好氧处理工艺优缺点比较
- 格式:docx
- 大小:18.13 KB
- 文档页数:3
好氧处理法和厌氧处理法的优缺点
好氧生物处理:是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法.优点有反应速度较快,废水停留时间较短,故处理构筑物容积较小;处理过程中散发的臭气较少;对能降解有机物分解完全等.缺点有对难降解有机物去除率低、污泥量较厌氧处理多、运行费用较高等.
厌氧生物处理:是有机物在无氧的条件下,借助转性厌氧菌和兼性厌氧菌的作用下,将大部分的有机物转化为甲烷等简单小分子有机物与无机物,从而使污水得到净化.优点有有机物去除率高、污泥量少、运行费用少等.缺点有废水停留时间较长、有机物分解不完全、臭气产生多等.。
.
.
好氧处理法和厌氧处理法的优缺点
好氧生物处理:是在有游离氧(分子氧)存在的条件下,
好氧微生物降解有机物,使其稳定、无害化的处理方法.优点有反应速度较快,废水停留时间较短,故处理构筑物容积较小;处理过程中散发的臭气较少;对能降解有机物分解完全等.缺点有对难降解有机物去除率低、污泥量较厌氧处理多、运行费用较高等.
厌氧生物处理:是有机物在无氧的条件下,借助转性厌氧菌和兼性厌氧菌的作用下,将大部分的有机物转化为甲烷等简单小分子有机物与无机物,从而使污水得到净化.优点有有机物去除率高、污泥量少、运行费用少等.缺点有废水停留时间较长、有机物分解不完全、臭气产生多等.。
当前废水好氧处理可采用的方法有活性污泥法及生物膜法。
活性污泥法在处理废水方面具有处理效果好、出水水质稳定、运行经验丰富等优点,生物膜法,一般占地面积小,生物密集,单位处理效果好。
现在国内外污水处理中常用的有如下工艺。
Orbal氧化沟工艺、MBR、生物转盘、SBR工艺、接触氧化池BAF生物曝气滤池等工艺。
1、Orbal氧化沟目前氧化沟有很多形式种类,如Carrousel氧化沟、Orbal氧化沟及交替式氧化沟等,不管是什么形式的氧化沟,它们均具有氧化沟特性。
氧化沟是活性污泥法的一种变形,污水和活性污泥的混合液在环状的曝气渠道中不断循环流动,具有特殊的循环流态,既是完全混合式又具有推流式的特征。
氧化沟一般在延时曝气条件下运转,水和固体停留时间长,固体总量较多,因而能对进水水质的冲击有一定的缓冲作用。
又因为氧化沟沟内循环量高于进水流量的几十倍甚至于上百倍,使其产生较大稀释能力。
氧化沟的曝气装置不是全池分布,因而很容易在沟内形成好氧和缺氧交替出现的状态。
奥贝尔氧化沟由三个同心沟道组成,通过对三个沟道不同溶解氧呈梯度变化的控制,不仅能很好的降解有机物和悬浮物,还能有效地除磷脱氮,污水经过氧化沟完成生物降解后再进入沉淀池进行泥水分离。
Orbal氧化沟系统工艺需另设污泥回流系统,将沉淀后的污泥回流到氧化沟中,使微生物处于平衡状态,剩余污泥由剩余污泥泵排出。
2、膜生物反应器(MBR)膜生物反应器是一种结合了活性污泥曝气和微滤技术的一种小规模生活污水处理技术,由于其出水水质较好,尤其是SS较低,因此,是近年来在生活污水处理回用领域应用较多的一种工艺。
膜生物反应器的优点有:(1)结合了膜处理技术和生物处理技术带来的优点,超(微)滤膜组件作为泥水分离单元完全可以取代二次沉淀池,微孔超滤膜截留活性污泥混合液中微生物絮体和较大分子有机物,使生物反应器内微生物浓度较高,提高了生物对有机物的氧化率。
(2)膜滤后出水质量高,感官上已经接近自来水的情况,且出水水质稳定可靠。
A2O工艺的优缺点介绍及改进措施A2O法又称AAO法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。
在传统A2O工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。
一、传统A2O工艺存在的矛盾1、污泥龄矛盾传统A2O工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同:1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。
冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在30d以上;即使夏季,若SRT<5d,系统的硝化效果将显得极其微弱。
2)PAOs属短世代周期微生物,甚至其最大世代周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。
从生物除磷角度分析富磷污泥的排放是实现系统磷减量化的唯一渠道。
若排泥不及时,一方面会因PAOs的内源呼吸使胞内糖原消耗殆尽,进而影响厌氧区乙酸盐的吸收及聚-β-羟基烷酸(PHAs)的贮存,系统除磷率下降,严重时甚至造成富磷污泥磷的二次释放;另一方面,SRT也影响到系统内PAOs和聚糖菌(GAOs)的优势生长。
在30℃的长泥龄(SRT≈10d)厌氧环境中,GAOs对乙酸盐的吸收速率高于PAOs,使其在系统中占主导地位,影响PAOs释磷行为的充分发挥。
2、碳源竞争及硝酸盐和DO残余干扰在传统A2/O脱氮除磷系统中,碳源主要消耗于释磷、反硝化和异养菌的正常代谢等方面,其中释磷和反硝化速率与进水碳源中易降解部分的含量有很大关系。
一般而言,要同时完成脱氮和除磷两个过程,进水的碳氮比(BOD5/ρ(TN))>4~5,碳磷比(BOD5/ρ(TP))>20~30。
好氧生物处理工艺缺点
好氧生物处理工艺的缺点主要包括以下几个方面:
1. 对溶解氧的需求:好氧生物处理过程需要足够的溶解氧来支持微生物的生长和代谢。
如果溶解氧不足,会影响处理效果。
2. 对温度的要求:好氧生物处理工艺需要在一定的温度范围内进行,通常为15-35℃。
在寒冷地区或冬季,需要采取措施来维持适宜的温度,以保证微生物的正常生长和代谢。
3. 对有机负荷的限制:好氧生物处理工艺的有机负荷相对较低,对于高浓度有机废水需要进行稀释或与其他处理方法结合使用。
4. 占地面积较大:好氧生物处理工艺需要较大的反应池和曝气装置,因此占地面积较大。
对于空间有限的场所,可能不太适用。
5. 可能产生泡沫和浮渣:好氧生物处理过程中,有时会产生泡沫和浮渣,需要进行适当的控制和处理,以避免对环境造成二次污染。
6. 可能产生异味:好氧生物处理过程中,有时会产生异味,需要采取措施进行控制和处理。
需要注意的是,好氧生物处理工艺的缺点并不是绝对的,实际应用中需要根据具体情况进行选择和处理。
好氧处理法是一种生物处理方法,主要用于处理含有大量有机物的废水。
这种方法需要充足的氧气供应,因此通常在好氧微生物的作用下进行。
好氧微生物会将废水中的有机物分解为二氧化碳和水,从而达到去除有机物的目的。
好氧处理法的优点是处理效果好,能够有效地去除废水中的有机物和部分无机物。
同时,由于好氧微生物的代谢作用,还能够产生一定的热量,有利于提高废水的温度,促进有机物的分解。
此外,好氧处理法还能够通过硝化作用将部分有机物转化为硝酸盐,从而实现对废水的深度处理。
然而,好氧处理法也存在一些缺点。
首先,需要消耗大量的氧气,因此需要配备专门的供气设备。
其次,好氧处理法的运行成本较高,需要消耗大量的能源。
最后,如果废水中含有大量的悬浮固体或油脂等难降解物质,可能会影响好氧微生物的生长和代谢作用的发挥。
总的来说,好氧处理法是一种有效的废水处理方法,适用于处理含有大量有机物的废水。
虽然存在一些缺点,但通过合理的设计和运行管理,可以实现对废水的达标处理。
污水厌氧处理与好氧处理特点比较污水处理是现代城市生活中必不可少的环境保护措施之一。
而在污水处理过程中,往往会涉及到厌氧处理和好氧处理两种不同的方式。
本文将就污水厌氧处理和好氧处理的特点进行比较,以便更好地了解它们的区别和适合场景。
一、污水厌氧处理的特点1.1 产生少量污泥:厌氧处理过程中,由于缺氧环境,微生物的生长速度较慢,因此产生的污泥量相对较少。
这减少了处理过程中的污泥处理和处置成本。
1.2 适合于高浓度有机物:厌氧处理对高浓度有机物的处理效果较好。
由于厌氧环境中微生物可以利用有机物进行发酵产生能量,因此对于高浓度有机废水的处理效果更佳。
1.3 产生的气体可回收利用:厌氧处理过程中产生的气体主要是甲烷,可以通过采集和利用来产生能源,从而降低能源成本。
二、好氧处理的特点2.1 处理效果稳定:好氧处理过程中,氧气充足,微生物的生长速度较快,因此处理效果相对稳定。
适合于处理低浓度有机废水和对水质要求较高的场景。
2.2 产生较多污泥:好氧处理过程中,由于氧气充足,微生物的生长速度较快,因此产生的污泥量相对较多。
这增加了处理过程中的污泥处理和处置成本。
2.3 需要较多能量供应:好氧处理过程中需要大量的氧气供应,这增加了能源消耗和运行成本。
三、厌氧处理和好氧处理的适合场景比较3.1 厌氧处理适合于高浓度有机废水的处理,例如食品加工废水、酒精厂废水等。
由于厌氧处理对高浓度有机物的处理效果好,可以有效降低有机物的浓度。
3.2 好氧处理适合于低浓度有机废水的处理,例如城市生活污水、农业废水等。
由于好氧处理对水质要求较高,可以有效去除废水中的悬浮物和有机物。
3.3 对于一些特殊废水,可以采用厌氧处理和好氧处理相结合的方式。
例如,厌氧处理可以先将废水中的有机物降解为低浓度,然后再进行好氧处理,以达到更好的处理效果。
四、厌氧处理和好氧处理的优缺点比较4.1 厌氧处理的优点是处理效果好、产生的气体可回收利用,缺点是处理过程较慢、产生的污泥量少。
污水厌氧处理与好氧处理特点比较污水处理是指将含有有机物、悬浮物、营养物和微生物等污染物质的废水经过一系列的处理工艺,使其达到国家排放标准,保护环境和人类健康。
污水处理过程中,常用的处理方法包括厌氧处理和好氧处理。
本文将对污水厌氧处理和好氧处理的特点进行比较。
一、污水厌氧处理特点1. 适合范围广:厌氧处理适合于高浓度有机废水的处理,如餐饮业、酿酒业、制药业等。
由于厌氧处理不需要氧气供应,因此对氧气需求低,适合处理高浓度有机废水。
2. 产生少量污泥:厌氧处理过程中,由于微生物的生长速度较慢,产生的污泥量较少,减少了后续处理和处置的成本。
3. 产生可再生能源:厌氧处理过程中,有机物质在无氧条件下被微生物分解产生甲烷气体,可作为可再生能源利用,减少对传统能源的依赖。
4. 有利于氮磷去除:厌氧处理过程中,由于缺氧环境下微生物的代谢特点,有利于氮磷的去除,减少对后续处理工艺的负荷。
二、污水好氧处理特点1. 适合范围广:好氧处理适合于低浓度有机废水的处理,如城市生活污水、工业废水等。
好氧处理需要氧气供应,适合处理低浓度有机废水。
2. 处理效果稳定:好氧处理过程中,微生物的生长速度较快,能够迅速分解有机物质,稳定性较好,处理效果相对稳定。
3. 较少产生臭味:好氧处理过程中,由于氧气的存在,有利于微生物的代谢,减少了污水的臭味产生。
4. 适合氮磷去除:好氧处理过程中,由于氧气的存在,有利于硝化和反硝化反应的进行,适合氮磷的去除,减少对后续处理工艺的负荷。
三、污水厌氧处理与好氧处理的比较1. 处理效果:好氧处理相对于厌氧处理,处理效果更为稳定,能够更好地达到国家排放标准。
但在处理高浓度有机废水方面,厌氧处理更具优势。
2. 污泥产生:厌氧处理产生的污泥量较少,减少了后续处理和处置的成本。
而好氧处理产生的污泥量较多,需要进行进一步的处理和处置。
3. 能源利用:厌氧处理过程中产生的甲烷气体可作为可再生能源利用,有利于能源的回收利用。
A/O工艺、SBR工艺、UASB工艺优缺点比较,适用范围UASB的主要优点是:1、UASB内污泥浓度高,平均污泥浓度为20-40gVSS/1;2、有机负荷高,水力停留时间长,采用中温发酵时,容积负荷一般为10kgCOD/m3.d左右;3、无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;4、污泥床不填载体,节省造价及避免因填料发生堵赛问题;5、UASB内设三相分离器,通常不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内,通常可以不设污泥回流设备。
主要缺点是:1、进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下;2、污泥床内有短流现象,影响处理能力;3、对水质和负荷突然变化较敏感,耐冲击力稍差。
SBR 的主要优点是1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。
主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
缺点1、自动化控制要求高。
2、排水时间短(间歇排水时),并且排水时要求不搅动沉淀污泥层,因而需要专门的排水设备(滗水器),且对滗水器的要求很高。
3、后处理设备要求大:如消毒设备很大,接触池容积也很大,排水设施如排水管道也很大。
污水厌氧处理与好氧处理特点比较污水处理是一项重要的环境保护工作,它可以有效地减少污水对环境的污染。
在污水处理过程中,厌氧处理和好氧处理是两种常见的处理方法。
本文将对这两种处理方法的特点进行比较。
一、污水厌氧处理特点:1. 处理效果:厌氧处理可以有效去除有机物质,特别是难降解的有机物质,如油脂、蛋白质等。
同时,厌氧处理还能够去除一部分氮、磷等营养物质。
2. 能源利用:厌氧处理产生的产物可用于能源回收,如产生甲烷气体,可用于发电或供热等用途。
3. 处理成本:厌氧处理相对于好氧处理来说,处理成本较低。
因为厌氧处理过程中无需提供氧气,节省了氧气供应的能源和运行成本。
4. 适用性:厌氧处理对于高浓度有机废水的处理效果较好,适用于一些工业废水的处理。
二、污水好氧处理特点:1. 处理效果:好氧处理可以有效去除有机物质、氮、磷等营养物质,处理效果较为全面。
好氧处理还可以去除污水中的微生物和病原体,提高水质。
2. 操作稳定性:好氧处理相对于厌氧处理来说,操作较为稳定,对处理过程中的温度、pH值等因素的要求较低。
同时,好氧处理也不会产生异味等问题。
3. 适用性:好氧处理适用于一般的污水处理场所,如城市污水处理厂、生活污水处理等。
同时,好氧处理也适用于一些对氧气需求较高的处理过程,如脱氮、脱磷等。
综上所述,污水厌氧处理和好氧处理各有其特点和适用场景。
厌氧处理适用于高浓度有机废水的处理,具有较低的处理成本和能源回收的优势;而好氧处理适用于一般的污水处理场所,具有全面的处理效果和操作稳定性的优势。
在实际应用中,可以根据污水的特性和处理要求选择合适的处理方法,以达到最佳的处理效果。
好氧处理工艺优缺点比较
好氧处理工艺是指利用好氧微生物(包括兼性微生物)在有氧气存在的条件下进行生物代谢以降解有机物,使其稳定、无害化的处理方法。
微生物利用水中存在的有机污染物为底物进行好氧代谢,经过一系列的生化反应,逐级释放能量,最终以低能位的无机物稳定下来,达到无害化的要求,以便返回自然环境或进一步处理。
目前常用的好氧处理工艺主要有接触氧化工艺、循环式SBR工艺、MBR工艺等。
接触氧化工艺:生物接触氧化法是在生物滤池的基础上,通过接触曝气形式改良、演变出的一种生物膜处理技术。
它具备生物膜法的基本特点,既可利用附着在填料表面上的微生物群体对水中的污染物进行吸附、氧化,以达到去除污染物的目的,又与其它生物膜法有所区别:(1)反应器内的填料全部浸没在废水中,以供微生物栖息生长,故又称淹没滤床反应器;(2)供氧方式与强度不同,采用机械设备向废水中充氧,不同于生物滤池靠自然通风供氧,氧气的传质速率高,提高生物降解效率。
循环式SBR工艺:间歇式活性污泥法或序批式活性污泥法简称SBR工艺,是近几十年来活性污泥处理系统中较引人注目的一种废水处理工艺。
该工艺集缺氧、曝气、沉淀、出水于同一生物池中,通过控制系统在该生物池内交替完成不同的反应过程。
其生物碳氧化硝化原理与推流式活性污泥法相同,具有成熟的运转经验和节省占地和构筑物的显著特点。
循环式SBR工艺是SBR的一个种变型工艺,它与ICEAS法非常近似。
其主体构筑物由预反应池(选择池)和SBR池串联组成,在SBR池中充氧曝气设备、滗水器和污泥泵,污泥泵用于回流污泥至厌氧池和排放剩余污泥。
与传统的SBR工艺相比,循环式SBR运行方式为连续进水(沉淀期和排水期仍保持进水),间歇排水,没有明显的反应阶段和闲置阶段。
这种系统在处理工业废水方面比传统的SBR工艺费用更省、管理更方便、占地更少。
该工艺通常水力停留时间较长,工艺设施简单,目前在国内外已得到广泛应用。
MBR工艺:即膜——生物反应器工艺,是膜分离技术与生物技术有机结合的新型废水处理技术。
它利用膜分离设备将生化反应池中的活性污泥和大分子有
机物质截留住,省掉二沉池。
活性污泥浓度因此大大提高,水力停留时间和污泥停留时间可以分别控制,而难降解的物质在反应器中不断反应、降解。
因此,膜——生物反应器工艺通过膜分离技术大大强化了生物反应器的功能。
表3.5 各种好氧处理工艺比较表
根据以上各个工艺的比较,综合考虑本项目的实际情况,以及工艺投资、占地等特点,本次项目采用MBR膜工艺作为废水好氧段处理工艺。