蚁群算法
- 格式:docx
- 大小:21.97 KB
- 文档页数:3
蚁群算法目录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群行为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导入数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显示 (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。
该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。
蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。
蚁群算法是群智能理论研究领域的一种主要算法。
1.2 蚁群行为分析EABCDF d=3d=2 m=20 t=0AB C Dd=3d=2 m=10 m=10t=11.3 蚁群算法解决优化问题的基本思想用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。
蚁群算法简介蚁群算法是一种优化技术,受到自然界中蚂蚁寻找食物的行为的启发。
这种算法模拟了蚂蚁的信息共享和移动模式,用于解决复杂的组合优化问题,如旅行商问题(TSP)、车辆路径问题(VRP)等。
一、蚁群算法的基本原理在自然界中,蚂蚁寻找食物的行为非常有趣。
它们会在路径上留下信息素,后续的蚂蚁会根据信息素的强度选择路径,倾向于选择信息素浓度高的路径。
这样,一段时间后,大多数蚂蚁都会选择最短或最佳的路径。
这就是蚁群算法的基本原理。
二、蚁群算法的主要步骤1.初始化:首先,为每条边分配一个初始的信息素浓度。
通常,所有边的初始信息素浓度都是相等的。
2.路径选择:在每一步,每个蚂蚁都会根据当前位置和周围信息素浓度选择下一步的移动方向。
选择概率与信息素浓度成正比,与距离成反比。
这意味着蚂蚁更倾向于选择信息素浓度高且距离短的路径。
3.释放信息素:当蚂蚁完成一次完整的路径后,它会在其经过的边上留下信息素。
信息素的浓度与解决问题的质量成正比,即如果蚂蚁找到了一条更好的路径,那么这条路径上的信息素浓度会增加。
4.更新:经过一段时间后,信息素会随时间的推移而挥发,这使得那些不再被认为是最优的路径上的信息素浓度逐渐减少。
同时,每条边上的信息素浓度也会随着时间的推移而均匀增加,这使得那些从未被探索过的路径也有被选择的可能性。
5.终止条件:算法会在找到满足条件的最优解或达到预设的最大迭代次数后终止。
三、蚁群算法的优势和局限性蚁群算法的优势在于其对于组合优化问题的良好性能和其自然启发式的搜索过程。
这种算法能够有效地找到全局最优解,并且在搜索过程中能够避免陷入局部最优解。
此外,蚁群算法具有较强的鲁棒性,对于问题的规模和复杂性具有较强的适应性。
然而,蚁群算法也存在一些局限性。
首先,算法的性能高度依赖于参数的设置,如信息素的挥发速度、蚂蚁的数量、迭代次数等。
其次,对于一些复杂的问题,可能需要很长的计算时间才能找到最优解。
此外,蚁群算法可能无法处理大规模的问题,因为这可能导致计算时间和空间的复杂性增加。
蚁群算法原理一、什么是蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种仿生智能算法,它模拟蚂蚁搜索食物的行为,从而解决多种优化问题。
该算法旨在建立蚂蚁在搜索空间中的路径,并在这些路径上传播信息,从而使蚂蚁在搜索空间中最终能够找到最优解的路径。
二、蚁群算法的原理1、蚁群算法的基本原理蚁群算法建立在模拟生物天性的基础上,它的基本原理如下:蚂蚁在搜索过程中会搜索出一系列可能的路径,当它们回到搜索起点时,会把它们走过的路线信息传给其它蚂蚁,然后其它蚂蚁据此搜索出其它可能的路线,此过程一直持续,所有蚂蚁在搜索空间中随机探索,把自己走过的路线都留下越多的信息,这样就把多条路线的信息逐渐累积,最终能够找到最优解的路径,从而解决优化问题。
2、蚁群算法的过程(1)协作首先,许多蚂蚁在搜索空间中进行协作,它们在这个空间中进行随机搜索,并尝试找到最优解的路径。
(2)共嗅搜索过程中,蚂蚁会随机尝试搜索各种可能的路径,并在路径上沿途留下一些信息,这些信息就是蚂蚁在搜索过程中搜集到的数据,以这些数据为基础,一方面蚂蚁能够自动判断路径上的优劣,另一方面其它蚂蚁也可以共享这些信息,从而改进和优化搜索效率。
(3)路径搜索蚂蚁在搜索过程中会随机尝试搜索所有可能的路径,它们也会把自己走过的最好的路径留下,这个路径就是最后需要搜索的最优路径,当蚂蚁搜索完毕时,就能够把这条最优路径传给其它蚂蚁,从而解决优化问题。
三、蚁群算法的优势1、收敛性好蚁群算法拥有良好的收敛性,它可以较快地找到最优解。
2、实现简单蚁群算法实现简单,只需要定义蚂蚁在寻找最优路径时的行为模型即可,无需定义较多的参数,因此能够大大减少计算量。
3、鲁棒性高蚁群算法的鲁棒性很高,它可以有效地避免局部最优路径,从而更容易达到全局最优路径。
四、蚁群算法的应用1、旅行商问题蚁群算法可以用来解决旅行商问题,即给定一组城市,求解访问相关城市的最优路径。
蚁群算法学号:1101500449 姓名:赵亮民摘要:蚁群算法是优化领域中新出现的一种仿生进化算法。
该算法采用分布式并行计算机制,具有较强的鲁棒性;但有搜索时间较长,易陷入局部最优解的缺点。
本文首先讲述蚁群算法的来源和基本原理,然后讨论蚁群算法的几种改进策略,并简单介绍近年来蚁群算法在许多新领域中的发展应用,最后对今后进一步研究的方向作了展望。
关键词:蚁群算法;蚂蚁;信息素;优化Abstract:Ant colony algorithm is a novel category of bionic algorithm for optim ization problems.Parallel computation mechanism is adopted in this algorithm.It has strong robustness and is easy to combinewith other methods in optimization,but it has the limitation of stagnation,and is easy to fall into local optimums.Firstly,the basic principle of ant colony algorithm is introduced.Then。
a series of schemes on improving the ant colony algorithm are discussed,and the new applications are also provided.Finally,somerem arks on the further research and directions are presented.Key words:ant colony algorithm ;ant;pheromone;optimization概念各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。
当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。
有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。
最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
原理设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼地编程,因为程序的错误也许会让你前功尽弃。
这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。
事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。
这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?现今有哪些关于蚁群算法的应用呢?1大规模集成电路的线网布局在大规模集成电路的线网布局中,需要根据电路和工艺的要求完成芯片上单元或功能模块的布局,然后实现它们之间的互连。
此问题可看作是寻找一个网格平面上两端点之间绕过障碍的最短路径问题。
线网上的每个Agent根据启发策略.像蚂蚁一样在开关盒网格上爬行,所经之处便设置一条金属线.历经一个线网的所有引脚之后.线网便布通了。
应用蚁群算法,可以找到成本最低、最合理的线网布局.而且由于其本身的并行性。
比较适合于解决此类问题。
2通信网络路由近年来.许多学者将蚁群算法应用于通讯领域,特别是通信网络中的路由问题。
通信网络的路由是通过路由表进行的.在每个节点的路由表中。
对每个目的节点都列出了与该节点相连的节点,当有数据包到达时.通过查询路由表可知下一个将要到达的节点。
网络信息的分布性、动态性、随机性和异步性与蚁群算法非常相似,都是利用局部信息发现解,间接通讯方式和随机状态的转换。
Dorigo.Di Caro和Gambardella首先将蚁群算法应用于网络路由问题.并称这种算法为AntNet。
3蚁群算法在电力系统中的应用电力系统优化是一个复杂的系统工程.它包括无功优化、经济负荷分配、电网优化及机组最优投入等一系列问题,其中很多是高维、非凸、非线性的优化问题。
其中.机组最优投入问题是寻求一个周期内各个负荷水平下机组的最优组合方式及开停机计划,使运行费用最小。
利用状态、决策及路径概念,将机组最优投入问题设计成类似旅行商问题的模式.从而可方便地利用蚁群算法来求解。
还有人将蚁群算法编入水力发电规划能源管理软件.可很好地节约能源。
此外.对于电力系统中的故障检测,蚁群算法也表现出较好的应用前景。
由于故障地点的估计信息来自保护继电器和电路断路器,那么对所有故障部分的估计可以看作是一个组合优化问题。
蚁群算法的应用进展以蚁群算法为代表的蚁群智能已成为当今分布式人工智能研究的一个热点,许多源于蜂群和蚁群模型设计的算法己越来越多地被应用于企业的运转模式的研究。
美国五角大楼正在资助关于群智能系统的研究工作-群体战略(Swarm Strategy),它的一个实战用途是通过运用成群的空中无人驾驶飞行器和地面车辆来转移敌人的注意力,让自己的军队在敌人后方不被察觉地安全进行。
英国电信公司和美国世界通信公司以电子蚂蚁为基础,对新的电信网络管理方法进行了试验。
群智能还被应用于工厂生产计划的制定和运输部门的后勤管理。
美国太平洋西南航空公司采用了一种直接源于蚂蚁行为研究成果的运输管理软件,结果每年至少节约了1000万美元的费用开支。
英国联合利华公司己率先利用群智能技术改善其一家牙膏厂的运转情况。
美国通用汽车公司、法国液气公司、荷兰公路交通部和美国一些移民事务机构也都采用这种技术来改善其运转的机能。
鉴于群智能广阔的应用前景,美国和欧盟均于近几年开始出资资助基于群智能模拟的相关研究项目,并在一些院校开设群体智能的相关课程。
国内,国家自然科学基金”十五”期间学科交叉类优先资助领域中的认知科学及其信息处理的研究内容中也明确列出了群智能领域的进化、自适应与现场认知主题。
蚁群优化算法最初用于解决TSP问题,经过多年的发展,已经陆续渗透到其他领域中,比如图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。
蚁群算法在若干领域己获得成功的应用,其中最成功的是在组合优化问题中的应用。
在网络路由处理中,网络的流量分布不断变化,网络链路或结点也会随机地失效或重新加入。
蚁群的自身催化与正向反馈机制正好符合了这类问题的求解特点,因而,蚁群算法在网络领域得到一定应用。
蚁群觅食行为所呈现出的并行与分布特性使得算法特别适合于并行化处理。
因而,实现算法的并行化执行对于大量复杂的实际应用问题的求解来说是极具潜力的。
存在的问题及解决方法的进展蚁群算法以其分布式并发性、正反馈、鲁棒性强、收敛速度快、易获得全局最优解等特点,成为目前国内启发式算法研究的热点,但是蚁群算法也存在如下缺点:容易出现停滞现象(stagnation behaviour),算法运算时间过长。
针对这些缺陷,近年来众多国内外的学者在蚁群的改进方面做了大量的研究工作, 其目的是在合理时间复杂度的限制条件下,尽可能提高蚁群算法在一定的空间复杂度下的寻优能力,从而改善蚁群算法的全局收敛性,扩宽蚁群算法的应用领域。
M.Dorigo等人提出一种修正的蚁群算法为Ant-Q System,该算法和基本蚁群算法有如下不同:(1)状态转移规则不同:仅让信息量最大的路径以较大的概率选中。
(2)全局更新规则不同:仅对一次循环中的最优的蚂蚁使用。
(3)增加更新规则:在所有蚂蚁完成一次转移后执行。
德国学者Thomastuzle和Holerhoos提出了一种改进的算法即最大最小系统(MAX-MINant system,MMAS)。
为了防止算法过早的停滞,MMAS限定了信息量允许的上下限,并且采用了平滑机制对蚂蚁系统的解进行了改进。
1999年,M.Dorigo把先前的各种蚁群算法归结为ACO元启发式算法(ant colony optimization metar-heuristic)的概念,把各种基于蚁群系统的算法归结到一个统一的框架中。
作为一种新型的启发式算法,ACO元启发式算法近年来受到广泛的关注。
一些学者把蚁群算法和其它的一些仿生优化算法进行融合,并且取得了较好的应用效果。
Abbattista F等人最早提出将遗传算法(GA)和蚁群算法相融合的策略,并且在Oliver30TSP 和Eilon50TSP的仿真实验中得到了较好的结果。
候云鹤等人将微粒群(PSO)引入蚁群算法(GACA)的局部搜索中,采用GACA进行全局搜索,确定最优解存在的领域。
Lee Z J提出一种新的融合算法即免疫-蚁群算法,并将其成功应用在求解WTAP。
蒋加伏等提出了一种基于免疫-蚁群算法的多约束QoS路由选择算法,也取得了很好的应用效果。
参考文献:[1] 蚁群算法及其应用研究赵天男; 王晓红软件导刊2010(6)[2] 蚁群算法的研究及应用进展张祖琼电脑知识与技术2009(9)[3]蚁群算法的研究进展及应用刘彩云; 陈忠软件导刊2008(9)[4]侯云鹤,熊信艮,吴耀武等.基于广义蚁群算法的电力系统经济负荷分配[J3.中国电机工程学报,2003,23(3):59—64.[5]李有梅,王文剑,徐宗本.关于求解难组合优化问题的蚁群优化算法[J3.计算机科学.2002.29(3):115—118[6]温文波.杜维.蚁群算法概述[J].石油化工自动化,2002,(1):19—22.[7]马良.项培军.蚂蚁算法在组合优化中的应用[J3.管理科学学报.2001.4(2):32—36[8]胡娟,王常青,韩伟,全智.蚁群算法及其实现方法研究[J].计算机仿真.2004,21(7):1lO一114.。