBC=30°,然后根据三角形外角的性质即可求出∠CDE的度数.本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角的性质,求出∠ACB与∠E的度数是解题关键.20.【答案】证明:∵∠DBC=∠DCB,∴DB=DC,∴点D在线段BC的垂直平分线上,∵AB=AC,∴点A在线段BC的垂直平分线上,∴直线AD是线段BC的垂直平分线.【解析】欲证明直线AD是线段BC的垂直平分线,只要证明点A、点D在线段BC的垂直平分线上即可.本题考查线段的垂直平分线的定义,解题的关键是知道一条直线上有两个点在线段BC 的垂直平分线上,那么这条直线是线段BC的垂直平分线,属于中考常考题型.21.【答案】证明:(1)∵AC平分∠BAD,CE⊥AB,CF⊥AD,∴CE=CF.∵∠ABC+∠D=180°,∠ABC+∠EBC=180°,∴∠EBC=∠D,∵∠CEB=∠CFD=90°,∴△CBE≌△CDF.(2)证明:∵CE=CF,AC=AC,∴Rt△ACE≌Rt△ACF.∴AE=AF,∴AB+DF=AB+BE=AE=AF.【解析】本题考查了全等三角形的判定和全等三角形的性质.(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+ DF=AF即可.22.【答案】证明:(1)如图,∵CF⊥AG,BF⊥CF,∴∠BFC=∠CEA=90°,∴∠2+∠3=90°,又∵∠ACB=90°,∴∠1+∠3=90°,∴∠1=∠2,∴在△AEC和△CFB中,{∠BFC=∠CEA∠1=∠2BC=AC,∴△AEC≌△CFB(AAS);(2)连接ED,CD,如图所示:∵D为AB的中点,∴CD=BD=AD,∠CDA=90°,∴∠BCD=∠CBD=45°,∴∠DCF=45°−∠1,∵∠4=∠CAB−∠2=45°−∠2,由(1)知:∠1=∠2,∴∠4=∠DCF,由(1)知:△AEC≌△CFB,∴FC=AE,∴△AED≌△CFD(SAS),∴ED=FD,∠FDC=∠EDA,∴∠FDE=∠CDA=90°,即△FDE是等腰直角三角形,∴EF=√2DF.【解析】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造全等三角形是解题的关键.(1)根据垂直的定义得到∠BCF=∠CAE=90°−∠ACE,根据全等三角形的判定即可得到结论;(2)连接CD,DE,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,根据余角的性质得到∠FBD=∠DCE,由全等三角形的性质得到AE=CF,CE=BF,推出△BFD≌△CDE,由全等三角形的性质得到DF=DE,∠FDB=∠EDC,证得△DEF是等腰直角三角形,即可得到结论.23.【答案】(1)证明:延长DB至E,使BE=CD,连接AE,∵AB=AD,∴∠ABD=∠ADB,∵∠ABE+∠ABD=180°,∠ADC+∠ADB=180°,∴∠ABE=∠ADC,在△ABE和△ADC中,{BE=DC∠ABE=∠ADC AB=AD,∴△ABE≌△ADC,∴∠C=∠E=60°,∴△AEC为等边三角形,∴AC=CE,∵BC+BE=CE,∴BC+CD=AC;(2)证明:∵AB=AD,∴∠ABD=∠ADB,∵∠CAD+∠ADB=∠ACB=60°,∠CAD=∠ABE,∴∠ABE+∠ABD=∠CAD+∠ADB=60°,∴△BEC为等边三角形,过点A作AN//BC交EB于N,∴△ENA为等边三角形,∠NAB=∠ABD,∴AN=AE,∴BN=AC,∴∠NAB=∠ADC,在△BNA和△ACD中,{∠ANB=∠DCA ∠NAB=∠CDA BN=AC,∴△BNA≌△ACD,∴AN=CD,∴CD=AE,延长EF至M使得EF=FM,连接BM,∴△AEF≌△BMF,∴AE=BM,AE//BM,∴BM=CD,∠MBC=∠ECB=60°,∴∠EBM=∠EBC+∠MBC=120°,又∵∠ECD=∠EBM=120°,∴△BEM≌△CED,∴∠BEF=∠CED,∵EF=AE,∴∠EFA=∠EAF,∴∠BEF+∠EBF=∠ACB+∠ABD,∴∠BEF+60°−∠ABD=∠ABD+60°,∴∠BEF=2∠ABD∠CED=2∠ABD;(3)解:由(2)得,△EMD是等边三角形,∴DE=2EF=2×374=372,过点A作AP⊥DE于P,由(2)可证△EFG≌△EAP,∴AP=FG=4,∴S△AED=12DE×AP=12×372×4=37.【解析】(1)延长DB至E,使BE=CD,连接AE,证明△ABE≌△ADC,得到△AEC为等边三角形,根据等边三角形的性质证明;(2)过点A作AN//BC交EB于N,延长EF至M使得EF=FM,连接BM,证明△BNA≌△ACD,△BEM≌△CED,根据全等三角形的性质证明;(3)利用(2)的结论,根据三角形的面积公式计算即可.本题考查的是三角形的知识的综合运用,正确全等三角形的判定定理和性质定理、等边三角形的判定和性质是解题的关键.24.【答案】解:(1)如图1中,作PH⊥x轴于H.∵A(−1,0),∴OA=1,∵PA⊥AB,∴∠PAB=∠AOB=∠PHA=90°,∴∠PAH+∠APH=90°,∠PAH+∠OAB=90°,∴∠APH=∠OAB,∵AP=AB,∴△APH≌△BAO(AAS),∴PH=OA=1,AH=OB,∵直线l是第一、三象限的夹角平分线,∴∠POH=45°,△POH是等腰直角三角形,∴OH=OP=1,H=OA+OH=1+1=2,∴OB=AH=2,∴B(0,−2).(2)结论:OE−OB=PQ.理由:如图2中,作PH⊥x轴于H,QT⊥x轴于T,在OE上截取OK,使得OK=OB,连接AK.∵PQ//x轴,PH⊥x轴,QT⊥x轴,∴四边形PQTH是矩形,∴QT=PH=OA,PQ=TH,∵AE=AQ,∠AOE=∠ATQ=90°,∴△AOE≌△QTA(HL),∴EO=AT,∵OK=OB=AH,∴EK=HT=PQ,∴OE−OB=OE−OK=AT−AH=HT=PQ.(3)如图3中,设AM交直线l于J,直线l交AB于T.∵A(−1,0),M(34,14),∴直线AM 的解析式为y =17x +17,由{y =x y =17x +17,解得{x =16y =16,可得J(16,16), ∵A(−1,0),B(0,−2),∴直线AB 的解析式为y =−2x −2,由{y =−2x −2y =x ,解得{x =−23y =−23,可得T(−23,−23), ∴JA =√(16+1)2+(16)2=5√26,JT =√(16+23)2+(16+23)2=5√26, ∴JA =JT ,∴∠JQT =∠JTA ,∵∠JAT +∠PAM =90°,∠APO +∠JTA =90°,∴∠PAM =∠APO ,∵∠AOT =45°=∠APO +∠PAO ,∴∠PAO +∠MAP =45°.【解析】(1)如图1中,作PH ⊥x 轴于H.证明△APH≌△BAO(AAS)即可解决问题.(2)结论:OE −OB =PQ.如图2中,作PH ⊥x 轴于H ,QT ⊥x 轴于T ,在OE 上截取OK ,使得OK =OB ,连接AK.证明△AOE≌△QTA(HL)即可解决问题.(3)如图3中,设AM 交直线l 于J ,直线l 交AB 于T.想办法证明JA =JT ,推出∠JQT =∠JTA ,推出∠PAM =∠APO 即可解决问题.本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理,一次函数的性质等知识,解题的关键是学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.。
人教版湖北省武汉市八中八年级数学上册期中考试试卷(考试时间共分钟,满分分)准考证号:__________ 姓名:________ 座位号:_________【请考生认真审题,争取会做的不要错,不会做的冷静思考】一、选择题(每小题3分,共30分)1.下列图形中,是轴对称图形的是()A. B. C. D.2.如果三角形的两边长分别为6和8,第三边长为偶数,那么这个三角形的周长可以是()A.16B.17C.24D.253.如图,在六边形ABCDEF中,∠A+∠F+∠E+∠D=,∠ABC的平分线与∠BCD的平分线交于点P,则∠P度数为().A. B. C. D.4.下面设计的原理不是利用三角形稳定性的是()A.三角形的房架B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.由四边形组成的伸缩门5.如图,已知AB=AC,AB=5,BC=3,以AB两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M、N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.136.如图,DE∥GF,A在DE上,C在GF上△ABC为等边三角形,其中∠EAC=80°,则∠BCG度数为()A.20°B.10°C.25°D.30°7.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正确的有()A.1个B.2个C.3个D.4个8.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在ΔABC外的点处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°9.如图,已知:∠MON=30°,点A1、A2、A3、…在射线ON上,点B1、B2、B3、…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4、…均为等边三角形,若OA1=1,则△A9B9A10的边长为()A.32B.64C.128D.25610.如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是6cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°二、填空题(每小题3分,共18分)11.如图,∠A+∠B+∠C+∠D+∠E+∠F=________.12.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有________对全等三角形.13.如图,△ABC中,AB=BC,M、N为BC边上的两点,并且∠BAM=∠CAN,MN=AN,则∠MAC=________度.14.如图,△ABC中,DE是边AB的垂直平分线,AB=6,BC=8,AC=5,则△ADC的周长是________.15.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=________,△APE的面积等于6.16.如图,等腰三角形ABC底边BC的长为4 cm,面积是12 cm2,腰AB的垂直平分线EF交AG 于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为________cm.三、解答题(本大题8小题,共52分)17.如图,在中,,,BD是的平分线,求的度数.18.如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.19.尺规作图:作点A关于直线l的对称点A'.已知:直线l和l外一点A.求作:点A关于l的对称点A'.作法:①在l上任取一点P,以点P为圆心,PA长为半径作孤,交l于点B;②以点B为圆心,AB长为半径作弧,交弧AB于点A'.点A'就是所求作的对称点.由步骤①,得________由步骤②,得________将横线上的内容填写完整,并说明点A与A'关于直线l对称的理由________.20.一个等腰三角形的周长为25cm.(1)已知腰长是底边长的2倍,求各边的长;(2)已知其中一边的长为6cm.求其它两边的长.21.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.22.如图,四边形ABCD中,∠A=∠B=90度,E是AB上一点,且AE=BC,∠1=∠2(1)Rt△ADE与Rt△BEC全等吗?请说明理由;(2)AB=AD+BC(3)△CDE是不是直角三角形?请说明理由.23.如图(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.24.己知:为等边三角形,点E为射线AC上一点,点D为射线CB上一点,.(1)如图1,当E在AC的延长线上且时,AD是的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.人教版湖北省武汉市八中八年级数学上册期中考试试卷一、选择题(30分)1.解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故答案为:C.2.解:设第三边为acm,根据三角形的三边关系知,2<a<14.由于第三边的长为偶数,则a可以为4cm或6cm或8cm或10cm或12cm.∴三角形的周长是6+8+4=18cm或6+8+6=20cm或6+8+8=22cm或6+8+10=24cm或6+8+12=26cm.故答案为:C.3.解:六边形内角和=(6-4)×180°=720°,∴∠B+∠C=720°-∠A+∠F+∠E+∠D=720°-,∵∠ABC的平分线与∠BCD的平分线交于点P,∴∠PBC+∠PCB=(720°-)=360°-,∴∠P=180°-(∠PBC+∠PCB)=180°-(360°-)=-180°,故答案为:A.4.解:伸缩门是利用了四边形的不稳定性,A、B、D都是利用了三角形的稳定性,故答案为:D。
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中不是轴对称图形的是()A. B. C. D.2.下列线段能构成三角形的是()A. 2,2,4B. 3,4,5C. 1,2,3D. 2,3,63.已知一个多边形的内角和是900°,则这个多边形是()A. 五边形B. 六边形C. 七边形D. 八边形4.下列图形中有稳定性的是()A. 正方形B. 长方形C. 直角三角形D. 平行四边形5.根据下列条件不能唯一画出△ABC的是()A. AB=5,BC=6,AC=7B. AB=5,BC=6,∠B=45∘C. AB=5,AC=4,∠C=90∘D. AB=5,AC=4,∠C=45∘6.在△ABC中,2(∠A+∠B)=3∠C,则∠C的补角等于()A. 36∘B. 72∘C. 108∘D. 144∘7.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A. 1cm<AB<4cmB. 5cm<AB<10cmC. 4cm<AB<8cmD. 4cm<AB<10cm8.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A. 31B. 46C. 51D. 669.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A. 2个B. 4个C. 6个D. 8个10.如图,在△ABC中,点D是BC上的一点,已知∠DAC=30°,∠DAB=75°,CE平分∠ACB交AB于点E,连接DE,则∠DEC=()A. 10∘B. 15∘C. 20∘D. 25∘二、填空题(本大题共6小题,共18.0分)11.点P(-1,2)关于y轴对称的点的坐标是______.12.一个凸多边形的每个内角都等于140°,那么从这个多边形的一个顶点出发共有______条对角线.13.已知:△ABC中,∠A=50°,△ABC的高BD、CE所在的直线交于点F,则∠BFC=______度.14.已知如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB是______度.15.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管______根.16.△ABC中,AC=5,∠BAC=45°,且∠CAD=2∠DAB,以BC为直角边,以B为直角顶点向三角形外作等腰直角△BCD,则AD的长为______.三、解答题(本大题共8小题,共72.0分)17.△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC的各内角的度数.18.如图,点B,E,F,C在一条直线上,AB=DC,BE=CF,∠B=∠C.求证:∠A=∠D.19.如图,∠AOB=30°,OC平分∠AOB,过点C作CD⊥OA于点D,过点C作CE∥OA交OB于点E.若CE=20cm,求CD的长.20.如图,方格纸中每个小正方形的边长都是1,△ABC在平面直角坐标系中的位置如图所示(1)将△ABC向右平移4个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点C1的坐标______;(2)作出△A1B1C1关于x轴的对称图形△A2B2C2,并直接写出点A2的坐标______;(3)在第二象限5×5的网格中作△ABC的轴对称图形,要求各顶点都在格点上,共能作______个.21.已知AD为△ABC的内角平分线,AB=7cm,AC=8cm,BC=9cm,(1)请画出图形,(必须保留作图痕迹).(2)求CD的长.22.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD于F交BC于E.(1)求证:∠ABD=∠CAE.(2)求证:∠ADB=∠CDE.(3)直接写出BD、AE、ED之间满足的数量关系.23.点E是△ABC内的一点(1)如图,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C、D 重合),且∠EAC=2∠EBC,求证:AE+AC=BC(2)如图,若△ABC是等边三角形,∠AEB=100°,∠BEC=α,以EC为边作等边△CEF,连AF.当△AEF是等腰三角形时,试求出α的度数.24.△ABC的顶点A在y轴上,B、C关于y轴对称.且∠ABO=∠CAO,过AB上一点D,作射线交y轴负半轴于E(1)判断△ABC的形状并说明理由.(2)连CD交y轴于F若BD=FD,∠BCD=∠DEF,求证:DE平分∠BDC(3)在(2)的条件下,若∠AED=15°,H是AB延长线上一动点,作∠CHG=60°HG 交射线DE于G则DG−DHAD的值是否发生变化.若不变求其值.变化,求其范围.答案和解析1.【答案】A【解析】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误;故选:A.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:A、2+2=4,不能构成三角形,故A选项错误;B、3、4、5,能构成三角形,故B选项正确;C、1+2=3,不能构成三角形,故C选项错误;D、2+3<6,不能构成三角形,故D选项错误.故选:B.根据三角形的任意两边之和大于第三边,对各选项的数据进行判断即可.本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.3.【答案】C【解析】解:设这个多边形是n边形,则(n-2)•180°=900°,解得:n=7,即这个多边形为七边形.故选:C.设这个多边形是n边形,内角和是(n-2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.5.【答案】D【解析】解:A、∵AC与BC两边之和大于第三边,∴能作出三角形,且三边知道能唯一画出△ABC;B、∠B是AB,BC的夹角,故能唯一画出△ABC;C、根据HL可唯一画出△ABC;D、∠C并不是AB,AC的夹角,故可画出多个三角形.故选:D.判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.本题考查了全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.【答案】C【解析】解:∵2(∠A+∠B)=3∠C,∠A+∠B=180°-∠C,∴2(180°-∠C)=3∠C,∴∠C=72°,∴∠C的补角等于108°,故选:C.依据2(∠A+∠B)=3∠C,∠A+∠B=180°-∠C,即可得出2(180°-∠C)=3∠C,进而得到∠C的度数,可得∠C的补角.本题主要考查了三角形内角和定理以及补角的概念,解题时注意:三角形内角和是180°.7.【答案】B【解析】解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20-2x)cm,∴,解得5cm<x<10cm.故选:B.设AB=AC=x,则BC=20-2x,根据三角形的三边关系即可得出结论.本题考查的是等腰三角形的性质、解一元一次不等式组,熟知等腰三角形的两腰相等是解答此题的关键.8.【答案】B【解析】方法一:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.方法二:n=1,s=4;n=2,s=10;n=3,s=19,设s=an2+bn+c,∴,∴a=,b=,c=1,∴s=n2+n+1,把n=5代入,s=46.方法三:,,,,∴a5=19+12+15=46.由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.9.【答案】C【解析】解:第1个点在AC上,作线段AB的垂直平分线,交AC于点P,则有PA=PB;第2个点是以A为圆心,以AB长为半径截取AP=AB,交AC延长线上于点P;第3个点是以A为圆心,以AB长为半径截取AP=AB,在上边于CA延长线上交于点P;第4个点是以B为圆心,以BA长为半径截取BP=BA,与AC的延长线交于点P;第5个点是以B为圆心,以BA长为半径截取BP=BA,与BC在左边交于点P;第6个点是以A为圆心,以AB长为半径截取AP=AB,与BC在右边交于点P;∴符合条件的点P有6个点.故选:C.本题是开放性试题,根据题意,画出图形结合求解.本题考查了等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.10.【答案】B【解析】解:过点E作EM⊥AC于M,EN⊥AD于N,EF⊥BC于H,如图,∵∠DAC=30°,∠DAB=75°,∴∠EAM=75°,∴AE平分∠EAD,∴EM=EN,∵CE平分∠ACB,∴EM=EH,∴EN=EH,∴DE平分∠ADB,∴∠1=∠ADB,∵∠1=∠DEC+∠2,而∠2=∠ACB,∴∠1=∠DEC+∠ACB,而∠ADB=∠DAC+∠ACB,∴∠DEC=∠DAC=×30°=15°.故选:B.过点E作EM⊥AC于M,EN⊥AD于N,EF⊥BC于H,如图,先计算出∠EAM=75°,则AE平分∠EAD,根据角平分线的性质得EM=EN,再由CE平分∠ACB得到EM=EH,则EN=EH,于是根据角平分线定理的逆定理可判断DE平分∠ADB,则∠1=∠ADB,根据三角形外角性质得∠1=∠DEC+∠2,即∠1=∠DEC+∠ACB,∠ADB=∠DAC+∠ACB,所以∠DEC=∠DAC=15°.本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是运用角平分线定理的逆定理证明DE平分∠ADB.11.【答案】(1,2)【解析】解:点P(-1,2)关于y轴对称的点的坐标是(1,2).故答案为:(1,2).根据关于y轴对称,横坐标互为相反数,纵坐标不变;即可得出答案.本题考查了关于x轴、y轴对称点的坐标,注:关于y轴对称,横坐标互为相反数,纵坐标不变;关于x轴对称,纵坐标互为相反数,横坐标不变;关于原点对称,横纵坐标都互为相反数.12.【答案】6【解析】解:360÷40=9,即这个多边形是9边形,因而从这个多边形的一个顶点出发的对角线的条数是9-3=6条.一个凸多边形的每个内角都等于140°,则每个外角是40度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出,外角和中外角的个数,即多边形的边数.就可以求出从这个多边形的一个顶点出发的对角线的条数.根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.n边形中从这个多边形的一个顶点出发共有n-3条对角线.13.【答案】130或50【解析】解:若F在△ABC内,如图1,∵BD、CE是△ABC的高,∠A=50°,∴∠ABD=40°,∠BEF=90°,∴∠BFC=∠ABD+∠BEF=90°+40°=130°;若F在△ABC外,如图2,∵BD、CE是△ABC的高,∠A=50°,∴∠ABD=40°,∠BEF=90°,∴∠BFC=90°-40°=50°;故答案为:130或50.根据三角形外角的性质及三角形的内角和定理,分F在△ABC内,及F在△ABC外两种情况讨论,即可得出答案.此题考查了三角形内角和定理及内角与外角的性质,解答此题的关键是根据题意画出图形,要根据△ABC为锐角三角形或钝角三角形两种情况讨论,不要漏解.14.【答案】35【解析】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∵∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°-35°=55°,∴∠CDA=110°,∵∠B=∠C=90°,∴DC∥AB,∴∠CDA+∠DAB=180°,∴∠DAB=70°,∴∠EAB=35°.故答案为:35.过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°-35°=55°,进而得到∠CDA和∠DAB的度数,即可求得∠EAB的度数.本题考查了角平分线的性质,解答此题的关键是根据题意作出辅助线EF⊥AD,构造出全等三角形,再由全等三角形的性质解答.15.【答案】8【解析】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.16.【答案】10【解析】解:∵∠CAB=45°,∠CAD=2∠DAB,∴∠BAD=15°,将△ABD绕着点B逆时针旋转90°,得到△CBE,则△ABD≌△EBC,∴AB=BE,∠ABE=∠CBD=90°,CE=AD,∠BEC=∠BAD=15°,∴△ABE是等腰直角三角形,∴∠BAE=∠AEB=45°,∴∠CAE=90°,∠AEC=30°,∴CE=2AC=10,∴AD=CE=10,故答案为:10.根据已知条件得到∠BAD=15°,根据旋转的性质得到△ABD≌△EBC,根据全等三角形的性质得到AB=BE,∠ABE=∠CBD=90°,CE=AD,∠BEC=∠BAD=15°,推出△ABE是等腰直角三角形,求得∠CAE=90°,∠AEC=30°,根据直角三角形的性质即可得到结论.本题考查了旋转的性质,全等三角形的性质,等腰直角三角形的性质,直角三角形中30°所对的边等于斜边的一半,正确的作出辅助线是解题的关键.17.【答案】解:∵∠B=∠A+10°,∠C=∠B+10°,∴∠C=∠A+10°+10°=∠A+20°,由三角形内角和定理得,∠A+∠B+∠C=180°,所以,∠A+∠A+10°+∠A+20°=180°,解得∠A=50°,所以,∠B=50°+10°=60°,∠C=50°+20°=70°.【解析】将第一个等式代入第二等式用∠A表示出∠C,再根据三角形的内角和等于本题考查了三角形的内角和定理,用∠A表示出∠C然后列出关于∠A的方程是解题的关键.18.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中AB=DC∠B=∠CBF=CE∴△ABF≌△DCE,∴∠A=∠D.【解析】求出BF=CE,根据SAS推出△ABF≌△DCE,根据全等三角形的性质推出即可.本题考查了全等三角形的性质和判定的应用,能求出△ABF≌△DCE是解此题的关键,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.19.【答案】解:∵OC平分∠AOB,∴∠BOC=∠AOC,∵EC∥OA,∴∠ECO=∠AOC,∴∠ECO=∠BOC,∴CE=OE,∵CE=20,∴OE=CE=20,过C作CF⊥OB于点F,∵CD⊥OA,OC平分∠AOB,∴CD=CF,∵EC∥OA,∠AOB=30°∴∠FEC=∠AOB=30°在Rt△EFC中,CF=12CE=10,∴CD=CF=10.【解析】求出∠EOC=∠ECO=∠AOC,即可得出CE=OE,根据角平分线的性质得出CD=CF,求出CF,即可求出CD.本题主要考查了含30°角的直角三角形的性质,角平分线的性质,平行线的性质的应用,注意:角平分线上的点到角的两边距离相等.20.【答案】(1,4)(1,-1) 1【解析】解:(1)如图所示,△A1B1C1即为所求,C1的坐标为(1,4);(2)如图所示,△A2B2C2即为所求,A2的坐标为(1,-1);(3)如图所示,在第二象限5×5的网格中作△ABC的轴对称图形,要求各顶点都在格点上,共能作1个.故答案为:(1,4);(1,-1);1.(1)利用点平移的坐标规律写出A、B、C平移后对应点A1、B1、C1的坐标,然后描点即可;(2)利用关于x轴对称的点坐标规律写出A1、B1、C关于于x轴的后对称点A2、B2、C2的坐标,然后描点即可;本题主要考查作图-平移变换、轴对称变换,解题的关键是熟练掌握平移变换和轴对称变换的定义和性质.21.【答案】解:(1)如图所示,△ABC即为所求,其中AD是∠BAC.(2)过点D作DE⊥AB于点E,DF⊥AC于点F,AG⊥BC与点G,则DE=DF,∵S△ABD=12AB•DE,S△ACD=12AC•DF,∴S△ABDS△ACD=ABAC,∵S△ABD=12BD•AG,S△ACD=12CD•AG,∴S△ABDS△ACD=BDCD,∴ABAC=BDCD,则78=9−CDCD,解得:CD=245(cm).【解析】(1)根据作一线段等于已知线段和角平分线的尺规作图可得;(2)由S△ABD=AB•DE,S△ACD=AC•DF知=,由S△ABD= BD•AG,S△ACD=CD•AG知=,据此可得=,进一步计算可得.本题考查的是作图-复杂作图,掌握角平分线的性质,灵活运用角平分线的性质定理、找准对应关系是解题的关键.22.【答案】(1)证明:∵AE⊥BD,∴∠AFB=∠BAC=90°,∴∠ABD+∠BAF=90°,∠BAF+∠CAE=90°,∴∠ABD=∠CAE.(2)证明:过C作CM⊥AC,交AE的延长线于M,则∠ACM=90°=∠BAC,∴CM∥AB,∴∠MCE=∠ABC=∠ACB,∵∠BAF=∠ADB,∠ADB+∠FAD=90°,∠ABD+∠BAF=90°,∴∠ABD=∠CAM,在△ABD和△CAM中,∠DAB=∠ACMAB=AC∠ABD=∠CAM,∴△ABD≌△CAM(ASA),∴∠ADB=∠M,AD=CM,BD=AM,∵D为AC中点,∴AD=DC=CM,在△CDE和△CME中,CD=CM∠DCE=∠ECMCE=CE,∴△CDE≌△CME(SAS),∴∠M=∠CDE,∴∠ADB=∠CDE.(3)解:结论:BD=AE+DE.理由:∵△CDE≌△CME,∴ME=DE,∵AM=AE+ME=AE+DE,∵BD=AM,∴BD=AE+DE.【解析】(1)理由等角的余角相等即可证明;(2)过C作CM⊥AC,交AE的延长线于M,证明△ABD≌△CAM(ASA),推出∠ADB=∠M,AD=CM,BD=AM,再证明△CDE≌△CME(SAS)即可解决问题;(3)利用全等三角形的性质即可证明;本题考查了全等三角形的性质和判定,等腰直角三角形的性质等知识,正确的作出辅助线构造全等三角形是解题的关键.23.【答案】(1)证明:在CB上截取CH=CA,连接EH.∵CD平分∠ACB,∴∠ACE=∠ECH,∵CA=CH,CE=CE,∴△ECA≌△ECH(SAS),∴∠CAE=∠CHE,AE=EH,∵∠CAE=2∠CBE,∠CHE=∠CBE+∠BEH,∴∠HBE=∠HEB,∴EH=BH,∴BH=AE,∴BC=CH+BH=AC+AE.(2)证明:如图2中,∵∠BCA=∠ECF=60°,∴∠BCE=∠ACF,∵CB=CA,CE=CF,∴△BCE≌△ACF(SAS),∴∠BEC=∠AFC=α,∵∠COB=∠CAD=α,∠AOE=200°-α,∠AFE=α-60°,∠EAF=40°,①要使AE=AF,需∠AEF=∠AFE,∴200°-α=α-60°,∴α=130°;②要使EA=EF,需∠EAF=∠AFE,∴α-60°=40°,③要使EF=AF,需∠EAF=∠AEF,∴200°-α=40°,∴α=160°.所以当α为130°、100°、160°时,△AEF是等腰三角形.【解析】(1)在CB上截取CH=CA,连接EH.只要证明△ECA≌△ECH(SAS),BH=EH 即可解决问题;(2)首先证明△BCE≌△ACF(SAS),推出∠BEC=∠AFC=α,∠COB=∠CAD=α,∠AOE=200°-α,∠AFE=α-60°,∠EAF=40°,分三种情形分别讨论即可解决问题;本题考查全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.24.【答案】(1)解:结论:△ABC是等腰直角三角形.理由:∵B、C关于y轴对称,∴OB=OC,∵AO⊥BC,∴AB=AC,∴∠BAO=∠CAO,∵∠ABO=∠CAO,∴∠ABO=∠OAB,∵∠AOB=90°,∴∠ABO=∠OAB=45°,∴∠ABC=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.(2)证明:如图1中,连接BF,BE.∵DB=DF,∴∠DBF=∠DFB,∴OA垂直平分线段BC,∴∠FBC=∠FCB,设∠FBC=∠FCB=x,∴∠DFB=∠FBC+∠FCB=2x,∴∠DBF=2x,∴3x=45°,∴x=15°,∴∠DBF=∠DFB=30°,∴∠ADC=∠DBF+∠DFB=60°,∵∠DEF=∠BCD,∴∠DEF=15°,∵∠CFO=75°=∠EDF+∠DEF,∴∠EDF=60°,∴∠BDE=180°-60°-60°=60°,∴∠EDB=∠EDF,∴ED平分∠BDC.(3)解:结论:DG−DHAD的值是定值,定值为2.理由:如图2中,连接CG.在DG上截取DK,使得DK=DH.由(2)可知:∠CDG=∠GDH=60°,∵∠CHG=60°,∴∠CDG=∠CHG,∴C,D,H,G四点共圆,∴∠HCG=∠GDH=60°,∴△HCG是等边三角形,∵DH=DK,∠HDK=60°,∴△HDK是等边三角形,∵∠DHK=∠CHG=60°,∴∠DHC=∠KHG,∵DH=DK,HC=HG,∴△DHC≌△KHG(SAS),∴CD=KG,∴DG=DK+KG,∵DK=DH,KG=CD,∴DG=DH+CD,∴DG-DH=CD,在Rt△ADC中,∵∠ACD=30°,∴DG-DH=2AD,∴DG−DHAD=2.【解析】(1)结论:△ABC是等腰直角三角形.想办法证明AB=AC,∠ABC=∠ACB即可;(2)如图1中,连接BF,BE.通过计算证明∠EDC=∠EDB=60°即可;(3)结论:的值是定值,定值为2.如图2中,连接CG.在DG上截取DK,使得DK=DH.只要证明DG=DH+CD,CD=2AD即可解决问题;本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,四点共圆等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2023-2024学年度第一学期期中考试八年级数学试卷2023.11一、选择题(每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.下列四个交通标识图案中,是轴对称图案的是( )A. B. C. D.2.作三角形ABC 的一条高,其中正确的是( )A. B. C. D.3.如图,将一张含有30°角的三角形纸片的两个顶点叠放在长方形的两条对边上,若244∠=︒,则1∠的大小为( )A.14°B.16°C.90α︒-D.44α-︒4.在ABC 中90BAC ∠=︒,AC AB ≠,AD 是斜边BC 上的高,DE AC ⊥于E ,DF AB ⊥于F .如图,则图中与B ∠(B ∠除外)相等的角的个数是( )A.3B.4C.5D.65.如图,图①是一张正方形纸片,经过两次对折,并在如图③位置上剪去一个小正方形,打开后是( )A. B. C. D.6.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A.8B.9C.10D.117.如图,将三角形纸片ABC 沿DE 折叠,点A 落在点F 处,已知12100∠∠+=︒,则A ∠的度数为( )A.80°;B.100°;C.50°;D.以上都不对.8.如图,ABC △中,D 为BC 上一点,ACD △的周长为12cm ,DE 是线段AB 的垂直平分线,5cm AE =,则ABC △的周长是( )A.17cmB.22cmC.29cmD.32cm9.如图中有三个正方形,最大正方形的边长为18,则阴影部分的面积(平方单位)为( )A.153B.154C.155D.15610.现有以下表述:①三角形按边相等关系分类有三边都不等的三角形、等腰三角形和等边三角形; ②三角形的三边中线一定交于一点,三角形的高也一定交于一点;③平面上有四个点A 、B 、C 、D ,用它们作顶点可以构成3个或4个三角形;④有8根木棒,长度分别为1、2、3、4、5、6、7、8,其中最长边是8,另两边的差大于2,这样的三角形可以有4种.其中正确的个数为( ) A.1;B.2;C.3;D.4二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请直接填写在答题卡指定的位置.11.点()2,4P 关于x 轴对称的点坐标为_________.12.已知a ,b ,c 是ABC △的三边长,a ,b 满足()2710a b -+-=,c 为奇数,则c =_________. 13.如图,在五边形ABCDE 中,300A B E ∠∠∠++=︒,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度数为_________.14.如图,ABC △中,90ACB ∠=︒,6BC =,8AC =,10AB =,45BCD ∠=︒,则AD =________.15.如图,在凸四边形ABCD 中,90BAC ADC ∠∠==︒,AB AC =.现有以下结论:①若E 为AC 中点,连BE ,过A 作BE 的垂线交BC 于F 点,连EF ,如图15-1,则有AEB CEF ∠∠=;图15-1②当D 点为凸四边形ABCD 的一个动点,BD 有最大值时,线段BD 一定过AC 的中点;③当D 点为凸四边形ABCD 的一个动点,则ABD △的面积为212AD ; ④45ADB ∠=︒.其中正确的结论有________________.16.如图是一个33⨯的小正方形拼成的大正方形,则图中1239∠∠∠∠++++L 的度数和是_________.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8分)如图,在ABC △中,AB BC =,中线AD 将这个三角形的周长分成15和12两部分,求这个三角形三边的长.18.(本题满分8分)如图,AB CD =,AE BC ⊥于E ,DF BC ⊥于F ,若CE BF =,求证:(1)AE DF =;(2)AB CD ∥.19.(本题满分8分)一个凸多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数. 20.(本题满分8分)将44⨯的正方形棋盘沿格线划分成两个全等图形,约定某种划分法经过旋转、轴对称得到划分方法与原划分法相同.如图1与图2的涂色方式.请你按照这种划分方法,在备用图中涂色来表示划分办法.21.(本题满分8分)如图,在平面直角坐标系中,()4,1A -,()4,5B -,()1,3C -.(1)在图中作出ABC △关于直线m (直线m 上各点的横坐标都为1)对称的图形111A BC △; (2)线段BC 上有一点5,42P ⎛⎫- ⎝⎭,直接写出点P 关于直线m 对称的点的坐标;(3)线段BC 上有一点(),M a b ,直接写出点M 关于直线m 对称时a 与b 满足的数量关系; (4)若直线BC 交x 轴于N 点,直接写出N 点坐标. 22.(本题满分10分)已知,在Rt ABC △中,90ACB ∠=︒,AC BC =,D 为直线BC 上一点.(1)如图,D 在线段BC 上,连AD ,过C 作CE AD ⊥于F 点,交AB 于点E ,若AD 平分BAC ∠,则求证:2AD DF CE =+;(2)当D 点在直线BC 上移动时,连AD ,过B 作AD 的垂线,垂足为P ,连CP ,直接写出APC ∠的度数.23.(本题满分10分)问题的提出:如图1,ABC △中,AB AC =,则求证:B C ∠∠=.知识的运用:如图3,四边形ABCD 是正方形,AB BC CD AD ===,90ABC BCD ADC ∠∠∠===︒,点E 是边BC 上一点,90AEF ∠=︒,且EF AE =,连CF .求ECF ∠的度数.拓展与延伸:如图4,四边形ABCD 中,AB BC CD AD ===,AD BC ∥,AB CD ∥,E 为四边形ABCD 边BC 上一点,连AE ,若AE EF =,且()90AEF ABC ∠∠αα==≥︒,探究DCF ∠与α的数量关系.直接写出结果,不需说明理由.24.(本题满分12分)数学问题:如图1,ABC △的中线AD 、BE 交于P 点,试探究线段AP 与PD 间的数量关系,并说明理由.数学思考:如图2,ABC △的中线AD 、BE 交于P 点,连DE , (1)求证:12DE AB =;(2)求证:ABC BDC ∠∠=.数学运用:①如图3,在四边形ABCD 中,AB CD ∥,AB CD <,E 、F 分别是AD 、BC 边的中点,直接写出AB 、CD 与EF 间的数量关系,不需要说明理由.②如图4,现有一块四边形纸片ABCD ,AB CD ∥,AD CB =,P 、Q 分别为AD 、BC 中点,EF MN AB ∥∥,P 、Q 也同时是EM 、FN 的中点.现若有AB m =,CD n =,E 或F 点到MN 的距离为h ,请直接写出四边形EFNM 的面积(用m 、n 、h 表示).一、选择题二、填空题三、解答题:17.解:AD Q 为中线,BD DC ∴=, AB BC =Q ,22AB BD DC ∴==,…………………………3分设BD x =,AC y =,则依题意有:315x =时,12x y +=;或312x =时,15x y +=.5x ∴=时,7y =;或4x =时,11y =.………………………………5分10AB ∴=,10BC =,7AC =;或8AB =,8BC =,11AC =.……………………7分经验证,均满足条件,所以这个三角形的三边的长分别为:10、10、7或8、8、11.……………………8分.18.证明:(1)AE BC ⊥Q 于E ,DF BC ⊥于F ,90AEB DFC ∴∠=∠=︒,……………………2分CE BF =Q ,CE EF BF EF ∴-=-,BE CF ∴=,……………………4分在Rt CDF △与Rt BAE △中,CD ABCF BE=⎧⎨=⎩ ()Rt Rt HL CDF BAE ∴△≌△ AE DF ∴=,……………………1分 C D ∠=∠.AB CD ∴∥.…………………………8分19.解:设这个多边形的边数为n ,依题意有:()21801803360n -︒+︒=⨯︒…………………………4分解得:7n =.…………………………7分答:这个多边形的边数为7.……………………8分 20.略21.(1)(2)9,42P ⎛⎫ ⎪⎝⎭;()2,M a b '- (3)237a b +=; (4)7,02⎛⎫⎪⎝⎭22.(1)证明;AD Q 平分BAC ∠,BAD CAD ∴∠=∠,CE AD ⊥Q 于F ,90AFC CFD ∴∠=∠=︒,90DAC ACF ∴∠+∠=︒, 90ACB =︒∠Q ,90BCE ACF ∴∠+∠=︒,BCE DAC ∴∠=∠,在AD 上取点G ,使AG CE =,连CQ ,如图.在CAG △与BCE △中,AC BC CAG BCE AG CE =⎧⎪∠=∠⎨⎪=⎩()SAS CAG BCE ∴△≌△,…………………………3分 B ACG ∴∠=∠.,ADC B BAD FGC ADC ACG ∠=∠+∠∠=∠+∠Q .FDC FGC ∴∠=∠.在Rt CFG △与Rt CFD △中,FGC FDC CFG CFD CF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩CFG CFD ∴△≌△,…………………………6分FG FD ∴=.2AD DF CE ∴=+…………………………7分(2)45°或135°.……………………10分. 23.问题的提出:证明:取BC 中点D ,连AD ,BD CD ∴=,在ABD △和ACD △中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩ABD ACD ∴△≌△,B C ∴∠=∠.……………………3分其他如作AD BC ⊥,或作BAC 的角平分线交BC 于D 点,对照给分. 特别的,只写ABC ACB Q △≌△,B C ∴∠=∠,只给1分. 知识的运用:证明:90AEF =︒∠Q ,90AEB FEC ∴∠+∠=︒,90ABC =︒∠Q ,90BAE AEB ∴∠+∠=︒,BAE FEC ∴∠=∠在AB 上取一点P ,使AP EC =,连PE ,如图.AB BC =Q ,AB AP BC EC ∴-=-,BP BE ∴=,∴由问题的提出知:BPE BEP ∠=∠.…………………………5分 90ABC =︒∠Q ,45BPE BEP ∴∠=∠=︒,135APE ∴∠=︒.在APE △和ECF △中,AP EC PAE CEF AE EF =⎧⎪∠=∠⎨⎪=⎩APE ECF ∴△≌△,135APE ECF ∴∠=∠=︒……………………7分. 拓展与延伸:3902α-︒…………………………10分. 24.数学问题:解:2AP PD =,理由如下:……………………1分 延长PD 到Q ,使DQ PD =,连PC ,如图.AD Q 为ABC △中线,BD CD ∴=.在BDQ △和CDP △中,PD DQ PDC QDB CD BD =⎧⎪∠=∠⎨⎪=⎩CDP BDQ ∴△≌△PC BQ ∴=,PCD QBD ∠=∠.PC BQ ∴∥.延长PE 到H ,使EH PE =,如图,同理可证:AH PC =,AH PC ∥.BQ AH ∴∥,BQ AH =.H PBQ ∴∠=∠.在APH △和QPB △中,H PBQ APH QPB AH BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩AP PQ ∴=2AP PD ∴=,…………………………4分数学思考;证明:延长ED 到M ,使DM DE =,连BM ,如图.AD Q 为ABC △中线,BD CD ∴=.在EDC △和MDB △中,ED DM EDC MDB DC BD =⎧⎪∠=∠⎨⎪=⎩EDC MDB ∴△≌△,EC BM ∴=,M DEC ∠=∠.BM AC ∴∥.MBE AEB ∴∠=∠.BE Q 是ABC △中线,AE EC ∴=,AE BM ∴=.在AEB △和MBE △中,AE BM AEB MBE EB BE =⎧⎪∠=∠⎨⎪=⎩()SAS AEB MBE ∴△≌△ME AB ∴=,BEM ABE ∠=∠.12DE AB ∴=,DE AB ∥ ABC EDC ∴∠=∠.…………………………8分数学运用:①2AB CD EF +=;…………………………10分 ②()12EFNM S m n h =+四边形.……………………12分.。
2023—2024学年度第一学期部分学校八年级期中质量检测数学试卷亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第I 卷(选择题)和第II 卷(非选择题)两部分组成.全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置.3.答第I 卷(选择题)时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,在再选涂其他答案.答在“试卷”上无效.4.答第II 卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在答题卡上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(10×3分=30分)1. 在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( )A.B. C. D.【答案】A【解析】【分析】根据轴对称的定义判断即可.【详解】解:全面发展四个字中,可以看作是轴对称图形的是全.故选:A .【点睛】本题考查了轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴:掌握定义是解题关键.2. 用如下长度的三根木棒首尾相连,可以组成三角形的是( )A. 3cm 、5cm 、10cmB. 3cm 、7cm 、10cmC. 5cm 、7cm 、13cmD. 6cm 、8cm 、10cm 【答案】D【解析】【分析】根据三角形的特性:两边之和大于第三边,两边之差小于第三边,进行解答即可.【详解】解:A 、,故不能构成三角形;3510+<B 、,故不能构成三角形;C 、,故不能构成三角形;D 、,故能构成三角形;故选:D .【点睛】本题考查三角形的性质,熟练掌握三角形的特性是解题的关键.3. 用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等判定的方法是()A. B. C. D. 【答案】A【解析】【分析】利用基本作图和作图痕迹得到,则根据“”可判断,从而得到.【详解】解:作一个角等于已知角如图,由作图痕迹得,所以,所以.故选:A .【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质.4. 正八边形的外角和是()A. B. C. D. 【答案】C【解析】【分析】根据多边形的外角和等于解答即可.【详解】解:∵任意多边形的外角和等于,∴正八边形的外角和等于,故选:C .【点睛】本题考查了多边形的外角,掌握多边形的外角和等于是解题的关键.5. 若等腰三角形的一个角为,它的底角是()3710+=5713+<6810+>SSSASA SAS AAS ,====OA OB PC PD DC BA SSS OAB PCD ≌P O ∠=∠,====OA OB PC PD DC BA ()OAB PCD SSS ≌P O ∠=∠180︒270︒360︒540︒360︒360︒360︒360︒90︒A. B. C. D. 【答案】A【解析】【分析】当等腰三角形的一个角的度数为时,这个角一定是顶角,不可能是底角,然后利用三角形内角和定理即可得出答案.【详解】解:∵三角形的内角和为,∴的角一定是顶角,不可能是底角,∴它的底角的度数是:.故选:A .【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,此类题目要用分类讨论的思想进行分析,不能遗漏.6. 如图,在中,分别以点A 和点C为圆心,大于的长为半径作弧(弧所在圆的半径都相等),两弧相交于M ,N 两点,直线分别与边相交于点D ,E ,连接.若,则( )A. B. C. D. 【答案】C【解析】【分析】由作图可知直线为边的垂直平分线,再由得到,利用等边对等角以及三角形内角和定理,进而得到.【详解】解:由作图可知,直线为边的垂直平分线,∴,∴,∵,∴,∴,45︒60︒75︒90︒90︒180︒90︒()18090245︒-︒÷=︒ABC 12AC MN BC AC 、AD BD DC =B C ∠+∠=60︒80︒90︒100︒MN AC BD DC =AD DC BD ==90B C ∠+∠=︒MN AC DC AD =C CAD ∠=∠BD DC =AD BD =B BAD ∠=∠∵,∴.故选:C .7. 点关于直线m (直线m 上各点横坐标都为2)对称点的坐标是()A. B. C. D. 【答案】C【解析】【分析】先根据题意得出直线的解析式为,再由对称的性质得出点对称点的横坐标,从而得出答案.【详解】解:根据题意,直线的解析式为,则点关于直线的对称点的横坐标为,纵坐标为9,即对称点的坐标为,故选:C .【点睛】本题主要考查坐标与图形变化-对称,解题的关键是掌握关于直线对称时的规律:关于直线对称,.关于直线对称,.8. 如图,在中,,,点D 、E 分别在边上,连接,将沿折叠,点B 的对应点刚好落在边上,若,,则的长是()A. 10B. 12C. 13D. 14【答案】B【解析】【分析】根据折叠的性质以及含角的直角三角形的性质得出即可求解.【详解】解:∵将沿折叠,点的对应点为点,若点刚好落在边上,在中,,180C B CAD BAD ∠+∠+∠+∠=︒90B C ∠+∠=︒()7,9-()7,9()7,9--()11,9()11,9--m 2x =()7,9-m 2x =()7,9-2x =()27211⎡⎤--+=⎣⎦()11,9x m =(,)(2,)⇒-P a b P m a b y n =(,)(,2)⇒-P a b P a n b Rt ABC 90C ∠=︒BC AC <AB BC 、DE BDE △DE B 'AC 30CB E ∠='︒4CE =BC 30︒28'===B E BE CE BDE △DE B B 'B 'AC Rt ABC 90,,30,4'∠=︒<∠=︒=C BC AC CB E CE故选:B .【点睛】本题考查了折叠的性质,含角的直角三角形的性质,熟练掌握以上性质是解题关键.9. 如图,是中线,是上一点,交于,若,,,则的长度为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,延长到使得,连接,证明,根据全等三角形的性质可得到,等量代换得到,再由已知条件即可解决问题;【详解】如图,延长到使得,连接,∵是的中线,∴,在与中,的28,'∴===B E BE CE 4812.∴=+=+=BC CE BE 30︒AD ABC E AD BE AC F EF AF =8BE =5CF =EF 1.52 2.53AD G DG AD =BG ()ACD GBD SAS ≌CAD G ∠=∠BE BG AC ==AD G DG AD =BG AD ABC CD BD =ACD GBD,∴,∴,∵,∴又∵∴∴∴,∴,∵,∴∴故选:D .10. 如图,等腰中,,H 、M 分别在边上,且,若,则的面积是( )A. 20B. 25C. 26D. 30【答案】B【解析】【分析】作的垂直平分线交于点E ,过点H 作交于点D ,设,运用勾股定理推出,再根据面积公式代入求值即可;【详解】作的垂直平分线交于点E ,过点H 作交于点D ,连接,则,CD BD ADC BDG AD DG =⎧⎪∠=∠⎨⎪=⎩()ACD GBD SAS ≌CAD G ∠=∠EF AF =FAE FEA∠=∠BEG AEF∠=∠BEG FAE∠=∠G BEG∠=∠AC BD =BE BG =8BE =5CF =8AC AF FC BE =+==3EF AF ==Rt ABC BC AC =BC BA 、22.5HMB ∠=︒10HM =BHM △HM AB HD AB ⊥DE DH BD b HE ME a =====,21252+=b ab HM AB HD AB ⊥HE HE ME =∴,∴,∴;,,,设,在中,,在中,,即,由此可得:,.故选:B .【点睛】该题主要考查了三角形内角和,外角性质,勾股定理,等腰三角形的性质,线段垂直平分线的性质,解题的关键是做辅助线.二、填空题(6×3分=18分.)11. 盖房子时,木工师傅常常先在窗框斜钉一根木条,如图,工人师傅这一做法利用的几何原理是________.【答案】三角形的稳定性【解析】22.5MHE HME ∠=∠=︒245HEM MHE ∠=∠=︒45DHE ∠=︒BC AC = 45B A DHB ∴∠=∠=∠=︒HD BD DE ∴==DE DH BD b HE ME a =====,Rt HDE 222+=b b a Rt HDM 222()10++=b a b 2222100++=b a ab 21252+=b ab 2111(2)25222∴=⋅=+⋅=+=V BHM S BM HD b a b b ab【分析】在窗框上斜钉一根木条,构成三角形故可用三角形的稳定性解释.【详解】解:盖房子时,在窗框未安装好之前木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性;故答案为:三角形的稳定性.【点睛】本题考查三角形稳定性的实际应用,角形的稳定性在实际生活中有着广泛的应用,要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.12. 三角形的三条中线相交于一点,这个交点叫做这个三角形的________.【答案】重心【解析】【分析】此题考查三角形重心的定义,熟记定义是解题的关键.三角形的三条中线的交点叫三角形的重心.【详解】解:三角形的三条中线的交点叫三角形的重心,故答案为:重心.13. 如图,AD 是的角平分线,,,则的面积与的面积之比是______.【答案】3:2【解析】【分析】过点D 作于点E ,由角平分线的性质得到DE =CD ,再根据三角形面积公式解答即可.【详解】解:过点D 作于点E ,AD 是的角平分线,Rt ABC 12AB =8AC =ABD △ACD DE AB ⊥DE AB ⊥ Rt ABC ,CD AC DE AB⊥⊥故答案为:3:2.【点睛】本题考查角平分线的性质、三角形面积公式等知识,是基础考点,掌握相关知识是解题关键.14. 如图,在中,和的平分线相交于点O ,,过O 作于点D ,且,则的面积是________.【答案】27【解析】【分析】作于于,连接,根据角平分线的性质求出和,根据三角形面积公式计算即可.【详解】解:作于于,连接,∵是的平分线,,∴,同理,.的面积.故答案为:27.【点睛】本题主要考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.DE CD∴=112321822ABDACD AB DE S AB S AC AC CD ⋅====⋅△△ABC ABC ∠ACB ∠18AB BC CA ++=OD BC ⊥3OD =ABC OE AB ⊥,E OF AC ⊥F OA 3OE OD ==OF =3OD =OE AB ⊥,E OF AC ⊥F OA OB ABC ∠OD ⊥,⊥BC OE AB 3OE OD ==3OF OD ==18++=AB BC CA Q ABC ∴ 11133327222=⨯⨯+⨯⨯+⨯⨯=AB AC BC15. 如图,在中,中线,则边的取值范围是_____.【答案】【解析】【分析】本题考查了全等三角形的性质与判定,三角形的任意两边之和大于第三边,延长到,使得,连接,证明,得出,根据三角形的任意两边之和大于第三边,即可求解.【详解】试题解析:如图,延长到,使得,连接,,,,,即故答案为16. 如图,P 是等边内部一点,,则以为边的三角形的三个内角中最大角与最小角的和的大小是________.【答案】ABC 3AC =5AD =AB 713AB <<AD E 5DE AD ==EC ADB EDC ≌EC AB =AD E 5DE AD ==.EC AD DE = ADB EDC ∠=∠BD DC =ADB EDC ∴ ≌EC AB ∴=∴AE AC EC AE AC -<<+,713EC <<,713.AB <<713.AB <<ABC ::3:4:5APB BPC CPA ∠∠∠=,,PA PB PC 120︒【解析】【分析】将绕点逆时针旋转得,显然有,连接,则,得到是等边三角形,,根据已知条件得到,然后根据角的和差即可得到结论.【详解】解:如图,将绕点逆时针旋转得,显然有,连,∴是等边三角形,∴的三边长分别为,∵,∴以为边的三角形的三个内角的度数为:.最大角与最小角的和,故答案为:.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.三、解答题(共8个小题,共72分)17. 如图,,,,求的度数.APB △A 60︒AP C '△AP C APB '△≌△PP ',60''=∠=︒AP AP P AP AP P '△PP AP '=90,120,150∠=︒∠=︒∠=︒APB BPC CPA APB △A 60︒AP C '△AP C APB '△≌△PP ',60''=∠=︒Q AP AP P AP AP P '△,'∴=PP AP ,'=Q P C PB P CP '△,,PA PB PC 360,::3:4:5∠+∠+∠=︒∠∠∠=APB BPC CPA APB BPC CPA 90,120,150,∴∠=︒∠=︒∠=︒APB BPC CPA 906030,''''∴∠=∠-∠=∠-∠=︒-︒=︒PP C AP C AP P APB AP P 1506090,''∠=∠-∠=︒-︒=︒P PC APC APP ()180309060,'∠=︒-︒+︒=︒PCP ,,PA PB PC 30,60,90︒︒︒120︒120︒AB CD 46A ∠=︒OC OE =E ∠【答案】【解析】【分析】利用平行可求得,结合等腰三角形和外角的性质可求得.【详解】解:又【点睛】本题主要考查等腰三角形的性质及平行线的性质,掌握等边对等角是解题的关键,注意外角性质的利用.18. 一个多边形的内角和比它的外角和的3倍少,这个多边形的边数是多少?【答案】七【解析】【分析】设这个多边形的边数是n ,根据多边形的内角和和外角和公式列出方程,求解即可【详解】解:设这个多边形的边数是n ,根据题意可得:,解得:;即这个多边形是七边形.【点睛】本题考查了多边形的内角和和外角和,属于基础题目,熟知多边形的内角和和外角和公式是解题的关键.19. 如图,.求证:.23︒DOE ∠E ∠,AB CD ∥Q 46,∴∠=∠=︒DOE BAE ,OC OE = ,C E ∴∠=∠2,∠=∠DOE C 23.∴∠=︒E 180︒()21803603180n -⨯︒=︒⨯-︒7n =,,OA OC OB OD AOD COB ==∠=∠AB CD =【答案】见解析【解析】【分析】根据已知条件得出,进而证明,根据全等三角形的性质即可得证.详解】证明:,即.在和中,.【点睛】本小题考查等式的基本性质、全等三角形的判定与性质等基础知识,考查几何直观、推理能力等,掌握全等三角形的性质与判定是解题的关键.20. 如图,四边形中,,,M 是边上的一点,且平分平分求证:(1);(2).【AOB COD ∠=∠△≌△A O B C O D AOD COB ∠=∠ ,AOD BOD COB BOD ∴∠-∠=∠-∠AOB COD ∠=∠AOB COD △,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩AOB COD∴ ≌AB CD ∴=ABCD 90B Ð=°AB CD BC AM ,BAD DM ∠,ADC ∠BM MC =AM MD ⊥【答案】(1)见详解(2)见详解【解析】【分析】(1)作,根据角平分线的性质得到,等量代换得到答案.(2)根据平行线的性质得到,根据角平分线的定义得到,根据垂直的定义得到答案;【小问1详解】作交于,平分平分【小问2详解】证明:∵,平分平分即;【点睛】本题考查是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.21. 如图,在边长为1cm 的小正方形组成的网格中,的顶点都在小正方形的顶点,已知点A 的坐标为.的NM AD ⊥,==BM MN MN CM 180BAD ADC ∠+∠=︒∠+MAD 90ADM ∠=︒NM AD ⊥AD N 90,,∠=︒Q B AB CD ∥,,∴⊥⊥BM AB CM CD AM ,BAD DM ∠,ADC ∠,,∴==BM MN MN CM ∴=;BM CM AB CD ∥180,∴∠+∠=︒BAD ADC AM ,BAD DM ∠,ADC ∠22180,∴∠+∠=︒MAD ADM 90,∴∠+∠=︒MAD ADM 90,∴∠=︒AMD AM DM ⊥57⨯ABC ()3,3-(1)①在网格图1中标出x 轴、y 轴,并直接写出的面积是________.②直接写出点B 关于直线l (直线l 上点的纵坐标都是1)的对称点的坐标是________.③并用三角板量出线段的长是________.(2)用无刻度直尺及所学的知识在给定网格图2中作图(保留作图痕迹).①作出的高线,并直接写出的长是________.②在上确定一点P ,使.【答案】(1)①;②;③5 (2)①画图见解析,;②画图见解析【解析】【分析】(1)①根据点A 的坐标标出x 轴、y 轴,然后利用割补法求解即可;②根据轴对称的性质求解即可;③根据题意求解即可;(2)①连接交于点H ,即为所求,然后利用等面积法求解即可;②连接,,和的交点P 即为所求.【小问1详解】①如图所示,的面积;②∵的ABC B 'AC ABC BH BH AC 45CBP ∠=︒192()4,4-195BD AC BH CE BE BE AC ABC 11119451434152222=⨯-⨯⨯-⨯⨯-⨯⨯=()4,2B --∴点B 关于直线的坐标为;③;【小问2详解】①如图所示,即为所求;∵是网格中的长方形的对角线,网格中的长方形的对角线,∴交于点H ,∵的面积为,∴,即解得;②如图所示,点P 即为所求;∵是网格中的长方形的对角线,网格中的长方形的对角线,∴又由网格可得,∴是等腰直角三角形,∴.【点睛】本题考查割补法求三角形面积,轴对称,网格作图,等腰直角三角形性质,掌握割补法求三角形面积,轴对称以及等腰直角三角形性质是解题关键.网格中求三角形面积常用割补法.22. 如图,在中,,的角平分线相交于点P ,过点P 作交的延长线于点F ,交于点H ,求证::1l y =()4,4-5AC =BH AC 43⨯BD 34⨯AC BD ⊥ABC 19211922AC BH ⋅=119522BH ⨯=195BH =BC 41⨯CE 14⨯BC CE⊥BC CE=BCE 45CBP ∠=︒Rt ABC 90ACB ∠=︒ABC AD BE 、PF AD ⊥BC PF AC(1);(2).【答案】(1)见详解(2)见详解【解析】【分析】(1)根据三角形内角和以及角平分线定义得出,易得,可得,即可证明;(2)由(1)结论可得,,即可求得,即可证明,可得,即可解题.【小问1详解】分别平分,,,在和中,【小问2详解】∵,ABP FBP ≌△△AH AB BD =-135APB ∠=︒45DPB ∠=︒135BPF ∠=︒ABP FBP ≌△△,∠=∠=F BAD AP PF AB BF =F CAD ∠=∠APH FPD ≌△△AH DF =AD BE Q 、BAC ABC ∠∠、90ACB ∠=︒1()45,2∴∠+∠=∠+∠=︒PAB PBA ABC BAC 135APB ∴∠=︒45,∴∠=︒DPB ,⊥Q PF AD 135,∴∠=︒BPF ABP FBP 135BPF APB BP BPABP FBP ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ABP FBP ASA ∴ ≌;ABP FBP ≌△△∴,∵,∴,在和中,.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证和是解题的关键.23. (1)如图1,在四边形中,与互补,且,求证:平分.(2)已知等边中,D 在边上,E 在边上,且,与相交于点F .①如图2,求证:,并直接写出的大小是________.②如图3,过E 作于G ,连接并延长交于点H ,若,求证:.【答案】(1)见详解;(2)①见详解;;②见详解;【解析】【分析】(1)过C 作,分别交、的延长线于,证明,即,,∠=∠==F BAD AP PF AB BF BAD CAD ∠=∠F CAD ∠=∠APH V FPD △90F CAD AP PFAPH FPD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩(),APH FPD ASA ∴ ≌,∴=AH DF ,=+Q BF DF BD .∴=+AB AH BD ∴=-AH AB BD ABP FBP ≌△△APH FPD ≌△△ABCD B ∠D ∠BC CD =AC BAD ∠ABC AC AB AE DC =CE BD ACE CBD ≌BFE ∠EG BD ⊥AG BC FG FC =BH CH =60︒,CE AB CF AD ⊥⊥AB AD F CEB CFD ≌△△可证明;(2)①根据等边三角形的性质证明,根据全等三角形的性质和三角形外角的性质即可求解;②如图中,连接,过点作于点于点.证明,推出平分,可得结论.【详解】(1)过C 作,分别交、的延长线于,则,,,,,,在的平分线上,平分;(2)①是等边三角形,②证明:如图中,连接,过点作于点于点.ACE CBD ≌CG G GM AB ⊥,⊥M GN AC N GM GN =AG BAC ∠,CE AB CF AD ⊥⊥AB AD F 90CEB CFD ∠=∠=︒180,180∠+∠=︒∠+∠=︒Q B ADC FDC ADC B FDC ∴∠=∠BC CD = ()CEB CFD AAS ∴ ≌CE CF ∴=C ∴BAD ∠AC ∴BAD ∠ABC ∴ 60,∴∠=∠=︒ACB BAD ,,==Q AE DC AC BA (),ACE CBD SAS ∴ ≌,DBC ACE ∴∠=∠60,∠+∠=︒Q BCF AEC 60;∴∠=∠+∠=∠=︒BFE FBC FCB ACB CG G GM ⊥AB ,⊥M GN AC N∵,∴,∵,∴,∵,∴,∴,∴,∵,∴,∴,在和中,平分垂直平分【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,角平分线的性质和判定,线段垂直平分线的性质和判定,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,FG FC =FCG FGC ∠=∠60EFG FGC FCG ∠=∠+∠=︒30FGC FCG ∠=∠=︒90EGF ∠=︒120CGE CGF EGF ∠=∠+∠=︒30∠=∠=︒GEC GCE GE GC =90,60∠=∠=︒∠=︒AMG ANG MAN 120MGN EGC ∠=∠=︒EGM CGN ∠=∠GME △GNC △90,GME GNC EGM CGNGE GC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩(),GME GNC AAS ∴ ≌,∴=GM GN ,,⊥⊥Q GM AB GN AC AG ∴,BAC ∠,AB AC =AH ∴,BC .∴=BH HC构造全等三角形解决问题.24. 建立模型(1)如图1,过线段上一点B 作,过A 、E 分别作于C ,于D ,且,求证:.类比迁移(2)如图2,直线交两坐标轴于点、,a ,b满足.①求a 、b 值;②点C 在第二象限内,连接,若中,是斜边且,求点C 的坐标;③如图3,在②的条件下,在边上取一点D ,作,且,连接,求的大小.【答案】(1)见详解;(2)①②③【解析】【分析】(1)证明再根据证明即可;(2)①根据绝对值和平方根的非负性质即可求解;②证明,得出即可求解;③过点B 作于点F ,过点E 作于点H ,根据证明,得由等腰直角三角形的性质得从而可得,故可得.【详解】(1)证明: ∵,,在和中的CD AB BE ⊥AC CD ⊥ED CD ⊥AB BE =ACB BDE ≌AB ()0,A a (),0Bb 30a b ++=BC AC 、ABC AC BC AB =AC DE BD ⊥DE BD =AE DAE ∠3,1a b ==-()4,1C -45︒,A EBD ∠=∠AAS ACB BDE ≌AOB BQC △≌△3BQ AO ,==1CQ BO ==BF AC ⊥EH AC ⊥AAS BFD DHE ≌,,,BF DH DF EH ==,AF BF DH ==AH DF EH ==45DAE =︒,⊥⊥AC BC AB BE ,⊥ED BD 90∴∠=∠=∠=︒ACB BDE ABE 90,90,∴∠+∠=︒∠+∠=︒A ABC ABC EBD ,A EBD ∴∠=∠ACB △BDE;(2)①,,解得:,②由①可得:、,过C 作于Q ,由题可得:,在和中,,;③过点B 作于点F ,过点E 作于点H,,ACB BDE A EBD AB BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACB BDE ∴≌VV 30++=Q a b 3043130∴+=-+=,a b b a 3,1a b ==-()0,3A ()1,0B -CH OB ⊥90AOB CQB ABC ∠=∠=∠=︒90,90,OBA ABO ABO CBQ ∴∠+∠=︒∠+∠=︒,OAB CBQ ∴∠=∠ABO BCQ △,AOB BQC OAB CBQ AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ;AOB BQC ∴≌V V 31BQ AO ,CQ BO ∴====134OQ OB BQ ∴=+=+=()41∴-C ,BF AC ⊥EH AC ⊥则∴又∴在和中,,∴∴∵∴∴∴∴∴∴∴又∴.90,BFD DHE ∠=∠=︒90,DBF BDF ∠+∠=︒90,EDH BDF ∠+∠=︒,FBD HDE ∠=∠FBD EDH FBD HDE BFD DHE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ,FBD EDH ≌,,BF DH DF EH ==90,45,BFA BAF ∠=︒∠=︒45,ABF ∠=︒,ABF BAF ∠=∠,AF BF =,AF DH =,DF FH AH FH +=+,AH DF =,AH EH =90,AHE ∠=︒45EAD ∠=︒【点睛】本题主要考查坐标与图形,全等三角形的判定与性质,非负数的性质,等腰直角三角形的判定与AAS性质等知识,运用证明三角形全等,非负数的和为0,这几个非负数均为0,根据“等边对等角”求角度.。
湖北省武汉市江汉区2024-2025学年八年级上学期11月期中考试数学试题一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.小明不慎将一块三角形的玻璃摔碎成如图所示的四块,若将其中的一块带去,就能配一块同样的三角形玻璃,则带去的编号是()A .1B .2C .3D .43.下列各式中计算结果为x 6的是()A .24x x +B .()32x -C .122x x ÷D .24x x ⋅4.如图,ABC V 与A B C ''' 关于直线l 对称,则B ∠的度数是()A .50︒B .80︒C .100︒D .120︒5.如图,两根钢条AA BB '',的中点O 连在一起,AA BB '',可绕点O 自由转动,则A B ''的长等于内槽宽AB .判定AOB OA B ''△≌△的理由是()A .SASB .ASAC .SSSD .AAS6.如图,点E 、F 在BC 上,AB CD =,AF DE =,AF DE 、相交于点G ,添加下列哪一个条件,可使得ABF DCE △△≌()A .BC ∠=∠B .AG DG =C .AFE DEF ∠=∠D .BE CF=7.下列各式不能用平方差公式计算的是()A .()()22y x x y +-B .()()33x y x y --+C .()()222222x y x y -+D .()()44a b a b +-8.如图,三条公路将,,A B C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三个村庄的距离相等,那么这个集贸市场应建的位置是()A .三条高线的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点9.如图,A 是ABC 的角平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,连接EF 交A 于点G ,下列结论不.一定.成立的是()A .DE DF =B .EG FG =C .AD EF ⊥D .AG DG=10.已知5a x =,2b x =,则23a b x -的值是()A .200B .17C .258D .52二、填空题11.计算:()2633a a a -÷=.12.如图,在ABC V 中,AB AC =,D 是BC 上的一点,O 是AD 上一点,且OB OC =,若4BC =,则BD 的长是.13.若()()2312x m x x nx +-=+-对任意的x 恒成立,则n 的值是.14.如图,已知7AB AC ==,5BC =,分别以A ,B 两点为圆心,大于12AB 的长为半径作弧,两弧相交于点M ,N ,直线MN 与AC 相交于点D ,BDC 的周长是.15.如图,在四边形ABCD 中,90BAD BCD ∠=∠=︒,AB AD =,AE BC ⊥于点E .若3CD =,5CE =,则BC 的长是.16.计算:210011006994-⨯=.三、解答题17.(1)计算:()()2342a a a a --÷;(2)解不等式:()()()()3422x x x x +->+-.18.如图,已知点E ,C 在线段BF 上,BE CF =,AB DE ∥,AB DE =.(1)求证:ABC DEF ≌△△;(2)AC 与DE 交于点G ,当35B ∠=︒,70F ∠=︒时,求AGD ∠的度数.19.先化简,再求值:(1)()()2211xx x x x --+-,其中12x =.(2)()()()()232121128m m m m m +----÷,其中m 满足260m m +-=.20.如图,在ABC V 中,BD 是中线.(1)如图(1),延长BD 至点E ,使得DE BD =,连接AE .①求证:ADE CDB ≌;②若6AB =,4BC =,设BD x =,直接写出x 的取值范围;(2)如图(2),延长CA 到点F ,使AF BC =,若ABC BAC ∠=∠,求证:2BF BD =.21.在平面直角坐标系中有1012⨯的正方形网格,仅用无刻度的直尺画图,并回答问题.其中,()()()0,3,3,1,6,0A B C -.(1)在图(1)中,画ABC V 关于x 轴对称的A B C ''△,写出点,A B ''的坐标;(2)在图(1)中,点M 在AC 上,画点M 关于x 轴的对称点M ';(3)在图(2)中,AC 向下平移到DE ,画点P ,使DPE 与ABC V 全等(画出所有满足条件的点P );(4)在图(2)中,在AC 上画点Q ,使AQB ABC ∠=∠.四、填空题22.若()211x x +-=,则x 的值是.23.如图,在ABC V 中,BP 平分ABC ∠,AP BP ⊥于点P ,若ABC V 的面积是14,ABP 的面积是5,则APC △的面积是.24.定义一种新运算a b ☆:当a b ≥时,2a b a b =+☆;当a b <时,2a b a b =-☆.若()()22272433xx x x +--+=☆,则x 的值是.25.如图,在ABC 中,A 的垂直平分线与ABC 的外角平分线A 交于点D ,DE AC ⊥于点E ,DF BC ⊥交BC 的延长线于点F .下列结论:①ADE BDF ≌V V ;②1902DCF BDA ∠=︒-∠;③1902ADC ABC ∠=︒-∠;④若AC a =,()BC b a b =>,则224a b AE CF -⋅=.其中一定成立的是(填序号).五、解答题26.(1)【问题呈现】已知1a b -=,6ab =,求下列各代数式的值:①22a b +;②a b +.(2)【问题推广】若()()342x x --=,则()()2234x x -+-=________;(3)【问题拓展】如图,已知E ,F 分别是正方形ABCD 的边A ,DC 上的点,且2AE =,5CF =,长方形DEMF 的面积是20,分别以MF ,DF 为边长作正方形MFRN 和正方形DHGF ,直接写出阴影部分的面积.27.如图,已知ABC V ,AD BC ∥,AD AB =,在直线AB 上取点E .(1)如图(1),点E 在BA 的延长线上,证明以下结论:①若AE BC =,则DE AC =.②若DE AC =,则AE BC =.(2)如图(2),点E 在边AB 上,DE AC =,CF AB ⊥于点F .若AB BC =,求证F 是BE 的中点.28.如图,在平面直角坐标系中,()()50,012A B ,,,已知13AB =.(1)如图,点C 在第二象限,且90ACB ∠=︒,AC BC =.①如图(1),求点C 的坐标;②如图(2),BAO ∠的平分线交射线OC 于点P ,连接PB ,求点P 的坐标;(2)如图(3),点D ,E 分别在x 轴,y 轴上,若AB EB AD ==,点I 是ABO 内角平分线的交点,ID IE ,分别交坐标轴于点F ,G ,直接写出OFG △的周长.。
八年级数学参考答案及评分细则一.选择题(每题3分,共30分)题号12345678910答案ACBADBCCDA二.填空题(每题3分,共18分)11.()3,512.2013.60°14.428AC <<15.①②④16.13m m ≤-≥或(范围区间对,掉等号扣1分;填两个区间对一个给2分,掉等号再扣1分)三.解答题(共72分)17.(本小题满分8分)解:∵∠B =30°,∠C=50°∴∠BAC =180°—(∠B+∠C )=100°…………………………………………3分∵AD 平分∠BAC ∴∠DAC =21∠BAC=50°……………………………………………………6分∴∠ADB =∠DAC+∠C=100°………………………………………………………8分18.(本小题满分8分)证明:∵AB=DC∴AB+BC=DC+BC ∴AC=DB………………………3分在△EAC 和△BFD 中⎪⎩⎪⎨⎧=∠=∠=DF AE D A DB AC ∴△EAF≌△BFD (SAS)………………………7分∴∠E=∠F ………………………………8分19.(本小题满分8分)(1)证明:在Rt△AFC 和Rt△AEB 中⎩⎨⎧==EBFC AB AC ∴Rt△AFC≌△AEB (HL)∴AE =AF………………………………………………5分(2)72°…………………………………………………………8分20.(本小题满分8分)(1)____5_____;___20_____(4分)(2)解:结论BE=EF+CF(能猜对答案给1分)………………………5分∵BD 平分∠ABC∴∠ABD=∠CBD ∵ED∥BC ∴∠DBC =∠EDB ∴∠EBD =∠EDB ∴EB =ED………………………6分同理∴∠FCD=∠FDC ∴FC=FD∴BE=ED=EF+FD=EF+CF……………………………………………………(8分)21.(本小题满分8分)(每一步各2分,其他方法酌情给分)图①图②图③22.(本小题满分10分)解:(1)40°…………………………………………………………………………………3分(2)∵DM ,EN 分别垂直平分AC ,BC ∴AM=CM,CN=BN∴∠MAC=∠MCA,∠NCB=∠NBC ……………………………………………………………4分设∠MAC=∠MCA=x,∠NCB=∠NBC=y 在△ABC 中,∵∠MCN=α2x+2y+α=180°∴x+y=01902α-………………………………………………………………………………5分∵∠FMN=∠AMD=90°-x,∠FNM=∠BNF=90°-y∴∠MFN=180°-(90°-x)-(90°-y)=x y +=01902α-………………………7分(3)连接FA,FB,FC (虚实线均可)………………7分∵DM ,EN 分别垂直平分AC ,BC ∴AM=CM,CN=BN同理:AF=FC,FC=FB∴AF=FC=BF…………………………………………8分∵△CMN 的周长为8,△FAB 的周长为18∴CM+CN+MN=AM+MN+BN=AB=18,AB+FA+FB=AB+2FC=18∴FC=()118852-=……………………………10分23.(本小题满分10分)(1)DE=BD+CE ……………………………………………………………………………3分(2)方法1:在直线m 上作点H ,使得∠BHA=∠AEC=α.(或者先截取HD,使得HD=AE再证全等)∵∠DAC=∠BAH+∠BAC=∠ACE+∠AEC 又∵∠BAC=∠AEC=α,∴∠BAH=∠ACE在△BAH 和△ACE 中BAH ACE BHA AEC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BAH ≌△ACE (AAS )…………………………………………………4分∴BH=AE,AH=CE ∵CE=DE ∴CE=DE=AH ∴DE-AD=AH-AD ∴AE=DH ∴BH=AE=DH ∴∠HBD=∠HDB ……………………………………………………5分设BDA α∠=,AEC β∠=∴∠BHA=∠AEC=β,∠HBD=∠HDB=180°-α,∴()2180180βα+-=∴02180αβ-=∴2∠AEC-∠BDA=180°……………………………………………………7分方法2:在CE 上截取CQ=AD ,连接AQ.证明△ACQ ≌△BAD.H(3)11st +-……………………………………………………………………………………10分24.(1)2……………………………………………………………………………3分(2)法1:延长CE 至点Q ,使得QE=CE,连接AQ,OQ,OC ,在△CED 和△QEA 中=CE QE CED DE AEì=ïïíï=ïî∠∠QEA ∴△CED ≌△QEA (SSS )……………………………………………………………………4分∴AQ=CD,∠AQE=∠DEC ∴AQ∥CD.∵CD=BC ∴AQ=BC ∵AQ∥CD∴∠QAO=∠APC在四边形OPCB 中,∠POB+∠PCB=180°,∴∠OPC+∠BCP=180°∵∠APC+∠OPC=180°∴∠APC=∠OBC∴∠OAQ=∠OBC…………………………………………………………………………5分在△OAQ 和△OBC 中OA OB OAQ OBC AQ BCì=ïïÐ=Ðíï=ïî∴△OAQ≌△OBC(SAS)∴OQ=OC又∵点E 为CQ 的中点∴OE⊥CE.………………………………………7分法2:在转化角度的时候,延长QA,BC 交于点K ∵AQ∥CD∴∠PCB=∠K=90°∵∠AOB+∠K=180°∴∠OAK+∠OBC=180°又∵∠OAK+∠OAQ=180°∴∠OAQ=∠OBC.后面同法。
湖北省武汉市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)长度为1cm、2cm、3cm、4cm、5cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2019八上·博白期中) 如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于 AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A . AD=CDB . ∠A=∠DCEC . ∠ADE=∠DCBD . ∠A=2∠DCB3. (2分)(2016·河南) 某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A . 9.5×10﹣7B . 9.5×10﹣8C . 0.95×10﹣7D . 95×10﹣84. (2分)若分式的值为0,则x的值为()A . 1B . -1C . ±1D . 25. (2分)(2017·眉山) 下列运算结果正确的是()A . ﹣ =﹣B . (﹣0.1)﹣2=0.01C . ()2÷ =D . (﹣m)3•m2=﹣m66. (2分)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=100°,则∠2等于()A . 70°B . 80°C . 90°D . 100°7. (2分) (2019八上·滦南期中) 如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A .B .C .D .8. (2分) (2016九上·南浔期末) 如图,已知在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A,D为圆心,大于 AD的长为半径在AD两侧作弧,交于M,N两点;第二步,连结MN,分别交AB,AC于点E,F;第三步,连结DE,DF.若BD=6,AF=5,CD=3,则BE的长是()A . 7B . 8C . 9D . 109. (2分)等腰三角形的两边长分别是3和7,则其周长为()A . 13和17B . 13C . 17D . 1010. (2分) + 运算结果是()A .B .C .D . y+x二、填空题 (共5题;共5分)11. (1分)(2017·新野模拟) 计算﹣|﹣2|=________.12. (1分)(2017·新疆模拟) 计算: =________.13. (1分) (2018八上·江阴期中) 如图,△ABC≌△ADE,∠EAC=40°,则∠B=________°.14. (1分)如图,∠AOB=90°,OD,OE分别是∠BOC和∠AOC的平分线,若∠BOE=30°,则∠DOE的度数为________.15. (1分) (2017八上·西湖期中) 如图,在中,,是的中垂线,分别交,于点,.已知,,则的周长是________.三、解答题 (共8题;共50分)16. (10分) (2020八上·黄石期末) 解方程(1)(2)﹣217. (5分) (2013·遵义) 已知实数a满足a2+2a﹣15=0,求﹣÷ 的值.18. (5分)(2016·南通) 列方程解应用题:某列车平均提速60km/h,用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km,求提速前该列车的平均速度.19. (5分)如图,△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E和D.试猜想线段AD、BE、DE三者之间有何数量关系?并证明你的猜想.20. (5分) (2020七下·张掖月考) 某汽车探险队要从A城穿越沙漠去B城,途中需要到河流L边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点。
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中不是轴对称图形的是()A. B. C. D.2.在平面直角坐标系中,点P(-3,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在三角形中,最大的内角不小于()A. 30∘B. 45∘C. 60∘D. 90∘4.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等②三条边对应相等的两个三角形全等③有两边和它们的夹角对应相等的两个三角形全等④有两边和其中一边上的高对应相等的两个三角形全等正确的说法个数是()A. 1个B. 2个C. 3个D. 4个5.在平面直角坐标系中,点P(2,-3)关于x轴对称点P′的坐标是()A. (−2,−3)B. (−3,−2)C. (2,3)D. (−3,2)6.如图所示,∠A=28°,∠BFC=92°,∠B=∠C,则∠BDC的度数是()A. 85∘B. 75∘C. 64∘D. 60∘7.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别是D,E,AD,CE交于点H,已知EH=EB=3,AE=5,则CH的长是()A. 1B. 2C. 35D. 538.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A. 6 个B. 7 个C. 8 个D. 9个9.如图,AB=2,BC=AE=6,CE=CF=7,BF=8,则四边形ABDE与△CDF面积的比值是()A. 12B. 23C. 34D. 110.如图,在△ABC中,BC的垂直平分线DF交△ABC的外角平分线AD于点D,DE⊥AB于点E,且AB>AC.则()A. BC=AC+AEB. BE=AC+AEC. BC=AC+ADD. BE=AC+AD二、填空题(本大题共6小题,共18.0分)11.一个多边形的内角和是它外角和的2倍,则它的边数是______.12.设△ABC三边为a、b、c,其中a、b满足|a+b-6|+(a-b+4)2=0,则第三边c的取值范围______.13.点M(-5,3)关于直线x=1的对称点的坐标是______.14.如图所示,在△FED中,AD=FC,∠A=∠F,如果用“SAS”证明△ABC≌△FED,只需添加条件______即可.15.在△ABC中,高AD与BE所在直线相交于点H,且BH=AC,则∠ABC=______.16.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,一条线段PQ=AB=10,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,如果以A、P、Q为顶点的三角形与△ABC全等,则AP=______.三、计算题(本大题共1小题,共8.0分)17.解方程组(1)解方程组3x−y=73x−2y=3(2)解方程x+2y=43x−y=5四、解答题(本大题共7小题,共64.0分)18.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.19.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明△ABC≌△DEF的过程和理由补充完整.解:∵BE=CF(______)∴BE+EC=CF+EC即BC=EF在△ABC和△DEF中AB=______(______)______=DF(______)BC=______∴△ABC≌△DEF(______)20.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.21.已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD.求证:(1)△BDE≌△CDF;(2)点D在∠BAC的角平分线上.22.如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°.(1)求证:△ACE≌△BCD;(2)求∠AEB的度数.23.如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:______;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.24.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足(n-6)2+|n-2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.答案和解析1.【答案】C【解析】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.2.【答案】B【解析】解:点P(-3,2)在第二象限,故选:B.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】C【解析】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选:C.根据三角形的内角和等于180°,当三个角都相等时每个角等于60°,所以最大的角不小于60°.本题主要考查三角形内角和定理的运用.4.【答案】B【解析】解:①三个角对应相等的两个三角形全等;错误;②三条边对应相等的两个三角形全等;正确;③有两边和它们的夹角对应相等的两个三角形全等;正确;④有两边和其中一边上的高对应相等的两个三角形全等;错误(一个锐角三角形,一个钝角三角形不全等)故选:B.根据全等三角形的判定方法一一判断即可;本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考基础题.5.【答案】C【解析】解:点P(2,-3)关于x轴对称点P′的坐标是(2,3).故选:C.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6.【答案】D【解析】【分析】本题主要考查对三角形的外角性质,解一元一次方程等知识点的理解和掌握,能熟练地运用三角形的外角性质进行计算是解此题的关键.设∠B=∠C=x,根据三角形外角的性质得到∠CDB=∠A+∠B,∠CFB=∠C+∠CDF,即28°+x+x=92°,求出x=32°,根据∠BDC=∠A+∠B即可求出答案.【解答】解:设∠B=∠C=x,∵∠CDB=∠A+∠B,∠CFB=∠C+∠CDF,∵∠A=28°,∠BFC=92°,∴28°+x+x=92°,解得:x=32°,∴∠BDC=∠A+∠B=28°+32°=60°.故选:D.7.【答案】B【解析】解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=5,则CH=EC-EH=AE-EH=5-3=2.故选:B.由AD垂直于BC,CE垂直于AB,利用垂直的定义得到一对角为直角,再由一对对顶角相等,利用三角形的内角和定理得到一对角相等,再由一对直角相等,以及一对边相等,利用AAS得到三角形AEH与三角形EBC全等,由全等三角形的对应边相等得到AE=EC,由EC-EH,即AE-EH即可求出HC的长.此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.8.【答案】C【解析】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.9.【答案】D【解析】解:由题意得AC=CB+BA=8,∴AC=BF,在△AEC和△BCF中,∴△AEC≌△BCF,∴S△AEC=S△BCF,故可得S△CDF+S△CDB=S ABDE+S△CDB⇒S ABDE=S△CDF,∴四边形ABDE与△CDF面积的比值是1.故选:D.由题意得AC=CB+BA=8,可得AC=BF,利用SSS可证得△AEC≌△BCF,从而可得S△AEC=S△BCF,也就得出S△CDF+S△CDB=S ABDE+S△CDB,这样可求出四边形ABDE与△CDF面积的比值.本题考查了三角形的面积及等积变换的知识,难度一般,根据题意证明△AEC≌△BCF是解答本题的关键.10.【答案】B【解析】解:如图,作DG⊥AC,连接BD、CD,∵AD是外角∠BAG的平分线,DE⊥AB,∴∠DAE=∠DAG,在△ADE与△ADG中,,∴△ADE≌△ADG(AAS),∴AE=AG,∵DF是BC的中垂线,∴BD=CD,∴在Rt△BED和Rt△CGD中,,∴Rt△BED≌Rt△CGD(HL),∴BE=CG=AC+AG,AG=AE,∴BE-AC=AE,即BE=AC+AE.故选:B.作DG⊥AC,连接BD、CD,易证△ADE≌△ADG,得AE=AG,只要再证明△BED≌△CGD,即可得到.本题主要考查了全等三角形的判定与性质、线段垂直平分线的性质和角平分线的性质,作辅助线构建全等三角形,是解答本题的关键.11.【答案】6【解析】解:设这个多边形的边数是n,根据题意得,(n-2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.根据多边形的内角和公式(n-2)•180°以及外角和定理列出方程,然后求解即可.本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.12.【答案】4<c<6【解析】解:由题意得:,解得,根据三角形的三边关系定理可得5-1<c<5+1,即4<c<6.故答案为:4<c<6.首先根据非负数的性质计算出a、b的值,再根据三角形两边之和大于第三边,三角形的两边差小于第三边可得c的取值范围.此题主要考查了非负数的性质,以及三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.13.【答案】(7,3)【解析】解:设N(m,n)与点M(-5,3)关于直线x=1的对称,则有n=3,m+(-5)=2,∴m=7,∴N(7,3),故答案为(7,3).利用轴对称的性质即可解决问题;本题考查坐标与图形的性质、解题的关键是学会利用参数解决问题,属于中考常考题型.14.【答案】AB=EF【解析】解:∵AD=CF,∴AC=DF,∵∠A=∠F,∴当AB=EF时,根据SAS即可判断△ABC≌△FED,故答案为AB=EF.根据全等三角形的判定方法即可解决问题;本题考查全等三角形的判定,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.15.【答案】45°或135°【解析】解:如图中,∵∠BHD=∠AHE(对顶角相等),又∠AEH=∠ADC=90°,∴∠DAC+∠C=90°,∠HAE+∠AHE=90°,∴∠AHE=∠C(同角的余角相等),∴∠C=∠BHD(等量代换),∵BH=AC,∠HBD=∠DAC,∠C=∠BHD∴△HBD≌△CAD(AAS),∴AD=BD(全等三角形的对应边相等).∴∠ABC=45°(等腰直角三角形的性质);如图,当∠ABC是钝角时,同法可得AD=BD,∴∠ABD=45°,∠ABC=135°故答案为:45°或135°分两种情形,画出图形即可解决问题.本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.注意一题多解.16.【答案】6或8【解析】解:∵∠C=∠PAQ=90°,又∵以A、P、Q为顶点的三角形与△ABC全等,∴PA=BC或PA=AC,∵BC=6,AC=8,∴PA=6或8,故答案为6或8.理由全等三角形的性质即可判断;本题考查全等三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】解:(1),①-②得:y=4,将y=4代入①得:3x-4=7,即x=113,则方程组的解为x=113y=4.(2),①+②×2得:7x=14,即x=2,将x=2代入②得:6-y=5,即y=1,则方程组的解为x=2y=1.【解析】(1)方程组利用加减消元法求出解即可;(2)利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+40°=60°.【解析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.19.【答案】已知DE已知AC已知EF SSS【解析】解:依次填写:已知;DE;已知;AC;已知;EF;SSS.∵BE=CF(已知)∴BE+EC=CF+EC即BC=EF在△ABC和△DEF中AB=DE(已知)AC=DF(已知)BC=EF∴△ABC≌△DEF(SSS)根据三角形全等的判定方法,出现题中已知条件的需写已知.对应线段写在对应位置.三边对应相等的两个三角形全等,利用的是定理:SSS.本题考查了三角形全等的判定方法;有助于更清晰的了解证明题的一般步骤.20.【答案】解:∵CD为△ABC的AB边上的中线,∴AD=BD,∵△BCD的周长比△ACD的周长大3cm,∴(BC+BD+CD)-(AC+AD+CD)=3,∴BC-AC=3,∵BC=8cm,∴AC=5cm.【解析】此题考查了三角形的中线,熟知三角形一边的中点与此边所对顶点的连线叫做三角形的中线是此题的关键。
武汉市重点中学八年级上学期期中考试数学试卷(一)一、选择题1、一个多边形的内角和是外角和的2倍,则这个多边形是()A、四边形B、五边形C、六边形D、八边形2、张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,又不重叠,则所购瓷砖形状不能是()A、正三角形B、正方形C、正六边形D、正八边形3、如图,将Rt△ABC(其中∠B=34°,∠C=90°)绕A点按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角最小等于()A、56°B、68°C、124°D、180°4、若三角形两边的长分别为7cm和2cm,第三边为奇数,则第三边的长为()A、3B、5C、7D、95、能使两个直角三角形全等的条件是()A、斜边相等B、两直角边对应相等C、两锐角对应相等D、一锐角对应相等6、点P(2,﹣3)关于x轴的对称点是()A、(﹣2,3)B、(2,3)C、(﹣2,3)D、(2,﹣3)7、已知:△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A、0<x<3B、x>3C、3<x<6D、x>68、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A、160°B、150°C、140°D、130°9、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是()°.A、55B、35C、65D、2510、如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A、P是∠A与∠B两角平分线的交点B、P为∠A的角平分线与AB的垂直平分线的交点C、P为AD、AB两边上的高的交点E、P为AF、AB两边的垂直平分线的交点11、小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A、B、C、D、12、如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A、100°B、80°C、70°D、50°13、在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A、6B、9C、12D、1514、一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A、150°B、180°C、135°D、不能确定15、如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S=7,△ABCDE=2,AB=4,则AC长是()A、4B、3C、6D、5二、解答题16、已知:如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.17、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC 和∠BDC的度数.18、如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.19、如图,有一长方形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB 边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,求△CEF的面积.20、如图,在△ABD和△ACD中,已知AB=AC,∠B=∠C,求证:AD是∠BAC的平分线.21、如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB 于F,EG⊥AC交AC延长线于G.求证:BF=CG.22、如图,已知锐角△ABC中,AB、AC边的中垂线交于点O(1)若∠A=α(0°<α<90°),求∠BOC;(2)试判断∠ABO+∠ACB是否为定值;若是,求出定值,若不是,请说明理由.23、某公司有2位股东,20名工人、从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图所示.(1)填写下表:长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?24、在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.答案解析部分一、<b >选择题</b>1、【答案】C【考点】多边形内角与外角【解析】【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【分析】此题可以利用多边形的外角和和内角和定理求解.2、【考点】平面镶嵌(密铺)【解析】【解答】解:A、正三角形的每个内角是60°,6个能密铺;B、正方形的每个内角是90°,4个能密铺;C、正六边形的每个内角是120°,能整除360°,3个能密铺;D、正八边形的每个内角为180°﹣360°÷8=135°,不能整除360°,不能密铺.故选D.【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.3、【答案】C【考点】旋转的性质【解析】【解答】解:∵∠B=34°,∠C=90°∴∠BAC=56°=180°﹣56°=124°∴∠BAB1即旋转角最小等于124°.故选C.【分析】找到图中的对应点和对应角,根据旋转的性质作答.4、【答案】C【考点】三角形三边关系【解析】【解答】解:∵7+2=9,7﹣2=5,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故选C.【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的范围,再根据第三边为奇数选择.5、【考点】直角三角形全等的判定【解析】【解答】解:A选项,无法证明两条直角边对应相等,因此A错误.C、D选项,在全等三角形的判定过程中,必须有边的参与,因此C、D选项错误.B选项的根据是全等三角形判定中的SAS判定.故选:B.【分析】要判断能使两个直角三角形全等的条件首先要看现在有的条件:一对直角对应相等,还需要两个条件,而AAA是不能判定三角形全等的,所以正确的答案只有选项B了.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【分析】根据平面直角坐标系中对称点的规律解答.7、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:在△ABC中,AB=AC=x,BC=6.根据三角形三边关系得:AB+AC>BC,即x+x>6,解得x>3.故选:B.【分析】此题可根据三角形三边关系两边之和大于第三边得出.8、【答案】D【考点】三角形的外角性质【解析】【解答】解:∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°﹣50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.【分析】先根据直角三角形两锐角互余求出∠ABE,再根据三角形外角性质即可求出∠BHC的度数.9、【答案】A【考点】平行线的性质【解析】【解答】解:如图,∵∠1=35°,∴∠3=90°﹣∠1=55°,∵直尺两边平行,∴∠2=∠3=55°(两直线平行,同位角相等).故选:A.【分析】先根据直角定义求出∠1的余角,再利用两直线平行,同位角相等即可求出∠2的度数.10、【答案】B【考点】角平分线的性质,线段垂直平分线的性质【解析】【解答】解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.【分析】根据角平分线及线段垂直平分线的判定定理作答.11、【答案】D【考点】生活中的轴对称现象【解析】【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.故选D.【分析】此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.12、【答案】A【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选A.【分析】如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果.13、【答案】D【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△BDC的周长是:BD+CD+BC=BD+AD+BC=AB+BC,∵AB=AC=9,BC=6,∴△BDC的周长是:AB+BC=9+6=15.故选D.【分析】由DE是AC的垂直平分线,即可证得AD=CD,即可得△BDC的周长是AB 与BC的和,又由AB=AC=9,BC=6,即可求得答案.14、【答案】A【考点】角的计算【解析】【解答】解:根据图象,∠CME+∠BNF=∠AMN+∠ANM,∵∠A=30°,∴∠CME+∠BNF=180°﹣∠A=150°.故选A.【分析】根据∠CME与∠BNF是△AMN另外两个角,利用三角形的内角和定理即可求解.15、【答案】B【考点】三角形的面积,角平分线的性质【解析】【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC 交AC于点F,∴DF=DE=2.又∵S△ABC =S△ABD+S△ACD, AB=4,∴7= ×4×2+ ×AC×2,∴AC=3.故选B.【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC =S△ABD+S△ACD及三角形的面积公式得出结果.二、<b >解答题</b>16、【答案】证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【考点】全等三角形的判定与性质【解析】【分析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,则我们可以运用SAS来判定△ABC≌△DEF,根据全等三角形的对应边相等即可得出BC=EF.17、【答案】解:∵CD是∠ACB的平分线,∠ACB=50°,∴∠BCD= ∠ACB=25°,∵DE∥BC,∴∠EDC=∠DCB=25°,∠BDE+∠B=180°,∵∠B=70°,∴∠BDE=110°,∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°.∴∠EDC=25°,∠BDC=85°【考点】平行线的性质,三角形内角和定理【解析】【分析】由CD是∠ACB的平分线,∠ACB=50°,根据角平分线的性质,即可求得∠DCB的度数,又由DE∥BC,根据两直线平行,内错角相等,即可求得∠EDC的度数,根据两直线平行,同旁内角互补,即可求得∠BDE的度数,即可求得∠BDC的度数.18、【答案】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC= ∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°【考点】三角形的角平分线、中线和高,三角形内角和定理【解析】【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC= ∠BAC,故∠DAE=∠EAC﹣∠DAC.19、【答案】解:如下图所示:由对称的性质可知:A′D′=A′D=AD=6,BD=10﹣6=4,∴AB=6﹣4=2.易证Rt△ADE∽Rt△ABF,∴∴BF= = =2∴S= AB•BF= ×2×2=2,△CEF即:△CEF的面积为2.【考点】翻折变换(折叠问题)【解析】【分析】由翻折变换(轴对称)的性质可知:AD=6,BD=10﹣6=4,AB=6﹣4=2,再证明Rt△ADE∽Rt△ABF,从而得出BF的长,由此可计算出△CEF的面积.20、【答案】证明:连接BC,∵AB=AC,∴∠ABC=∠ACB.∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD.在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD,即AD是∠BAC的平分线.【考点】角平分线的定义,全等三角形的判定与性质【解析】【分析】连接BC,由AB=AC得到∠ABC=∠ACB,已知∠ABD=∠ACD,从而得出∠DBC=∠DCB,即BD=CD,又因为AB=AC,AD=AD,利用SSS判定△ABD≌△ACD,全等三角形的对应角相等即∠BAD=∠CAD,所以AD是∠BAC的平分线.21、【答案】解:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.【考点】全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质【解析】【分析】连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG.22、【答案】(1)解:AB、AC边的中垂线交于点O,∴AO=BO=CO,∴∠OAB=∠OBA,∠OCA=∠OAC,∴∠AOB+∠AOC=(180°﹣∠OAB﹣∠OBA)+(180°﹣∠OAC﹣∠OCA),∴∠AOB+∠AOC=(180°﹣2∠OAB)+(180°﹣2∠OAC)=360°﹣2(∠OAB+∠OAC)=360°﹣2∠A=360°﹣2α,∴∠BOC=360°﹣(∠AOB+∠AOC)=2α(2)解:∠ABO+∠ACB为定值,∵BO=CO,∴∠OBC=∠OCB,∵∠OAB=∠OBA,∠OCA=∠OAC,∴∠OBC= (180°﹣2∠A)=90°﹣α,∵∠ABO+∠ACB+∠OBC+∠A=180°,∴∠ABO+∠ACB=180°﹣α﹣(90°﹣α)=90°【考点】线段垂直平分线的性质【解析】【分析】(1)根据线段垂直平分线的性质得到AO=BO=CO,根据等腰三角形的性质得到∠OAB=∠OBA,∠OCA=∠OAC,根据周角定义即可得到结论;(2)根据等腰三角形的性质得到∠OBC=∠OCB,于是得到∠OBC=90°﹣α,根据三角形的内角和即可得到结论.23、【答案】(1)解:工人的平均工资:2007年6250元,2008年7500元;股东的平均利润:2007年37500元,2008年50000元(2)解:设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,所以:(5000+1250x)×8=25000+12500x,解得:x=6.2006+6=2012.答:到2012年每位股东年平均利润是每位工人年平均工资的8倍【考点】一元一次方程的应用【解析】【分析】(1)工人的平均工资=工人工资总额÷20,股东的平均利润=股东总利润÷2,结合图形分别计算,再填表即可;(2)由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,设经过x年每位股东年平均利润是每位工人年平均工资的8倍,列方程求解.24、【答案】(1)解:FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴ .∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH(2)解:FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG= BC,DC= AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC【考点】全等三角形的判定与性质,三角形中位线定理【解析】【分析】(1)延长DF交AB于点G,根据三角形中位线的判定得出点G 为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°﹣∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH.(2)通过证明△CEF≌△FGH(ASA)得出.武汉市重点中学八年级上学期期中考试数学试卷(二)一、精心选择1、在下列各电视台的台标图案中,是轴对称图形的是()A、B、C、D、2、下列说法正确的是()A、三角形三条高的交点都在三角形内B、三角形的角平分线是射线C、三角形三边的垂直平分线不一定交于一点D、三角形三条中线的交点在三角形内3、已知点A(x,4)与点B(3,y)关于y轴对称,那么x+y的值是()A、﹣1B、﹣7C、7D、14、正多边形的每个内角都等于135°,则该多边形是()A、正八边形B、正九边形C、正十边形D、正十一边形5、在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A、M点B、N点C、P点D、Q点6、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A、CB=CDB、∠BAC=∠DACC、∠BCA=∠DCAD、∠B=∠D=90°7、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 的面积是28cm2, AB=20cm,AC=8cm,则DE的长是()A、4cmB、3cmC、2cmD、1cm8、如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为()A、6B、8C、9D、10二、细心填空9、如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为________.10、一个等腰三角形的边长分别是4cm和7cm,则它的周长是________11、如图,在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,若△ABC 的周长为22,BC=6,则△BCD的周长为________.12、如图,把一张长方形纸片ABCD沿EF折叠后,点A、B分别落在A1、B2的位置上,A1E与BC交于点O,若∠EFO=60°,则∠AEA1=________.13、在△ABC中,∠B、∠C的平分线相交于点O,∠BOC=115°,则∠A的度数是________.14、已知直线l经过点(0,2),且与x轴平行,那么点(6,5)关于直线l 的对称点为________15、如图,在△ABC中,AD是它的角平分线,AB:AC=8:5,则CD:BD=________.16、如图,在直角平面坐标系中,AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),以AB为直角边在AB边的上方作等腰直角△ABE,则点E的坐标是________.三、用心解答17、电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.18、已知AB=AD,BC=DC.求证:AC平分∠BAD.19、已知:在△ABC中,AD⊥BC,BE平分∠ABC交AD于F,∠ABE=23°.求∠AFE的度数.20、如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.21、如图,已知∠A=90゜,AB=BD,ED⊥BC于D,求证:DE+CE=AC.22、如图,在△ABC和△ADE中,AC=AB,AE=AD,∠CAB=∠EAD=90°(1)求证:CE=BD;(2)求证:CE⊥BD.四、灵活应用23、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.24、如图,点B(0,b),点A(a,0)分别在y轴、x轴正半轴上,且满足+(b2﹣16)2=0.(1)求A、B两点的坐标,∠OAB的度数;(2)如图1,已知H(0,1),在第一象限内存在点G,HG交AB于E,使BE为△BHG=3,的中线,且S△BHE①求点E到BH的距离;②求点G的坐标;(3)如图2,C,D是y轴上两点,且BC=OD,连接AD,过点O作MN⊥AD于点N,交直线AB于点M,连接CM,求∠ADO+∠BCM的值.答案解析部分一、<b >精心选择</b>1、【答案】C【考点】轴对称图形【解析】【解答】解:只有C沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故选C.【分析】关于某条直线对称的图形叫轴对称图形.2、【答案】D【考点】三角形的角平分线、中线和高【解析】【解答】解:A、锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;B、三角形的角平分线是线段,错误;C、三角形三边的垂直平分线一定交于一点,错误;D、三角形三条中线的交点在三角形内,正确;故选D【分析】根据三角形的角平分线、中线和高的定义及性质进行判断即可.3、【答案】D【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点A(x,4)与点B(3,y)关于y轴对称,∴x=﹣3,y=4,所以,x+y=﹣3+4=1.故选D.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出x、y的值,然后相加计算即可得解.4、【答案】A【考点】多边形内角与外角【解析】【解答】解:∵正多边形的每个内角都等于135°,∴多边形的外角为180°﹣135°=45°,∴多边形的边数为360°÷45°=8,故选A.【分析】首先根据多边形的内角与相邻的外角互补可得外角为180°﹣135°=45°,再利用外角和360°除以外角的度数可得边数.5、【答案】A【考点】角平分线的性质【解析】【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,注意观察点M、N、P、Q中的哪一点在∠AOB的平分线上.6、【答案】C【考点】全等三角形的判定【解析】【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.7、【答案】C【考点】角平分线的性质【解析】【解答】解:∵AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∴ ×AB×DE+ AC×DF=S=28,即×20DE+ ×8DE=28,解得DE=2.△ABC故选C.【分析】根据角平分线的性质求出DE=DF,根据三角形的面积公式列式计算即可.8、【答案】D【考点】全等三角形的判定与性质【解析】【解答】解:如图,作BF⊥AD与点F,,∵BF⊥AD,∴∠AFB=BFD=90°,∵AD∥BC,∴∠FBC=∠AFB=90°,∵∠C=90°,∴∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=90°,∴∠ABE=∠FBC,∴∠ABE﹣∠FBE=∠FBC﹣∠FBE,∴∠CBE=∠FBA.在△BAF和△BEC中,,∴△BAF≌△BEC,∴AF=EC.∵CD=BC=8,DE=6,∴DF=8,EC=2,∴AF=2,∴AD=8+2=10.故选:D.【分析】首先作BF⊥AD与点F,推得BF∥CD,判断出四边形BCDF是矩形;然后根据BC=CD=8,可得四边形BCDF是正方形,所以BF=BC;最后根据全等三角形的判定方法,证明△BCE≌△BAF,即可推得AF=CE,进而求出AD的长为多少即可.二、<b >细心填空</b>9、【答案】4【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.10、【答案】15cm或18cm.【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:①当腰是4cm,底边是7cm时,能构成三角形,则其周长=4+4+7=15cm;②当底边是4cm,腰长是7cm时,能构成三角形,则其周长=4+7+7=18cm.故答案为:15cm或18cm.【分析】等腰三角形两边的长为4m和7m,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.11、【答案】14【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE是AB的垂直平分线,∴BD=AD,∴CD=AC﹣AD=AC﹣BD,∴△BDC的周长=BC+BD+AC﹣BD=BC+AC,∵BC=6,AC=AB=(22﹣6)÷2=8,∴△BDC的周长=CB+AC=6+8=14.故答案为:14.【分析】先根据线段垂直平分线的性质求出AD=BD,再通过等量代换求出CD=AC ﹣BD即可求解.12、【答案】120°.【考点】矩形的性质,翻折变换(折叠问题)【解析】【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFO=60°,EF=60°,由翻转变换的性质可知,∠AEF=∠A1=120°,∴∠AEA1故答案为:120°.【分析】根据平行线的性质得到∠AEF=∠EFO=60°,根据翻转变换的性质解答即可.13、【答案】50°【考点】角平分线的定义,三角形内角和定理【解析】【解答】解:∵∠BOC=115°,∴∠OBC+∠OCB=65°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=130°,∴∠BAC=50°.故答案为:50°【分析】根据三角形内角和定理易得∠OBC+∠OCB=65°,利用角平分线定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=130°,进而利用三角形内角和定理可得∠A度数.14、【答案】(6,﹣1)【考点】平行线的性质,坐标与图形变化-对称【解析】【解答】解:∵直线l经过点(0,2),且与x轴平行,∴直线l解析式为y=2,∴点(6,5)关于直线l的对称点为(6,﹣1),故答案为(6,﹣1).【分析】先确定出直线l解析式,进而根据对称性即可确定出结论.15、【答案】5:8【考点】平行线分线段成比例【解析】【解答】解:由角平分线的性质可知,= = ,∴CD:BD=5:8,故答案为:5:8.【分析】根据角平分线的性质定理列出比例式,计算即可.16、【答案】(﹣1,2)或(2,3)【考点】坐标与图形性质,等腰直角三角形【解析】【解答】解:如图,作EH⊥y轴于H,CF⊥y轴于F,E′G⊥OA于G.在△AOB和△FBC中,,∴△OAB≌△FBC,∴CF=OB=1,BF=OA=3,当B为直角顶点时,同理可得EH=1,BH=2,∴E(﹣1,2),当A为直角顶点时,同理可得,AG=1,E′G=3,∴E′(2,3),综上所述,点E坐标(﹣1,2)或(2,3).故答案为(﹣1,2)或(2,3)【分析】如图,作EH⊥y轴于H,CF⊥y轴于F,E′G⊥OA于G.由△AOB≌△FBC≌△HBE≌△E′GA,可得CF=EH=AG=1,BH=BF=E′G=OA=3,由此即可解决问题.三、<b >用心解答</b>17、【答案】解:分别作出公路夹角的角平分线和线段AB的中垂线,他们的交点为P,则P点就是修建发射塔的位置.【考点】作图—基本作图【解析】【分析】由条件可知发射塔要再两条高速公路的夹角的角平分线和线段AB的中垂线的交点上,分别作出夹角的角平分线和线段AB的中垂线,找到其交点就是发射塔修建位置.18、【答案】证明:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC是∠BAD的平分线【考点】全等三角形的判定与性质【解析】【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.19、【答案】解:∵AD⊥BC,∴∠ADB=90°,∵BE平分∠ABC,∠ABE=23°,∴∠FBD=∠ABE=23°,∴∠BFD=180°﹣∠ADB﹣∠FBD=67°,∴∠AFE=∠BFD=67°【考点】三角形内角和定理【解析】【分析】根据垂直求出∠ADB,根据角平分线定义求出∠FBD,根据三角形内角和定理求出∠BFD即可.20、【答案】解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.【考点】翻折变换(折叠问题)【解析】【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.21、【答案】证明:连BE,∵ED⊥BC,∴∠EDB=90°,在Rt△ABE和Rt△DBE中,∴△ABE≌△DBE (HL),∴DE=AE.∴DE+CE=AC.【考点】全等三角形的判定与性质【解析】【分析】连接BE,利用HL定理得出△ABE≌△DBE 即可得出答案.【答案】(1)证明:∵∠CAB=∠EAD=90°,∴∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD(2)证明:延长BD交CE于F,如图所示:∵△CAE≌△BAD,∴∠ACE=∠ABD,∵∠CAB=90°,∴∠ABC+∠ACB=90°,即∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠ACE=90°,即∠DBC+∠BCF=90°,∴∠BFC=90°,∴CE⊥BD.【考点】全等三角形的判定与性质【解析】【分析】(1)由已知条件证出∠CAE=∠BAD,由SAS证明△CAE≌△BAD,得出对应边相等即可;(2)延长BD交CE于F,由全等三角形的性质得出∠ACE=∠ABD,由角的互余关系得出∠ABC+∠ACB=90°,证出∠DBC+∠BCF=90°,得出∠BFC=90°即可.四、<b >灵活应用</b>【答案】(1)解:如图1,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,∴PB=PC,∠PBM=∠PCN=90°,∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,,∴Rt△PBM≌Rt△PCN(HL),∴BM=CN(2)AM+AN=2AC(3)解:如图2,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,∴PB=PC,∠PBM=∠PCN=90°,∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,,∴Rt△PBM≌Rt△PCN(HL),∴BM=CN,∴S△PBM =S△PCN∵AC:PC=2:1,PC=4,∴AC=8,∴由(2)可得,AB=AC=8,PB=PC=4,∴S四边形ANPM =S△APN+S△APB+S△PBM=S△APN +S△APB+S△PCN=S△APC +S△APB= AC•PC+AB•PB = ×8×4+×8×4=32【考点】三角形的面积,全等三角形的判定与性质,角平分线的性质【解析】【解答】解:(2)AM+AN=2AC .∵∠APB=90°﹣∠PAB,∠APC=90°﹣∠PAC,点P 为∠EAF 平分线上一点, ∴∠APC=∠APB,即AP 平分∠CPB,∵PB⊥AB,PC⊥AC,∴AB=AC,又∵BM=CN,∴AM+AN=(AB ﹣MB )+(CN+AC )=AB+AC=2AC ;故答案为:AM+AN=2AC .【分析】(1)根据PB=PC ,∠PBM=∠PCN=90°,利用HL 判定Rt△PBM≌Rt△PCN,即可得出BM=CN ;(2)先已知条件得出AP 平分∠CPB,再根据PB⊥AB,PC⊥AC,得到AB=AC ,最后根据BM=CN ,得出AM+AN=(AB ﹣MB )+(CN+AC )=AB+AC=2AC ;(3)由AC :PC=2:1,PC=4,即可求得AC 的长,又由S 四边形ANPM =S △APN +S △APB +S △PBM =S △APN +S △APB +S △PCN =S △APC +S △APB , 即可求得四边形ANPM 的面积.24、【答案】(1)解:∵ +(b 2﹣16)2=0,∴a﹣b=0,b 2﹣16=0,解得:b=4,a=4或b=﹣4,a=﹣4,∵A点在x轴正半轴,B点在y轴正半轴上,∴b=4,a=4,∴A(4,0),B(0,4),∴OA=OB=4,∴∠OAB=45°(2)解:①如图1,作EF⊥y轴于F,∵B(0,4),H(0,1),∴BH=OB﹣OH=4﹣1=3,∵OA=OB=4,∴△OAB为等腰直角三角形,∴∠OBA=∠OAB=45°,∴△BFE为等腰直角三角形,∴BF=EF=2,∴OF=OB﹣BF=4﹣1=3,∴E(2,3),∴E(2,3)为GH的中点,=3,∵S△BHE∴ BH×EF=3,即×3×EF=3,∴EF=2,故点E到BH的距离为2.②设G(m,n),则∵BE为△BHG的中线,∴ ,,解得m=4,n=5,∴G点坐标为(4,5)(3)解:如图2,过点B作BK⊥OC,交MN于点K,则∠KBO=∠DOA,∵MN⊥AD,∴∠DON+∠NOA=90°,∴∠3+∠NOA=90°,∵∠NOA+∠1=90°,∴∠3=∠1,在△KOB和△OAD中,,∴△KOB≌△OAD(ASA),∴KB=OD,∠2=∠7,∵BC=OD,∴KB=BC,∵OB=OA,∠BOA=90°,∴∠OBA=45°,∴∠9=∠8=45°,在△MKB和△MCB中,,∴△MKB≌△MCB(SAS),∴∠6=∠5,∵∠7+∠6=180°,∴∠2+∠5=180°,即∠ADO+∠BCM=180°.【考点】三角形的面积,全等三角形的判定与性质,等腰直角三角形【解析】【分析】(1)根据非负数的性质,得出关于a、b的方程组,求得a、b即可得到A、B两点的坐标,最后利用等腰三角形的性质得出∠OAB的度数;(2)作EF⊥y轴于F,构造等腰直角三角形BEF,进而求出E点坐标,利用△BHE的面积即可得到点E到BH的距离;设G(m,n),根据BE为△BHG的中线,求得点G坐标即可;(3)过点B作BK⊥OC,交MN于点K,然后证明△OBK≌△OAD、△MKB≌△MCB,从而可证明∠ADO+∠BCM=180°.武汉市重点中学八年级上学期期中考试数学试卷(三)一、细心选一选1、下列图形中,不是轴对称图形的是()A、B、C、D、2、△ABC中BC边上的高作法正确的是()A、B、C、D、3、已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A、5B、10C、11D、124、下列判断中错误的是()A、有两角和其中一个角的对边对应相等的两个三角形全等B、有一边相等的两个等边三角形全等C、有两边和一角对应相等的两个三角形全等D、有两边和其中一边上的中线对应相等的两个三角形全等5、三角形中,若一个角等于其他两个角的差,则这个三角形是()A、钝角三角形B、直角三角形C、锐角三角形。
武汉市洪山区2022年八年级上学期《数学》期中试题与参考答案一、选择题共10小题,每小题3分,共30分。
下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
1.下列平面图形中,不是轴对称图形的为( )A.B.C.D.【分析】根据轴对称图形的定义逐个判断即可.解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项符合题意;故选:C.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.3.如图,∠DAC=∠BAC,下列条件中,不能判定△ABC≌△ADC的是( )A.DC=BC B.AB=AD C.∠D=∠B D.∠DCA=∠BCA【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.解:A、DC=BC,∠DAC=∠BAC,再加上公共边AC=AC,不能判定△ABC≌△ADC,故此选项符合题意;B、AB=AD,∠DAC=∠BAC,再加上公共边AC=AC,可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、∠B=∠D,∠DAC=∠BAC,再加上公共边AC=AC,能利用AAS判定△ABC≌△ADC,故此选项不合题意;D、∠DCA=∠BCA,∠DAC=∠BAC,再加上公共边AC=AC,能利用ASA判定△ABC≌△ADC,故此选项不合题意;故选:A.4.在△ABC中,到三边距离相等的点是△ABC的( )A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点【分析】题目要求到三边的距离相等,观察四个选项看哪一个能够满足此要求,利用角的平分线的性质判断即可选项D是可选的.解:利用角的平分线上的点到角的两边的距离相等可知:三角形中到三边的距离相等的点是三条角平分线的交点.故选:B.5.已知正多边形的一个内角为144°,则该正多边形的边数为( )A.12B.10C.8D.6【分析】根据正多边形的一个内角是144°,则知该正多边形的一个外角为36°,再根据多边形的外角之和为360°,即可求出正多边形的边数.解:因为正多边形的一个内角是144°,所以该正多边形的一个外角为36°,因为多边形的外角之和为360°,所以边数==10,所以这个正多边形的边数是10.故选:B.6.如图,∠A+∠B+∠C+∠D+∠E+∠F的值是( )A.360°B.480°C.540°D.720°【分析】根据四边形的内角和及三角形的外角定理即可求解.解:如图,AC、DF与BE分别相交于点M、N,在四边形NMCD中,∠MND+∠CMN+∠C+∠D=360°,因为∠CMN=∠A+∠E,∠MND=∠B+∠F,所以∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:A.7.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为( )A.40B.46C.48D.50【分析】求出∠ABD=∠ACF,根据ASA证△ABD≌△ACF,推出AD=AF,得出AB=AC =2AD=2AF,求出AF长,求出AB、AC长,根据三角形的面积公式得出△FBC的面积等于BF×AC,代入求出即可.解:因为CE⊥BD,所以∠BEF=90°,因为∠BAC=90°,所以∠CAF=90°,所以∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,所以∠ABD=∠ACF,因为在△ABD和△ACF中,所以△ABD≌△ACF,所以AD=AF,因为AB=AC,D为AC中点,所以AB=AC=2AD=2AF,因为BF=AB+AF=12,所以3AF=12,所以AF=4,所以AB=AC=2AF=8,所以△FBC的面积是×BF×AC=×12×8=48,故选:C.8.如图,设△ABC和△CDE都是正三角形,且∠EBD=58°,则∠AEB的度数是( )A.124°B.122°C.120°D.118°【分析】证明△ACE≌△BCD,得出∠DBC=∠CAE,进而再通过角之间的转化,可最终求解出结论.解:因为△ABC和△CDE都是等边三角形,且∠EBD=58°,所以AC=BC,CE=CD,∠ACB=∠ECD=60°,又因为∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,所以∠BCD=∠ACE,在△ACE和△BCD中,,所以△ACE≌△BCD(SAS),所以∠DBC=∠CAE,所以58°﹣∠EBC=60°﹣∠BAE,所以58°﹣(60°﹣∠ABE)=60°﹣∠BAE,所以∠AEB=180°﹣(∠ABE+∠BAE)=180°﹣52°=118°.故选:D.9.如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC 是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP,其中正确的有( )A.②③B.①②④C.③④D.①②③④【分析】①连接OB,根据垂直平分线性质即可求得OB=OC=OP,即可解题;②根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;③AB上找到Q点使得AQ=OA,易证△BQO≌△PAO,可得PA=BQ,即可解题;④作CH⊥BP,可证△CDO≌△CHP和RT△ABD≌RT△ACH,根据全等三角形面积相等即可解题.解:如图,①连接OB,因为AB=AC,BD=CD,所以AD是BC垂直平分线,所以OB=OC=OP,所以∠APO=∠ABO,∠DBO=∠DCO,因为∠ABO+∠DBO=30°,所以∠APO+∠DCO=30°.故①正确;②因为△OBP中,∠BOP=180°﹣∠OPB﹣∠OBP,△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB,所以∠POC=360°﹣∠BOP﹣∠BOC=∠OPB+∠OBP+∠OBC+∠OCB,因为∠OPB=∠OBP,∠OBC=∠OCB,所以∠POC=2∠ABD=60°,因为PO=OC,所以△OPC是等边三角形,故②正确;③在AB上找到Q点使得AQ=OA,则△AOQ为等边三角形,则∠BQO=∠PAO=120°,在△BQO和△PAO中,,所以△BQO≌△PAO(AAS),所以PA=BQ,因为AB=BQ+AQ,所以AC=AO+AP,故③正确;④作CH⊥BP,因为∠HCB=60°,∠PCO=60°,所以∠PCH=∠OCD,在△CDO和△CHP中,,所以△CDO≌△CHP(AAS),所以S△OCD=S△CHP所以CH=CD,因为CD=BD,所以BD=CH,在RT△ABD和RT△ACH中,,所以RT△ABD≌RT△ACH(HL),所以S△ABD=S△AHC,因为四边形OAPC面积=S△OAC+S△AHC+S△CHP,S△ABC=S△AOC+S△ABD+S△OCD所以四边形OAPC面积=S△ABC.故④正确.故选:D.10.如图,锐角∠AOB=x,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA 上的动点,记∠OPM=α,∠QNO=β,当MP+PQ+QN最小时,则关于α,β,x的数量关系正确的是( )A.α﹣β=2x B.2β+α=90°+2xC.β+α=90°+x D.β+2α=180°﹣2x【分析】如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA 于Q,交OB于P,则MP+PQ+QN最小易知∠OPM=∠OPM′=∠NPQ=α,∠OQP=∠AQN′=∠AQN,根据三角形外角的性质即可得到∠OQP=∠AON=β+x,进而得到α=β+x+x=β+2x,由此即可解决问题.解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,所以∠OPM=∠OPM′=∠NPQ=α,∠OQP=∠AQN′=∠AQN,因为∠AON=∠QNO+∠AOB=β+x,所以∠OQP=∠AON=β+x,因为∠NPQ=∠OQP+∠AOB,所以α=β+x+x=β+2x所以α﹣β=2x.故选:A.二、填空题共6小题,每小题3分,共18分。
2022—2023学年度上学期期中八年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
1.如图,∠1的度数是( )A . 70°B . 80°C . 90°D. 100°2.下列计算正确的是( )A. x 3·x 2=x 6B. (a 3)3=a 9C. (2a )3=6a 3D. a 2+a 3=a 53.如图,要使五边形木架(用5根木条钉成)不变形,至少要再钉上( )根木条? A .2B .3C .4D .54.一个三角形两边长分别为3cm 和4cm ,则该三角形的第三边可能是( )A .1cmB .4 cmC .7cmD .10 cm5.如图,点E 、F 在BC 上,AB=CD ,AF=DE ,AF 、DE 相交于点G ,添加下列哪一个条件,可使得△ABF ≅△DCE。
( )A. ∠B=∠CB. AG=DGC. ∠AFE=∠DEFD. BE=CF 6.已知a +b =5,a b =3,则a 2+b 2的值为( )。
A . 9B . 16C . 19D . 257.东湖高新区为打造成“向往之城”,正建设一批精品口袋公园。
如图,△ABC 是一个正在修建的口袋公园。
要在公园里修建一座凉亭H ,使该凉亭到公路AB 、AC 的距离相等,且使得S △ABH =S △BCH ,则凉亭H 是( )A .∠BAC 的角平分线与AC 边上中线的交点;B .∠BAC 的角平分线与AB 边上中线的交点;C .∠ABC 的角平分线与AC 边上中线的交点;D .∠ABC 的角平分线与BC 边上中线的交点。
8.下列结论错误的是( ) A. 直角三角形的外角不可能为锐角。
B. 三角形的三条中线交于一点,这一点一定在三角形内部。
C. 如果两个直角三角形的两组边分别相等,那么这两个直角三角形全等。
(第1题)(第3题)(第5题)B(第7题)D. 如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等。
武昌区多校2023-2024学年上学期期中联考八年级数学试题一、单选题(每小题3分,共30分)1.已知一个三角形的两边长分别为4和1,则这个三角形的第三边长可能是()A.3B.4C.5D.62.“甲骨文”,是中国的一种古老文字,又称“契文”、“殷墟文字”,下列甲骨文中,不是轴对称图形的是()A. B. C. D.3.一个多边形内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4.下列说法正确的是()A.三角形的一个外角等于任意两个内角的和B.三角形的一个外角小于它的一个内角C.三角形的一个外角大于它的相邻的内角D.三角形的一个外角大于任何一个与它不相邻的内角5.已知图中的两个三角形全等,则1∠的度数是()A.50°B.54°C.60°D.76°6.如图,点E ,F 在BC 上,BE FC =,B C ∠=∠.添加下列条件不能使得ABF DCE △≌△的是()A.AB DC =B.A D ∠=∠C.AFB DEC ∠=∠D.AF DE=7.如图,在ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,若15BC =,且:3:2BD CD =,则点D 到AB 的距离为()A.5B.6C.8D.98.如图,AC AB BD ==,AB BD ⊥,10BC =,则BCD △的面积为()A.15B.25C.20D.509.如图,A 、B 是5×6网格中的格点,网格中的每个小正方形边长都为1,以A 、B 、C 为顶点的三角形是等腰三角形的格点C 的位置有()A.8个B.11个C.12个D.14个10.如图,ABM △和CDM △均为等边三角形,直线BC 交AD 于点F ,点E 、N 分别为AD 、BC 的中点,下列结论:①AD BC =;②ME CB ⊥;③AF BF MF -=;④MNE △为等边三角形;⑤MF 平分BME ∠,其中一定成立的有()个A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.点()1,3A -关于x 轴的对称点A '的坐标为__________.12.在ABC △中::1:2:3A B C ∠∠∠=,则C ∠的度数为___________.13.如图,在ABC △和DCB △中,AB DC =.若不添加任何字母与辅助线,要使ABC DCB △≌△,则可以添加一个角相等的条件是_______________.14.如图,在AOB ∠的边OA 、OB 上取点M 、N ,连接MN ,MP 平分AMN ∠,NP 平分MNB ∠,若1MN =,PMN △的面积是1,OMN △的面积是4,则OM ON +的长是______________.15.多边形的一个内角的外角与其他内角的度数和为600°,则此多边形的边数为____________.16.如图120MON =︒∠,点A 为ON 上一点,且3OA =B 为直线OM 上的一动点,以AB 为边作等边ABC △,连接OC ,当BC 最小时,此时OC =______________.三、解答题(共8小题,共72分)17.(本题满分8分)用一条长为20cm 的细绳围成一个等腰三角形,能围成一边长是6cm 的等腰三角形吗?为什么?18.(本题满分8分)如图,在四边形ABCD 中,E 是BC 的中点,延长AE 、DC 相交于点F ,BEF B F =∠+∠∠.求证:AB CF =.19.(本题满分8分)如图,点D 、E 在ABC △的边BC 上,AB AC =,AD AE =,求证:BD CE =.20.(本题满分8分)如图,在四边形ABCD 中,AB CD ∥,E 为AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:CDE FAE △≌△.(2)连接BE ,当BE GF ⊥时,3CD =,2AB =,求BC 的长.21.(本题满分8分)如图,在5×5的正方形网格中,请仅用无刻度直尺完成下列画图问题(画图过程用虚线表示,画图结果用实线表示).(1)在图1中,画出线段AB 的中点M .(2)在图2中,线段AC 与第3条,第5条水平网格线分别相交于D 、E 两点,在直线上画一点P ,连接PD 和PE ,使得PD PE +最小.(3)在图3中的直线上画一点F ,使45CAF ∠=︒.(4)在图4中,线段AC 与第3条水平网格线相交于D 点,过D 点画DH AG ⊥于H 点.22.(本题满分10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在ABC △中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC △的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在ABC △中,30B ∠=︒,AD 和DE 是ABC △的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请直接写出C ∠所有可能的值_________________.23.(本题满分10分)ABE △和ACF △始终有公共角A ∠,连接BC ,EF ,BE ,CF 相交于点O .(1)如图1,若ABE ACF =∠∠,BE CF =,求证:ABE ACF △≌△.(2)如图2,若ABE ACF α=∠=∠,且CE CF =,求CBE ∠的度数(用含α的式子表示)(3)如图3,若BE CF =,过点C 作CD AB ∥且CD AB =,连接DO 并延长交AC 于点G ,过点G 作GH CF ⊥于点H ,请直接写出OGH ∠与COE ∠的关系为:__________________.24.(本题满分12分)如图1,ABC △是等腰直角三角形,点B 是y 轴上的一点,边AC 交y 轴于点D .(1)若点()1,1C -,直接写出点B 的坐标__________.(2)如图2,将ABC △沿y 轴负方向平移一定单位后,使AB 边交y 轴于点E .过点B 作BG y ⊥轴且BG OB =,连接OG .过点G 作GF x ⊥轴交BC 于点F ,连接EF ,求证:FG OE EF =+.(3)如图3,在(1)的条件下,若点M 坐标为()2,0,点P 在第一象限内,连接PM ,过点P 作PH PM ⊥交y 轴于点H ,在PH 上截取PN PM =,连接BN ,过点P 作45OPQ ∠=︒交BN 于点Q ,试探究点Q 在BN 上的位置关系,并说明理由.参考答案1.B2.A3.B4.D5.A6.D7.B8.B9.C 10.C二、填空题11.()1,312.90°13.ABC DCB ∠=∠14.515.5或6(注:对1个给1分,全对3分)16.32三、解答题17.【解析】分两种情况讨论:①当6cm 为腰长时,设底边长为cm x ,6220x ⨯+=,8x =,∴三边长分别为6cm ,6cm ,8cm②当6cm 为底边长时,设底边长为cm y ,6220y +=,7y =,∴三边长分别为6cm ,7cm ,7cm18.【解析】∵BEF F ECF ∠=∠+∠,BEF B F ∠=∠+∠,∴B ECF ∠=∠∵点E 是BC 中点,∴CE BE=在ABE △和FCE △中B ECF BE CE AEB FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABE FCE △≌△,∴AB CF =.19.【解析】证明:过点A 作AH BC ⊥于点H (辅助线交代不清扣1分)∵AB AC =,AH BC ⊥,∴BH CH=∵AD AE =,AH DE ⊥,∴DH EH=∴BH DH CH EH -=-即BD CE=20.【解析】(1)证明:∵AB CD ∥∴DCE F ∠=∠,∵点E 是AD 中点,∴DE AE =,在CDE △和FAE △中DCE F CED FEA DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CDE FAE ≌△△(2)由(1)知CDE FAE ≌△△,∴CE FE =,CD AF=∵BE GF ⊥,∴BE 垂直平分CF∴BC BF =,∵3CD =,2AB =∴3AF CD ==,∴325BC BF AF AB ==+=+=21.【解析】22.【解析】(1)设=A x ∠,∵AB BD BC==∴ABD A x ∠=∠=,2C BDC x x x∠=∠=+=∵AB AC =,∴2ABD C x∠=∠=在ABC △中,22180x x x ++=︒,36x =︒∴36A ∠=︒(2)(画对和度数表明即可,两个图每个各给2分)(3)20°或40°(写对1个给2分)23.【解析】(1)在ABE △和ACF △中A A ABE ACF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABE ACF ≌△△(2)过点C 作CM BE ⊥于M ,作CN AB ⊥的延长线于N∵BOC BFC ABE BEC ACF ∠=∠+∠=∠+∠,ABE ACF∠=∠∴BFC BEC ∠=∠,即NFC MEC∠=∠∵CM BE ⊥,CN AB ⊥,∴90CNF CME ∠=∠=︒在CNF △和CNB △中NFC MEC CNF CME CF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CNF CME ≌△△,∴CN CM =,又CM BE ⊥,CN AB ⊥,∴BC 平分EBN∠∴EBC NBC ∠=∠,∵ABE α∠=∴1809022EBC αα︒-∠==︒-(3)2COE OGH ∠=∠或12OGH COE ∠=∠24.【解析】(1)()0,2B (2)在GF 上截取GR OE =,连接BR (或过点B 作BR BA ⊥交于GF 于R )∵BG y ⊥轴,BR x ⊥轴∴90OBG BGR BOE∠=∠=︒=∠在BGR △和BOE △中BG BO BOE BGR GR OE =⎧⎪∠=∠⎨⎪=⎩∴()SAS BGR BOE ≌△△,∴BR BE =,GBR OBE ∠=∠∵90GBR OBR ∠+∠=︒,∴90OBE OBR ∠+∠=︒,即90ABR ∠=︒∵ABC △是等腰直角三角形∴45ABC ∠=︒,∴904545RBF EBF∠=︒-︒=︒=∠在BFR △和BFE △中BR BE RBF EBF BC BC =⎧⎪∠=∠⎨⎪=⎩∴()SAS BFR BFE ≌△△,∴RF EF=∴FG RF GR EF OE=+=+(3)过点O 作OR OP ⊥交PQ 的延长线于点R ,连接BR ∵45OPQ ∠=︒,OR OP ⊥,∴904545ORP ∠=︒-︒=︒∴OPR △是等腰直角三角形∴OP OR =,90POR ∠=︒∵90BOM ∠=︒可证BOR MOP ∠=∠,再可证()SAS BOR MOP ≌△△∴BR PM PN ==,BRO MPO ∠=∠设=OPH x ∠,则90OPM ORB x ∠=∠=︒-∵45OPQ ∠=︒,∴45NPQ x ∠=︒-,904545BRQ x x ∠=︒--︒=︒-得NPQ BRQ ∠=∠,再证()AAS PNQ RBQ ≌△△得BQ NQ =,即点Q 为BN 的中点。
2023-2024江夏区8(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列交通标志中,是轴对称图形的是 A .B .C .D .2.关于三角形的角平分线和中线,下列说法正确的是( )A .都是直线B .都是射线C .都是线段D .可以是射线也可以是线段3.如图,,,,则( )A .B .C .D .4.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有()A .6个B .5个C .4个D .3个5.如图,已知AE =CF ,∠AFD =∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是A .∠A =∠C B .AD =CB C .BE =DF D .AD ∥BC6.点关于y 轴对称的点的坐标是()A .B .C .D .7.已知如图,在中,,平分,于点D .若,,.则的周长为()A .B .C .D .8.如果一个多边形的内角和与外角和之比为,则这个多边形的内角和与八边形的内角和的差是( )()AB AD =CB CD =64BAD ∠=︒DAC ∠=46︒44︒38︒32︒()2,6-(2,6)(2,6)--(2,6)-(6,2)ABC 90ACB ∠=︒BE ABC ∠ED AB ⊥5cm AB =4cm AC =3cm BC =ADE V 9cm 8cm 7cm 6cm9:2A .28B 10.如图,在中,A .1个B 二、填空题(共6小题,每小题11.过一个多边形的一个顶点可作12.和关于直线14.如图,在图1中,互不重叠的三角形共有的三角形共有10个,标是 .15.下列说法中正确的是:①如果两个三角形全等,则这两个三角形对应边上的中线一定相等;ABC ABC A B C ''' A '三、解答题(共17.如图,18.如图,,19.如图,AD 与BC 相交于点求证:OE 垂直平分BD .20.已知:射线是AB ∥CA CD =1∠=CP(1)如图1,延长交射线于点E ,若,,求的度数;(2)如图2,射线交于点G ,若,求证:平分.21.如图,的三个顶点的坐标分别为,,.(1)将先向右平移三个长度单位,再向下平移四个长度单位,则平移后的点A 、B 、C 的对应点的坐标分别是(____,____),(____,____),(____,____);(2)画出关于直线(直线y 上各点的纵坐标都为)对称的,并写出的坐标(____,____);(3)将向右平移五个长度单位,则扫过的面积是________(直接写出结果).22.已知:如图,在和中,,,.连,延长交于点F ,连接.(1)求证:;(2)若,,求的度数.23.已知:如图,是的中线,.BA CP 35B ∠=︒29BEC ∠=︒BAC ∠BF CP 2BAC BGC ∠=∠BF ABC ∠ABC (2,4)A -(5,1)B -(1,1)C -ABC ABC 1y =-1-111A B C △1A 1A ABC ABC ABC ADE V BAC DAE ∠=∠AB AC =AD AE =BD CE 、BD CE AF ABD ACE ≌△△28BAC ∠=︒96AEF ∠=︒EAF ∠AE ABD △AB CD BD ==(1)若的面积为3,则的面积(2)探究与证明:请探究线段(3)求证:.(1)如图1,在x 轴负半轴上有一点,的平分线与的延长线交于点①求证:;②若点,满足,且,求点的坐标.(2)如图2,点为线段上的一点,点为线段上的一点,且三角形中,对应边的延长线交于点(点在线段上),求ABE ABC (AB AD +12AE AC =M COM ∠AB 2ACO P ∠=∠(,0)A x (0,)C y 34487620x y x y +=⎧⎨-=⎩2AC OA =+P D OA G AC BD BG =OD AC H H CG DH,∴△ADF ≌△CBE (ASA ),正确,故本选项不符合题意.B .根据AD =CB ,AF =CE ,∠AFD =∠CEB 不能推出△ADF ≌△CBE ,错误,故本选项符合题意.C .在△ADF 和△CBE 中,,∴△ADF ≌△CBE (SAS ),正确,故本选项不符合题意.D .∵AD ∥BC ,∴∠A =∠C .由A 选项可知,△ADF ≌△CBE (ASA ),正确,故本选项不符合题意.故选B .【点睛】本题考查了添加条件证明三角形全等,解题的关键是熟练运用判定三角形全等的方法.6.A【分析】本题主要考查了关于y 轴对称的点的坐标特征,点关于y 轴对称的点的坐标.两个点关于y 轴对称时,它们的横坐标符号相反,纵坐标不变.【详解】解:点关于y 轴对称的点的坐标是,故选:A .7.D【分析】本题考查的是角平分线的性质及全等三角形的判定与性质,熟知角的平分线上的点到角的两边的距离相等是解题的关键.先根据角平分线的性质得出,由定理得出,故可得出,进而得出的长,据此可得出结论.【详解】解:∵平分于点,在与中,周长A C AF CEAFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩AF CE AFD CEB DF BE =⎧⎪∠=∠⎨⎪=⎩(,)P x y (,)P x y '-()2,6-(2,6)CE DE =HL Rt BCE Rt BDE ≌BD 3cm BC ==AD 90,ACB BE ∠=︒,ABC ED ∠AB ⊥D ,CE DE ∴=Rt BCE Rt BDE CE DE BE BE=⎧⎨=⎩(),Rt BCE Rt BDE HL ∴ ≌3cm,BD BC ∴==532(cm),AD AB BD ∴=-=-=ADE ∴V AE DE AD AE CE AD =++=++426(cm).AC AD =+=+=【点睛】此题考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质的两端距离相等”以及线段垂直平分线的性质难度较大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.11.15故答案为:12.13.##【分析】本题主要考查全等三角形的判定与性质,证明是解题的关键.由判断出即可得到答案.【详解】解:,,,在,中,,,.故答案为:.14.【分析】本题考查了图形的规律探索,轴对称的性质.根据所给图示发现,后面的图比前一个图三角形的个数增加3个,求得a 的值,再根据轴对称的性质,即可解答.【详解】解:在图1中,互不重叠的三角形共有个,在图2中,互不重叠的三角形共有个,在图3中,互不重叠的三角形共有个,……则在第n 个图形中,互不重叠的三角形共有个,∴第14个图形中,互不重叠的三角形共有个,∴点关于直线对称的点的坐标是,故答案为:.15.①③【分析】此题考查了直角三角形全等的判定,全等三角形的性质,熟记直角三角形全等的判定,全等三角形的性质是解题的关键.根据全等三角形的判定与性质求解即可;【详解】解:①如果两个三角形全等,则这两个三角形对应边上的中线一定相等,故符合题意,②如果两个直角三角形有一条直角边和这条边所对的角对应相等,那么这两个直角三角形全等,故不符合题意;③三角形两条角平分线的交点到这个三角形三边的距离相等,故符合题意;④如果两个三角形有两条边和其中一边上的高对应相等,那么这两个三角形不一定全等,故不符合题意.故答案为:①③.AB BAABC ADC △≌△AAS ABC ADC △≌△ AB BC ⊥AD DC ⊥90B D ∴∠=∠=︒ABC ADC △12B D AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ABC ADC △≌△AD AB ∴=AB ()413-,3114⨯+=3217⨯+=33110⨯+=()()43131n n +-=+314143a =⨯+=()433A ,1x =A '()413-,()413-,∵平分在和BD ABC ∠FBD CBD ∴∠=∠FBD CBD △BF BC FBD CBD =⎧⎪∠=∠⎨⎪∴点O 在线段BD 的垂直平分线上,∵BE =DE ,∴点E 在线段BD 的垂直平分线上,∴OE 垂直平分BD .【点睛】本题考查了线段垂直平分线的判定:到一条线段两端距离相等的点在这条线段的垂直平分线上,同时考查了全等三角形的判定与性质.20.(1)(2)见解析【分析】(1)由三角形外角的性质得到,由角平分线的定义得到,再根据三角形外角的性质即可得到答案;(2)根据平分线的定义得到,由三角形外角性质得到,则,由得到,由三角形外角的性质得到,则,即可证明结论.本题考查三角形外角性质和角平分线性质,熟练掌握三角形外角的性质和角平分线的定义是解题的关键.【详解】(1)解:∵,,∴,∵射线是的外角的平分线.∴,∴;(2)∵射线是的外角的平分线.∴,∵,∴,∵,∴,∵,∴,∴平分.21.(1);画图见详解(2),画图见详解(3)2193BAC ∠=︒64DCE ∠=︒64ACE DCE ∠=∠=︒2ACD GCD ∠=∠GCD GBC BGC ∠=∠+∠22ACD GBC BGC ∠=∠+∠2BAC BGC ∠=∠2ACD GBC BAC ∠=∠+∠ACD ABC BAC ∠=∠+∠2ABC GBC ∠=∠35B ∠=︒29BEC ∠=︒352964DCE B BEC ∠=∠+∠=︒+︒=︒CP ABC ACD ∠64ACE DCE ∠=∠=︒296493BAC BEC ACE ∠=∠+∠=︒+︒=︒CP ABC ACD ∠2ACD GCD ∠=∠GCD GBC BGC ∠=∠+∠222ACD GCD GBC BGC ∠=∠=∠+∠2BAC BGC ∠=∠2ACD GBC BAC ∠=∠+∠ACD ABC BAC ∠=∠+∠2ABC GBC ∠=∠BF ABC ∠1,0,2,3,2,3---2,6--【分析】此题主要考查了作图-平移变换,作图-轴对称变换,解答本题的关键要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.(1)向右平移三个长度单位,再向下平移四个长度单位,则平移后点、、的对应的坐标分别是横坐标加上3,纵坐标减4可得答案;(2)先作出直线,再作出、、关于直线的对称点,连线并写出其坐标即可;(3)向右平移五个长度单位可得扫过的面积即为梯形的面积.【详解】(1)如图1所示:向右平移三个长度单位,再向下平移四个长度单位后到达位置,∴,故答案为:;(2)关于直线(直线上各点的纵坐标都为)对称的,如图2,的坐标;故答案为:;(3)如图3,ABC A B C 1y =-A B C ABC 22A B △2,C ABC V 22BAA C ABC A B C ''' (1,0),(2,3),(2,3)A B C '''---1,0,2,3,2,3---ABC 1y =-y 1-111A B C △1A ()12,6A --2,6--∴扫过的面积:.故答案为:21.22.(1)证明见解析(2)【分析】本题主要考查了全等三角形的判定与性质,角平分线的判定等知识(1)先求出,再根据角形的判定是解题的关键;(2)设与相交于点O ,过点A 作ABC ()593221+⨯÷=8︒BAD CAE ∠=∠AB AC =AC BD AM∵是的中线,∴,在和中,AE ABD △BE DE =BEF △DEA △,BE DE BEF DEA EF EA =⎧⎪∠=∠⎨⎪=⎩24.(1)①见解析;②(2)2【分析】(1)①利用三角形外角的性质即可得到答案;②利用二元一次方程组可得到点、点坐标,从而得到的长,再根据角平分线的性质,得到点到轴、轴及的距离相等,再利用“等面积法”即可求出点的坐标;(2)过点分别作于,于,连,由折叠得,故,,易证,再通过证,可得,,利用等量代换可得答案.【详解】(1)解:①∵为的外角,∴,∴,∵为的角平分线,为的平分线,∴,∵为的外角,∴.②∵点,满足,解之得:,∴,,∵,∴.连,如图所示,∵为的角平分线,为的平分线,∴点到轴、轴及的距离相等,设这个距离为,∵,(4,4)-A C ACP x y AC P B BM AC ⊥M BN DH ⊥N BH BOD BND ≅V V DO DN =BO BN =BMH BNH △≌△BMG BND △≌△OD DN MG ==HM HN =POM ∠AOP POM P PAO ∠=∠+∠222POM P PAO ∠=∠+∠AB CAO ∠OP COM ∠COM CAO ∠-∠2P =∠COM ∠AOC 2ACO P ∠=∠(,0)A x (0,)C y 34487620x y x y +=⎧⎨-=⎩86x y =⎧⎨=⎩8OA =6OC =2AC OA =+10AC =PC AB CAO ∠OP COM ∠P x y AC h AOC APO APC POC S S S S =+-△△△△∵沿直线折叠,∴∴,,∵为的角平分线,DOB BD BOD BND≅V V DO DN =BO BN =AB CAO ∠。
武汉市八年级上学期数学期中考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共10分)
1. (1分) (2019八上·黄陂期末) 下列手机APP图案中,属于轴对称的是()
A .
B .
C .
D .
2. (1分)以下不能构成三角形三边长的数组是()
A . (1,, 2)
B . (,,)
C . (3,4,5)
D . (32 , 42 , 52)
3. (1分) (2017八上·三明期末) 如图是一副三角尺叠放的示意图,则∠α的度数为()
A . 75°
B . 45°
C . 30°
D . 15°
4. (1分) (2018八上·江干期末) 如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()
A . ②③④
B . ①②
C . ①④
D . ①②③④
5. (1分) (2019八下·海港期末) 点P(-2,3)关于y轴的对称点的坐标是()
A . (2,3)
B . (-2,3)
C . (2,-3)
D . (-2,-3)
6. (1分) (2019八上·富阳月考) 如图,△ABC≌△AED,点 E 在线段 BC 上,∠1=48º,则∠AED 的度数是()
A . 66°
B . 65°
C . 62°
D . 60°
7. (1分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()
A . 三角形的稳定性
B . 两点之间钱段最短
C . 两点确定一条直线
D . 垂线段最短
8. (1分) (2017八上·宜春期末) 如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于,且OD=4,△ABC的面积是()
A . 25
B . 84
C . 42
D . 21
9. (1分)已知≌ ,,,若的周长为偶数,则的取值为()
A .
B .
C .
D . 或或
10. (1分)如图,OA=OB,OC=OD,∠O=50°,∠D=30°,则∠AE C等于()
A . 70°
B . 50°
C . 45°
D . 60°
二、填空题 (共6题;共6分)
11. (1分)如图,点A、B在直线L的同侧,AB=8,点C是点B关于直线L的对称点,AC交直线L于点D ,AC=12,则△ABD的周长为________
12. (1分)正八边形的每个外角为________度.
13. (1分)如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________(只需写一个,不添加辅助线).
14. (1分) (2018八下·龙岩期中) 一个平行四边形的一条对角线的长度为5,一条边为7,则它的另一条对角线α的取值范围是________.
15. (1分)把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为________ 厘米
16. (1分)如图, ,点分别在上,且,点分别在
上运动,则的最小值为________。
三、解答题(一) (共3题;共4分)
17. (1分)如图所示,在△ABC中,∠C=900 ,∠CAB,∠CBA的平分线相交于点D,BD的延长线交AC于E,求∠ADE的度数.
18. (1分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.
(1)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)
(2)在网格中,△ABC的下方,直接画出△EBC,使△EBC与△ABC全等.
19. (2分) (2019八下·厦门期末) 已知▱ABCD的对角线AC,BD交于点O,点E在AB边上.
(1)尺规作图:在图中作出点E,使得OE=;(保留作图痕迹,不写作法)
(2)在(1)的条件下,若AB=OE,AO=,求证:四边形ABCD是矩形.
四、解答题(二) (共3题;共4分)
20. (1分) (2018八上·柘城期末) 如图,在中,,是的平分线,
于点,点在上,,求证: .
21. (1分) (2015七下·西安期中) △ABC中,AD、AE分别为角平分线和高,若∠B=60°,∠C=70°,求∠DAE.
22. (2分) (2019八下·洛龙期中) 如图,E,F分别是▱ABCD的AD,BC边上的点,且AE=CF.
(1)求证:△ABE≌△CDF;
(2)若M,N分别是BE,DF的中点,连接MF,EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.
五、解答题(三) (共3题;共8分)
23. (3分)如图,正方形的对角线上有一个小孔,经过小孔剪一刀(不剪曲线和折线)可以将剪下的两片拼成一个三角形,拼成的三角形内部没有小孔,如图1;图2中的正方形中也有一个小孔,但它不在对角线上,将它剪成三片,用剪成的三片拼成一个三角形,要求拼成的三角形内部没有小孔.仿照图1把剪切线和拼成的三角形画出来.
24. (2分) (2019七下·广安期中) 如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
25. (3分)(2019·亳州模拟) 如图,四边形ABCD是正方形,E为BC上的任意一点或BC延长线上一点(除B点以外),∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.
参考答案
一、选择题 (共10题;共10分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题(一) (共3题;共4分)
17-1、
18-1、
19-1、
19-2、
四、解答题(二) (共3题;共4分)
20-1、
21-1、
22-1、
22-2、
五、解答题(三) (共3题;共8分)
23-1、24-1、
25-1、
第11 页共11 页。