物理教学中传送带模型分析
- 格式:doc
- 大小:43.00 KB
- 文档页数:3
2024版新课标高中物理模型与方法传送带模型目录【解决传送带问题的几个关键点】【模型一】水平传动带模型上物体的常见运动【模型二】倾斜传送带模型上物体的常见运动1.倾斜传送带--上传模型2.倾斜传送带--下载【解决传送带问题的几个关键点】Ⅰ、受力分析(1)“带动法”判断摩擦力方向:同向快带慢、反向互相阻;(2)共速要突变的三种可能性:①滑动摩擦力突变为零;②滑动摩擦力突变为静摩擦力;③方向突变。
Ⅱ、运动分析(1)参考系的选择:物体的速度、位移、加速度均以地面为参考系;痕迹指的是物体相对传送带的位移。
(2)判断共速以后一定与传送带保持相对静止作匀速运动吗?(3)判断传送带长度--临界之前是否滑出?Ⅲ、画图画出受力分析图和运动情景图,特别是画好v-t图像辅助解题,注意摩擦力突变对物体运动的影响,注意参考系的选择。
【模型一】水平传动带模型上物体的常见运动项目情景1:轻放情景2:同向情景3:反向图示滑块可能的运动情况(1)可能滑块一直加速;(2)可能滑块先加速后匀速;(1)v0<v时,可能一直加速,也可能先加速再匀速;(2)v0>v时,可能一直减速,也可能先减速再匀速.(1)传送带较短时,滑块一直减速达到左端.(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v和v0<v两种情况下滑块回到右端时有何不同?1(2023秋·安徽蚌埠·高三统考期末)如图甲为机场和火车站的安全检查仪,其传送装置可简化为如图乙模型,紧绷的传送带以1m/s的恒定速率运行。
旅客把行李无初速度地放在A处,设行李与传送带之间的动摩擦因数为0.1,AB间的距离为2m,g取10m/s。
行李从A到B的过程中()A.行李一直受到摩擦力作用,方向先水平向左,再水平向右B.行李到达B处时速率为1m/sC.行李到达B处所需的时间为2.5sD.行李与传送带间的相对位移为2m【答案】BC【详解】AB.由牛顿第二定律得μmg=ma设行李与传送带共速所需的时间为t,则有v=at代入数值得t=1s匀加速运动的位移大小为x=1at2=0.5m<2m2所以行李先做匀加速直线运动,再做匀速直线运动,故A错误,B正确;CD.匀速运动的时间为t'=L-x=1.5sv行李从A到B的时间为=1s+1.5s=2.5st总传送带在t时间的位移为x'=vt=1m行李与传送带间的相对位移为Δx=x'-x=0.5m故C正确,D错误;故选BC。
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
高一物理传送带模型讲解高一物理中的传送带模型是一个常见的物理模型,用于解释物体在传送带上的运动。
下面我将从多个角度全面地讲解这个模型。
首先,传送带模型是基于传送带的运动原理而建立的。
传送带是一种可以将物体从一处运送到另一处的设备,通常由带状材料构成,可以连续地运动。
传送带模型假设传送带是匀速运动的,即传送带上的物体以恒定的速度运动。
其次,传送带模型可以用来解释物体在传送带上的运动规律。
当物体放置在传送带上时,由于传送带的运动,物体也会随之运动。
根据传送带模型,物体在传送带上的速度与传送带的速度相同,方向也相同。
这意味着物体相对于地面的速度是传送带速度和物体自身速度的矢量和。
此外,传送带模型还可以用来解释物体在传送带上的加速度。
如果传送带的速度改变,物体在传送带上的加速度可以通过传送带速度的变化率来确定。
例如,如果传送带的速度逐渐增加,物体在传送带上的加速度将是正的;如果传送带的速度逐渐减小,物体在传送带上的加速度将是负的。
此外,传送带模型还可以用来解释物体在传送带上的摩擦力。
当物体放置在传送带上时,物体与传送带之间会存在摩擦力。
根据传送带模型,摩擦力的大小与物体和传送带之间的摩擦系数以及物体在传送带上的压力有关。
如果物体的压力增大或者摩擦系数增大,摩擦力也会增大。
总结起来,高一物理中的传送带模型是一个用于解释物体在传送带上运动的模型。
它可以帮助我们理解物体在传送带上的速度、加速度以及与传送带之间的摩擦力之间的关系。
通过理解传送带模型,我们可以更好地理解和分析与传送带相关的物理现象和问题。
希望以上对于高一物理传送带模型的讲解能够满足你的需求。
如果还有其他问题,请随时提出。
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
高一物理传送带模型知识点物理学中的传送带模型是我们学习力学领域的重要内容之一。
在高中物理课程中,我们常常接触到这个模型,通过对传送带的研究和分析,我们可以深入了解物体的运动规律和相关的物理概念。
本文将介绍高一物理课程中,关于传送带模型的一些重要知识点。
一、传送带基本概念传送带是一种运输物体的装置,由驱动装置、承载物体的输送带、输送物体的载体等部分组成。
在物理学中,我们通常使用传送带模型来研究物体在传送带上的运动情况。
二、传送带上物体的运动1. 物体在静止的传送带上的运动当静止的物体放置在传送带上时,在没有外力的情况下,物体会跟随传送带一起匀速运动。
这是因为传送带给物体施加了一个与传送带运动方向相同的恒力,使得物体保持相对静止。
2. 物体在运动的传送带上的运动物体在运动的传送带上,其运动情况会受到传送带速度和物体自身速度的影响。
当传送带速度与物体自身速度方向相同时,物体的速度相对较大;当传送带速度与物体自身速度方向相反时,物体的速度相对较小;当传送带速度与物体自身速度大小相等时,物体的速度保持不变。
3. 物体在斜面传送带上的运动当传送带呈斜面倾斜时,物体会受到来自斜面的支撑力和重力的作用。
根据斜面的角度和传送带速度,我们可以计算物体的加速度、速度和位移等相关物理量。
三、传送带的应用1. 传送带在生产线上的应用传送带在工业生产中有广泛的应用,可以用于将物体从一个生产环节输送到另一个生产环节,提高生产效率,减少人力投入。
2. 传送带在交通工具中的应用一些交通工具上也使用了传送带技术,如行李传送带、自动扶梯等。
这些设备通过传送带的运转,方便乘客和物品在交通工具上的运输。
3. 传送带在物流行业中的应用物流行业中的仓储、分拣、运输等环节,也广泛应用了传送带技术。
通过传送带的运输,可以提高物流效率,降低物流成本。
通过以上对传送带模型的介绍,我们深入了解了物体在传送带上的运动规律和一些相关的应用。
传送带模型不仅在物理学中有重要的研究价值,而且在实际生活和工程应用中也起到了不可忽视的作用。
高中物理传送带模型1.设问的角度(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.功能关系分析(1)传送带克服摩擦力做的功:W=F f x传;(2)系统产生的内能:Q=F f x相对.(3)功能关系分析:W=ΔE k+ΔE p+Q.一、水平传送带:情景图示滑块可能的运动情况情景1⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景2 ⑴可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景3 ⑴可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速例1(多选)如图所示为某建筑工地所用的水平放置的运输带,在电动机的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量m=2 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1,运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.以下说法正确的是()A.建筑工人比建筑材料早到右端0.5 sB.建筑材料在运输带上一直做匀加速直线运动C.因运输建筑材料电动机多消耗的能量为1 JD.运输带对建筑材料做的功为1 J答案AD解析 建筑工人匀速运动到右端,所需时间t 1=Lv 0=2 s ,假设建筑材料先加速再匀速运动,加速时的加速度大小为a =μg =1 m/s 2,加速的时间为t 2=v 0a =1 s ,加速运动的位移为x 1=v 02t 2=0.5 m<L ,假设成立,因此建筑材料先加速运动再匀速运动,匀速运动的时间为t 3=L -x 1v 0=1.5 s ,因此建筑工人比建筑材料早到达右端的时间为Δt =t 3+t 2-t 1=0.5 s ,A 正确,B 错误;建筑材料与运输带在加速阶段摩擦生热,该过程中运输带的位移为x 2=v 0t 2=1 m ,则因摩擦而生成的热量为Q =μmg (x 2-x 1)=1 J ,由动能定理可知,运输带对建筑材料做的功为W =12m v 02=1 J ,则因运输建筑材料电动机多消耗的能量为2 J ,C 错误,D 正确.例2 如图所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可视为质点)轻轻放在传送带的底端,经过时间t =1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 答案 (1)32(2)230 J 解析 (1)由题图可知,传送带长x =hsin θ=3 m 工件速度达到v 0前,做匀加速运动,有x 1=v 02t 1工件速度达到v 0后,做匀速运动, 有x -x 1=v 0(t -t 1)联立解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m 所以加速度大小a =v 0t 1=2.5 m/s 2由牛顿第二定律有μmg cos θ-mg sin θ=ma 解得μ=32. (2)由能量守恒定律知,电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量. 在时间t 1内,传送带运动的位移 x 传=v 0t 1=1.6 m在时间t 1内,工件相对传送带的位移 x 相=x 传-x 1=0.8 m在时间t 1内,摩擦产生的热量 Q =μmg cos θ·x 相=60 J最终工件获得的动能E k =12m v 02=20 J工件增加的势能E p =mgh =150 J 电动机多消耗的电能 E =Q +E k +E p =230 J.例3如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.答案:⑴工件先以2/5.2s m 的加速度匀加速运动0.8m ,之后匀速;⑵时间s t t t 4.221=+=例4如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用 答案:B例5如图所示,水平地面上有一长L =2 m 、质量M =1 kg 的长板,其右端上方有一固定挡板.质量m =2 kg 的小滑块从长板的左端以v 0=6 m/s 的初速度向右运动,同时长板在水平拉力F 作用下以v =2 m/s 的速度向右匀速运动,滑块与挡板相碰后速度为0,长板继续匀速运动,直到长板与滑块分离.已知长板与地面间的动摩擦因数μ1=0.4,滑块与长板间的动摩擦因数μ2=0.5,重力加速度g 取10 m/s 2.求:(1)滑块从长板的左端运动至挡板处的过程,长板的位移x ; (2)滑块碰到挡板前,水平拉力大小F ;(3)滑块从长板的左端运动至与长板分离的过程,系统因摩擦产生的热量Q . 答案 (1)0.8 m (2)2 N (3)48 J 解析 (1)滑块在板上做匀减速运动, a =μ2mg m =μ2g解得:a =5 m/s 2根据运动学公式得:L =v 0t -12at 2解得t =0.4 s (t =2.0 s 舍去)碰到挡板前滑块速度v 1=v 0-at =4 m/s>2 m/s ,说明滑块一直匀减速 板移动的位移x =v t =0.8 m (2)对板受力分析如图所示,有:F +F f2=F f1其中F f1=μ1(M +m )g =12 N ,F f2=μ2mg =10 N 解得:F =2 N(3)法一:滑块与挡板碰撞前,滑块与长板因摩擦产生的热量: Q 1=F f2·(L -x ) =μ2mg (L -x )=12 J滑块与挡板碰撞后,滑块与长板因摩擦产生的热量:Q 2=μ2mg (L -x )=12 J 整个过程中,长板与地面因摩擦产生的热量: Q 3=μ1(M +m )g ·L =24 J 所以,系统因摩擦产生的热量: Q =Q 1+Q 2+Q 3=48 J法二:滑块与挡板碰撞前,木板受到的拉力为F 1=2 N (第二问可知) F 1做功为W 1=F 1x =2×0.8=1.6 J 滑块与挡板碰撞后,木板受到的拉力为:F2=F f1+F f2=μ1(M+m)g+μ2mg=22 NF2做功为W2=F2(L-x)=22×1.2 J=26.4 J 碰到挡板前滑块速度v1=v0-at=4 m/s滑块动能变化:ΔE k=20 J所以系统因摩擦产生的热量:Q=W1+W2+ΔE k=48 J.。
物理传送带模型总结在现代工业中,为了提高生产效率和减轻人力负担,物流传送带成为了不可或缺的工具。
物理传送带模型是对这一工具的仿真模拟,通过物理原理来解释其工作原理和传输效果。
本文将对物理传送带模型进行总结和探讨。
1. 传送带的基本原理传送带是一种用来传输物体的设备,其基本原理是利用电动机驱动滚筒转动,将物体沿着输送线上运动。
其中,滚筒和输送带之间形成了摩擦力,促使物体运动。
传送带的速度和转动方向可以根据需要进行调节。
2. 摩擦力的作用摩擦力是物体沿着传送带运动的主要推动力。
当物体与传送带接触时,由于两者之间存在一定程度的粗糙度,形成了摩擦力。
摩擦力的大小与物体的质量、传送带的表面特性以及两者之间的压力有关。
3. 传送带的载荷与运输能力传送带的运输能力是一个重要的指标,它决定了传送带在不同工作环境下的使用情况。
一般来说,传送带的运输能力与其宽度和速度有关。
宽度较大的传送带可以运输更多的物体,而速度较快的传送带可以更快地完成物体的传输。
4. 传送带的应用物理传送带模型在生产线、仓储物流等领域得到了广泛应用。
它可以将物体从一个工作站传送到另一个工作站,实现自动化生产。
此外,传送带还可以用于货物的装卸、分拣等环节,提高工作效率。
5. 传送带的优化设计为了提高传送带的效率和安全性,传送带的设计需要考虑多个因素。
首先,应根据传送带的应用环境选择适当的材料,以保证其耐磨性和耐高温性。
其次,传送带的安装方式和维护保养也需要注意,以确保其长期稳定运行。
6. 物理传送带模型的研究和创新物理传送带模型作为一种仿真工具,不仅可以帮助人们更好地理解传送带的工作原理,还可以用于优化设计和改进工艺。
目前,一些研究人员正在尝试利用新材料和传感技术,实现传送带的智能化控制和自适应调节。
总之,物理传送带模型是对传送带工作原理的模拟和解释,通过对摩擦力、运输能力等因素的研究,可以更好地理解和应用传送带。
传送带作为一种重要的物流工具,在现代工业中发挥着重要的作用。
“传送带模型”1.模型特征一个物体以速度v0v0≥0在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图a、b、c所示.2.建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x对地的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.水平传送带模型:1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2.1求旅行包经过多长时间到达传送带的右端;2若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件最短时间是多少2.如图所示,一质量为m=0.5kg 的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带;已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m ,两端的传动轮半径为R=0.2m ,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运,传送带下表面离地面的高度h不变;如果物体开始沿曲面下滑时距传送带表面的高度为H,初速度为零,g取10m/s2.求:1当H=0.2m 时,物体通过传送带过程中,电动机多消耗的电能;2当H=1.25m 时,物体通过传送带后,在传送带上留下的划痕的长度;3 H在什么范围内时,物体离开传送带后的落地点在同一位置;3.如图所示,质量为m=1kg的物块,以速度v0=4m/s滑上正沿逆时针方向转动的水平传送带,此时记为时刻t=0,传送带上A、B两点间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=0.2,重力加速度g取10m/s2.关于物块在传送带上的整个运动过程,下列表述正确的是A.物块在传送带上运动的时间为4sB.传送带对物块做功为6JC.2s末传送带对物体做功的功率为0D.整个运动过程中由于摩擦产生的热量为18J4.如图10所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B;下列说法中正确的是A.若传送带不动,v B=3m/sB.若传送带逆时针匀速转动,v B一定等于3m/sC.若传送带顺时针匀速转动,v B一定等于3m/sD.若传送带顺时针匀速转动,v B有可能等于3m/s倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.倾斜传送带模型:P Q 5. 如图所示,传送带与水平面间的倾角为θ=37°,传送带以10 m/s 的速率运行,在传送带上端A 处无初速度地放上质量为0.5 kg 的物体,它与传送带间的动摩擦因数为0.5,若传送带A 到B 的长度为16 m,则物体从A 运动到B 的时间为多少 取g =10 m/s26. 如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s2求:1传送带顺时针转动时,物体从顶端A 滑到底端B 的时间;2传送带逆时针转动时,物体从顶端A 滑到底端B 的时间.7. 如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°.现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m,工件与传送带间的动摩擦因数为μ=32,取g =10 m/s2.1通过计算说明工件在传送带上做什么运动;2求工件从P 点运动到Q 点所用的时间.传送带问题1.物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上Q点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,再把物块放到P点自由滑下,则:A. 物块将仍落在Q 点B. 物块将会落在Q 点的左边C. 物块将会落在Q 点的右边D. 物块有可能落不到地面上2、 如图示,物体从Q 点开始自由下滑,通过粗糙的静止水平传送带后,落在地面P 点,若传送带按顺时针方向转动;物体仍从Q 点开始自由下滑,则物体通过传送带后:A. 一定仍落在P 点B. 可能落在P 点左方C. 一定落在P 点右方D. 可能落在P 点也可能落在P 点右方3.如图所示,传送带不动时,物体由皮带顶端A 从静止开始下滑到皮带底端B 用的时间为t ,则:A. 当皮带向上运动时,物块由A 滑到B 的时间一定大于tB. 当皮带向上运动时,物块由A 滑到B 的时间一定等于tC. 当皮带向下运动时,物块由A 滑到B 的时间可能等于tD. 当皮带向下运动时,物块由A 滑到B 的时间可能小于t4、水平传送带长4.5m,以3m/s 的速度作匀速运动;质量m=1kg 的物体与传Q P A B送带间的动摩擦因数为0.15,则该物体从静止放到传送带的一端开始,到达另一端所需时间为多少 这一过程中由于摩擦产生的热量为多少 这一过程中带动传送带转动的机器做多少功 g 取10m/s 2;5、如图示,质量m=1kg 的物体从高为h=0.2m 的光滑轨道上P 点由静止开始下滑,滑到水平传送带上的A 点,物体和皮带之间的动摩擦因数为μ=0.2,传送带AB 之间的距离为L=5m,传送带一直以v=4m/s 的速度匀速运动, 求:1物体从A 运动到B 的时间是多少2物体从A 运动到B 的过程中,摩擦力对物体做了多少功3物体从A 运动到B 的过程中,产生多少热量4物体从A 运动到B 的过程中,带动传送带转动的电动机多做了多少功6.一传送皮带与水平面夹角为30°,以2m/s 的恒定速度顺时针运行;现将一质量为10kg 的工件轻放于底端,经一段时间送到高2m 的平台上,工件与皮带间的动摩擦因数为μ= 23,取g=10m/s 2 求带动皮带的电动机由于传送工件多消耗的电能7.一水平的浅色长传送带上放置一煤块可视为质点,煤块与传送带之间的动摩擦因数为μ;初始时,传送带与煤块都是静止的;现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动;经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动;求此黑色痕迹的长度;8.一平直的传送带以速率v=2m/s 匀速运行,传送带把A 处的工件运送到B 处,A 、B 相距L=30m;从A 处把工件轻轻放到传送带上,经过时间t=20s 能传送到B 处;假定A 处每间隔一定时间放上一个工件,每小时运送共建7200个,每个工件的质量为2kg1传送带上靠近B 端的相邻两工件的距离2不及轮轴出的摩擦,求带动传送带的电动机的平均功率9、如图所示,水平传送带AB长L=8.3m,质量为M=1kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动传送带的传送速度恒定,木块与传送带间的动摩擦因数 =0.5.当木块运动至最左端A点时,一颗质量为m=20g 的子弹以v 0=300m/s 水平向右的速度正对射入木块并穿出,穿出速度v=50m/s,以后每隔1s 就有一颗子弹射中木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g 取10m/s 2.求:1第一颗子弹射入木块并穿出时,木块速度多大2在被第二颗子弹击中前,木块向右运动离A点的最大距离3木块在传送带上最多能被多少颗子弹击中 3h BA P v L10、如图甲示,水平传送带的长度L=6m,传送带皮带轮的半径都为R=0.25m,现有一小物体可视为质点以恒定的水平速度v 0滑上传送带,设皮带轮顺时针匀速转动,当角速度为ω时,物体离开传送带B 端后在空中运动的水平距离为s,若皮带轮以不同的角速度重复上述动作保持滑上传送带的初速v 0不变,可得到一些对应的ω和s 值,将这些对应值画在坐标上并连接起来,得到如图乙中实线所示的 s- ω图象,根据图中标出的数据g 取10m/s 2 ,求:1滑上传送带时的初速v 0以及物体和皮带间的动摩擦因数μ2B 端距地面的高度h3若在B 端加一竖直挡板P,皮带轮以角速度ω′=16rad/s 顺时针匀速转动,物体与挡板连续两次碰撞的时间间隔t′为多少 物体滑上A 端时速度仍为v 0,在和挡板碰撞中无机械能损失11.一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形圆弧由光滑模板形成,未画出,经过CD 区域时是倾斜的,AB 和CD 都与BC 相切;现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h ;稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L;每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动忽略经BC 段时的微小滑动;已知在一段相当长的时间T 内,共运送小货箱的数目为N;这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦;求电动机的平均输出功率P;24 0 乙甲。
传送带模型的解题思路及技巧传送带模型是物理学中一种常见的问题类型,涉及到物体在传送带上的运动。
解决传送带问题的基本思路是进行受力分析和运动分析。
以下是一些解题技巧:
1. 受力分析:首先分析物体在传送带上的受力情况。
传送带对物体施加一个向前的摩擦力,这个力可以是动力(如传送带正向旋转时)或阻力(如传送带逆向旋转时)。
同时,物体还受到重力的作用。
2. 运动分析:分析物体的运动状态,包括速度和加速度。
注意物体在传送带上的运动是相对传送带的运动,而不是相对于地面的运动。
要明确物体的运动方程,特别是共速点的求解。
3. 判断摩擦力方向:根据物体与传送带之间的速度差,判断摩擦力的方向。
如果物体速度大于传送带速度,摩擦力方向与传送带相同(向前);如果物体速度小于传送带速度,摩擦力方向与传送带相反(向后)。
4. 应用牛顿运动定律:根据物体的合外力,应用牛顿第二定律求解物体的加速度。
然后计算物体达到传送带速度的时间和运动距离。
5. 考虑传送带长度:当物体运动距离超过传送带总长时,问题
变为物体在传送带上的加速段所用时间及相关问题。
6. 注意参考系:在列运动学方程时,确保所有运动学量针对同一个参考系。
7. 深刻理解问题:传送带问题是受力分析和运动分析的综合应用,要深刻理解各种情况的运动规律,尤其是摩擦力与速度关系、加速度与摩擦力关系等。
通过以上解题思路和技巧,可以更好地解决传送带模型问题。
在实际解题过程中,还需要根据具体情况灵活运用这些方法。
传送带模型1.水平传送带:如下图,水平传送带以速度v 匀速顺时针转动,传送带长为L ,物块与传送带之间的动摩擦因素为μ,现把一质量为m 的小物块轻轻放在传送带上A 端,求解:①小物块从A 端滑动到B 端的时间:解析:对物块进展受力分析,可以得到物块收到传送带给的向右的摩擦力f = μ mg ;由摩擦力提供加速度f = μ mg = ma ;a = μ g ;所以物块将做匀加速直线运动:当小物块的速度与传送带速度一样时,有:2ax = v 2;得到x = v 2/2a ;假设x 大于等于L ;那么小物块将从A 端到B 端做匀加速直线运动,那么L = 1/2 at 2,从而求出从A 端到B 端的时间;假设x 小于L ;那么小物块将先从A 端做匀加速直线运动,再与传送带以一样速度匀速运动到B 端,那么v = at 1;L - x = vt 2;所以从A 端运动到B 端的时间为t = t 1+t 2.②小物块从A 端运动到B 端过程中,小物块与传送带的相对位移;相对位移只有在小物块做匀加速运动的时间段内有会,所以相对位移:Δ x = v t - 1/2 at 2 (t 为小物块做匀加速运动的时间).③小物块从A 端运动到B 端的过程中产生的热量:小物块从A 端运动到B 端的过程中产生的热量等于在这个过程中摩擦力所做的功:Q = W f = f Δ x .2.倾斜传送带:a .如下图,倾斜传送带以速度v 做顺时针匀速直线运动,传送带长L ,物块与传送带之间的滑动摩擦因素为μ,传送带与水平面的倾角为θ;先将一小物块轻放在A 端,求解:①小物块从A 端运动到B 的的时间:对小物块进展受力分析,受到一个重力、支持力和沿斜面向上的摩擦力,进展正交分解,有:沿斜面向下的重力的分力F 1 = mg sin θ,沿斜面向上的摩擦力f = μ mg cos θ;假设F 1 > f ,那么小物块将往下掉;不讨论;假设F 1 < f ,那么小物块将沿着斜面向上做匀加速直线运动:f - F 1 = ma ;当小物块的速度与传送带速度一样时,有:2ax = v 2;得到x = v 2/2a ;假设x 大于等于L ;那么小物块将从A 端到B 端做匀加速直线运动,那么L = 1/2 at 2,从而求出从A 端到B 端的时间;假设x 小于L ;那么小物块将先从A 端做匀加速直线运动,再与传送带以一样速度匀速运动到B 端,那么v = at 1;L - x = vt 2;所以从A 端运动到B 端的时间为t = t 1+t 2.②小物块从A 端运动到B 端过程中,小物块与传送带的相对位移;相对位移只有在小物块做匀加速运动的时间段内有会,所以相对位移:Δ x = v t - 1/2 at 2 (t 为小物块做匀加速运动的时间).③小物块从A 端运动到B 端的过程中产生的热量:小物块从A 端运动到B 端的过程中产生的热量等于在这个过程中摩擦力所做的功:Q = W f = f Δ x .Ab.如下图,倾斜传送带以速度v做顺时针匀速直线运动,传送带长L,物块与传送带之间的滑动摩擦因素为μ,传送带与水平面的倾角为θ;先将一小物块轻放在A端,求解:①小物块从A端运动到B的的时间:对小物块进展受力分析,受到一个重力、支持力和沿斜面向上的摩擦力,进展正交分解,有:沿斜面向下的重力的分力F1 = mg sin θ,沿斜面向上的摩擦力f = μ mg cos θ;假设F1 < f,那么小物块将往下掉;不讨论;假设F1 > f,那么小物块将沿着斜面向上做匀加速直线运动:F1 - f = ma ;因此物体将一直沿着斜面向下做匀加速直线运动,所以有:L = 1/2 at2;就可以求出从A端运动到B端的时间.c.如下图,倾斜传送带以速度v做逆时针匀速直线运动,传送带长L,物块与传送带之间的滑动摩擦因素为μ,传送带与水平面的倾角为θ;先将一小物块轻放在A端,求解:①小物块从A端运动到B的的时间:对小物块进展受力分析,受到一个重力、支持力和沿斜面向上的摩擦力,进展正交分解,有:沿斜面向下的重力的分力F1 = mg sin θ,沿斜面向下的摩擦力f = μ mg cos θ;假设F1< f,那么小物块将先以F1 + f = ma1的加速度a1做匀加速直线运动,那么当小物块速度等于传送带速度v 时,有v = at1,x = 1/2 at12;假设x < L,那么物体受到的摩擦力方向将变为沿斜面向上,由于F1 < f,因此物体将以速度v做匀速直线运动,L - x = vt2;所以物块从A端运动到B端的时间t = t1+ t2.假设x > L,那么小物块从A端运动到B端的时间为L = 1/2 a1t2.假设F1 > f,那么小物块将先以F1 + f = ma1的加速度a1做匀加速直线运动;那么小物块将先以F1 + f = ma1的加速度a1做匀加速直线运动,那么当小物块速度等于传送带速度v时,有v = at1,x = 1/2 at12;假设x < L,那么物体受到的摩擦力方向将变为沿斜面向上,由于F1 > f,因此物体将以F1 - f = ma2的速度a2继续做匀加速直线运动,有L - x = vt2 + 1/2 a2t22;所以物块从A端运动到B端的时间t = t1+ t2;假设x > L,那么小物块从A端运动到B端的时间为L = 1/2 a1t2.。
物理传送带模型详解
物理传送带模型是一种常见的物理问题,用于研究物体在传送带上传送的过程。
以下是对物理传送带模型的详细解释:
1. 模型描述:物理传送带模型通常由一个传送带和一个或多个物体组成。
传送带可以是水平的、倾斜的或带有转弯。
2. 动力学分析:在传送带模型中,我们需要考虑物体与传送带之间的摩擦力。
摩擦力可以分为静摩擦力和动摩擦力。
静摩擦力用于使物体开始运动,而动摩擦力则在物体运动时起到阻碍作用。
3. 速度分析:根据摩擦力的情况,物体在传送带上的运动可以是加速、匀速或减速。
当摩擦力大于物体所受的其他力时,物体将加速;当摩擦力等于其他力时,物体将匀速运动;当摩擦力小于其他力时,物体将减速。
4. 能量分析:在传送带模型中,还需要考虑能量的转化和守恒。
传送带的运动可能由电动机等外部能源提供,而物体在传送带上的运动则涉及动能和势能的变化。
5. 应用:物理传送带模型在实际生活中有很多应用,如工厂生产线、物流输送系统等。
通过对传送带模型的研究,可以帮助我们设计更高效、安全的输送系统。
以上就是物理传送带模型的基本详解。
需要注意的是,具体的问题可能会有不同的条件和约束,因此在解决具体问题时,需要根据实际情况进行分析和计算。
希望这个解释对你有所帮助!如果你对特定的传送带问题有更详细的需求,请随时告诉我。
传送带模型高中物理在高中物理课程中,我们经常会遇到传送带模型这一概念。
传送带是一种常见的输送工具,可在工业领域中用于将物体从一个地方输送到另一个地方。
在物理学中,传送带模型用于讨论关于速度、位移和加速度的概念。
本文将探讨传送带模型的基本原理以及相关的物理学知识。
传送带模型的基本原理传送带通常由一个带子组成,这个带子会沿着一定的路径移动,从而将上面的物体一起移动。
在传送带模型中,我们通常关注的是带子的运动速度以及上面的物体在带子上的运动情况。
假设传送带的速度为v b,则对于静止在传送带上的物体,它在传送带上的速度为传送带速度v b。
在传送带模型中,我们常用的参考系是以传送带速度为参考系,即以传送带为静止参考系。
在这个参考系下,我们可以分析上面的物体在传送带上的运动情况。
传送带模型中的物理学知识在传送带模型中,我们通常会讨论上面的物体在传送带上的位移、速度和加速度。
对于静止在传送带上的物体来说,它在传送带上的位移等于物体在实验室参考系下的位移。
而速度和加速度则有一些特殊的关系。
假设物体在传送带上的速度为v,传送带速度为v b,则物体在实验室参考系下的速度v′为v′=v+v b。
同样地,物体在传送带上的加速度a和实验室参考系下的加速度a′之间也存在对应关系。
实例分析为了更好地理解传送带模型,我们可以通过一个实例来进行分析。
假设有一条传送带,其速度为v b=2m/s,一个物体在传送带上以速度v=3m/s向右移动。
那么物体在实验室参考系下的速度是多少?根据前面的分析,物体在实验室参考系下的速度v′等于传送带速度v b与物体在传送带上的速度v之和,即v′=v+v b=3m/s+2m/s=5m/s。
因此,物体在实验室参考系下的速度为5m/s,向右移动。
结论通过以上分析,我们对传送带模型的基本原理以及在高中物理中的应用有了初步的了解。
传送带模型在物理学中有着重要的作用,可以帮助我们更好地理解物体在不同参考系下的运动情况。
物理课题研究---传送带模型剖析角度:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析二是从传送带的形式来剖析.常见的几种传送带模型:1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
两大分析受力分析传送带模型中要注意摩擦力的突变(发生在v 物与v 带相同的时刻),对于倾斜传送带模型要分析mgsin θ与f 的大小与方向。
突变有下面三种: 1.滑动摩擦力消失; 2.滑动摩擦力突变为静摩擦力; 3.滑动摩擦力改变方向; 运动分析 1.注意参考系的选择,传送带模型中选择地面为参考系; 2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动? 3.判断传送带长度——临界之前是否滑出?传送带问题中的功能分析1.功能关系:W F =△E K +△E P +Q 。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得)(b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
论文题目
物理教学中传送带模型分析
姓名:***
单位:驻马店市第二高级中学
物理教学中传送带模型分析
驻马店市第二高级中学 段素敏
摘要:传送带模型问题,是物理高考题中较为常见的题型,借以考查同学们对物理知识的灵活运用能力。
关键词:传送带 分析 功能关系
传送带作为工业、农业生产中常见的传送工具,具有普遍的应用性。
传送带按照放置方式分为水平、倾斜两种。
传送带问题涉及高中物理的很多知识点。
如受力分析、力和运动的关系、功和能的关系等。
因此,该模型经常在高考题中出现,借以考查同学们对物理知识的灵活运用能力。
下面我就在实际教学过程中的一些情况与大家共同探讨一下.
一、关于运用传送带模型解题的基本规律
1、传送带问题中摩擦力的分析
一是物体在初态时所受滑动摩擦力的方向的分析。
二是物体在达到传送带的速度时,摩擦力的有无及方向的分析。
对于水平传送带问题,当物体与传送带相对静止,且物体所受弹力仅为支持力时,因物体于传送带间无相对运动的趋势,故物体所受的摩擦力突变为零,之后物体随传送带一起做匀速运动。
对于倾斜传送带问题,当物体与传送带相对静止,且物体所受弹力仅为支持力时,摩擦力的大小是否突变,取决于重力沿斜面向下的分力与最大静摩擦力的关系,另外还要注意分析摩擦力的方向是否发生突变。
突变一般发生在物体速度与传送带速度相同的时刻。
2、关于传送带问题的运动分析
被输送物体运动形式的变化,往往发生在V 物与V 传相同的时刻。
因此我们在研究传送带问题的时候,一般情况下都是将 V 物与V 传相同的时刻作为一个分界点。
这也正是解决此类问题的关键,另外一个分界点是当被输送物或传送带两者之间有一个速度为零的时刻,该时刻一般是加速度方向发生改变的时刻。
此外,在解决此类问题时一定要注意区分相对速度、对地速度,相对位移、对地位移。
3、关于传送带问题中的功能分析
(1)功能关系
W F =∆E K +∆E P +Q
(2)对W F 、Q 的正确理解
传送带做的功:W F =FS 传
功率:P=FV 传(F 由传送带受力平衡求得)
产生的内能:Q=F f S 相对
如物体无初速度,放在水平传送带上,则物体获得的动能E K 与摩擦而产生的热量Q 有如下关系:
E K =Q=21M V 传2 二、关于传送带问题的运动分析
例题(2015 天津)某快递公司分拣邮件的水平传输装置示意图如图,皮带在电动机的带动下保持的恒定速度向右运动,现将一质量为
的邮件轻放在皮带上,邮件和皮带间的动摩擦力因数
,设皮带足够长,取,
在邮件与皮带发生相对滑动的过程中,
求:
(1)邮件滑动的时间t
(2)邮件对地的位移 大小x
(3)邮件与皮带间的摩擦力对皮带做的功W
解析:(1)设邮件放到皮带上与皮带发生相对滑动过程中受到的滑动摩擦力为Fm ,则 Fm=μmg ①取向右为正方向,对邮件应用动量定理, 有 Ft=mv-0 ②由①②式并代入数据得:
t=0.2s ③
(2)邮件与皮带发生相对滑动的过程中,对邮件应用动能定理,
有 Fx=2
1mv 2-0 ④ 由①④式并代入数据得: x=0.1m ⑤
(3)邮件与皮带发生相对滑动的过程中,设皮带相对地面的位移为s ,
则 s=vt ⑥ 摩擦力对皮带做的功
W=-Fs ⑦ 由①③⑥⑦式并代入数据得 W=-2J ⑧
三、传送带模型题的分析流程
→ → → → → → →
↓ { }→ → → ↓
近几年高考中传送带问题常见大题,若理清思路,抓住临界条件,可以做到事倍功半的效果。
当然,有时借助图像求位移或相对位移也是一种不错的解题方法。
相对运动方向 摩擦力方向 V 物与V 传
反向
V 物与V 传同向 是否返回加速加速度方向 速度变化情况 共速 匀速或变速 滑离。