浙江省杭州四中2013届高三第九次教学质检数学理试题
- 格式:doc
- 大小:344.50 KB
- 文档页数:8
2013高三数学综合测试(九) 解析几何一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1B .-1C .-2或-1D .-2或12.过点P (0,1)与圆x 2+y 2-2x -3=0相交的所有直线中,被圆截得的弦最长时的直线方程是( )A .x =0B .y =1C .x +y -1=0D .x -y +1=03.已知直线l 1的方向向量为a =(1,3),直线l 2的方向向量为b =(-1,k ),若直线l 2过点(0,5),且l 1⊥l 2,则直线l 2的方程是( )A .x +3y -5=0B .x +3y -15=0C .x -3y +5=0D .x -3y +15=04.已知直线x +y =a 与圆x 2+y 2=4交于A ,B 两点,且|OA +OB |=|OA -OB |(其中O 为坐标原点),则实数a 等于( )A .2B .-2C .2或-2D.6或-65.若椭圆x 2a 2+y 2b 2=1过抛物线y 2=8x 的焦点, 且与双曲线x 2-y 2=1有相同的焦点,则该椭圆的方程是( )A.x 24+y 22=1 B.x 23+y 2=1 C.x 22+y 24=1D .x 2+y 23=16.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B中,若有两边之和是10,则第三边的长度为( )A .6B .5C .4D .37.方程为x 2a 2+y 2b 2=1(a >b >0)的椭圆的左顶点为A ,左、右焦点分别为F 1、F 2,D 是它短轴上的一个端点,若31DF =DA +22DF ,则该椭圆的离心率为( )A.12B.13C.14D.158.若椭圆12222=+by a x (a >b >0)的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线bx y 22= 的焦点分成5∶3的两段,则此椭圆的离心率为 ( )A .1617 B C .45 D 9.已知双曲线22221x y a b-=的一个焦点与抛物线24y x =的焦点重合,且双曲线的离心率等于( ) A.224515y x -= B.22154x y -= C.22154y x -= D.225514y x -=10. 记点P 到图形C 上每一个点的距离的最小值称为点P 到图形C 的距离,那么平面内到定圆C 的距离与到定点A 的距离相等的点的轨迹不可能是( ) A .圆 B .椭圆 C .双曲线的一支 D .直线 二、填空题:本大题共7小题,每小题4分,共28分。
浙江省杭州四中2013届高三第九次教学质检语文试题杭州四中高三年级2013学年第九次教学质量检测语文试题卷一、语言文字运用(共24分,其中选择题每小题3分)1.下列词语中加点的字,注音全都正确的一项是A.逮(di)捕发酵(jio)梦魇(y)片言只(zh)语B.拂(f)晓舌苔(ti)攒(cun)射嗜痂之癖(p)C.咯(k)血剽(bio)悍节骨眼(ji)家给(j)人足D.作(zu)坊打烊(yng)肱骨(gng)牝(pn)鸡司晨2.下列各句中,没有错别字的一项是A.伴随着一辆辆轿车驶进寻常百姓家,一家家汽车装璜店也如雨后春笋般冒出,为此,我省国税部门正强化税收监管,努力使该行业成为一个新的税收增长点。
B.评论要有大的关怀,有全局的、大局的国家利益观照。
假如我们的报道起于愤青而止于愤青,都是些鸡零狗碎、耸人听闻的炒作,那就没有上升的空间了。
C.当今世界,金融危机依然波诡云谲,大国博弈不断走向纵深,处于快速上升期和深刻型期的中国,面临挈机和挑战,有木秀于林的骄傲,也有不进则退的忧患。
D.为了试一试唐寅的才华,大伙让他当场写一首诗;他思索了一会;然后大笔一挥,洋洋洒洒蜚然成章,果然名不虚传!3.下列各句中,加点的词语运用正确的一项是A.我很想拥有那本鉴赏辞典,然而身上一个铜板也没有,只能过屠门而大嚼,每天到书店看一眼,徒饱眼福。
B.《诗经》中的《卫风·氓》是一首以弃妇为题材的诗歌。
该诗将弃妇遭弃的黍离之悲写得淋漓尽致,感人至深。
C.2009年以来,中国一贯在努力缩减军队的规模,提高军人长期没有涨过的工资,并改善现有部队的条件以鼓舞士气和提高效率。
D.由于陆劲松认罪态度一直不好,曹指导员严肃地批评道:一个罪犯不痛定思痛,不用汗水来洗涤自己灵魂上的污垢,那是不可能把自己改造成新人的!4.下列各句中,没有语病的一项是A.辽宁舰指挥员的起飞手势成为亮点,经过报刊、网络和媒体的与报道,受到了国人的热情追捧和模仿。
杭州四中数学测试卷参考答案一、选择题:二、填空题:9、3-; 10 11、直角; 12、第 252 行,第 2 列. 13、n b a m <<< 三、解答题:14、解析:从6只灯泡中有放回地任取两只,共有62=36种不同取法(1)取到的2只都是次品情况为22=4种,因而所求概率为91364=;————4分(2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次品;及第一次取到次品,第二次取到正品.因而所求概率为9436423624P =⨯+⨯=;——8分(3)由于“取到的两只中至少有一只正品”是事件“取到的两只都是次品”的对立事件,因而所求概率为98911P =-=.———————————————————————12分15、(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. ————————————2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31.①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ②当31<c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤. 综上,31=c 或51c -<-≤. ————————————————————6分 (Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a . ∴0>>c a .∵关于x 的一元二次方程0232=++c bx ax 的判别式0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. 又该抛物线的对称轴ab x 3-=, 由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2, ∴32331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x16、 这种猜想是错误的.理由如下:——————————————————2分将处于这个“方螺线形”的左下角到右上角的对角线上数,按从小到到的顺序排成一列:41,43,47,53,61,71,83,97,113,131,…,发现:);1(2,6,4,21342312-=-=-=-=--n a a a a a a a a n n将上述1-n 个等式相加,得)1(26421-++++=-n a a n , 整理得:412+-=n n a n .那么,当41=n 时,24141=a ,这是一个合数.从而说明,这样的猜想是错误的.——————————————————12分。
浙江省2014届理科数学复习试题选编28:空间角和空间距离一、选择题1 .(浙江省海宁市2013届高三2月期初测试数学(理)试题)在平行四边形ABCD中,22,60BC AB B ==∠=o ,点E 是线 段AD 上任一点(不包含点D ),沿直线CE 将△CDE 翻折成△E CD ',使'D 在平面ABCE 上的射影F 落在直线CE 上,则'AD 的最小值是()A B C .2 D 【答案】A2 .(浙江省六校联盟2013届高三回头联考理科数学试题)棱长为2的正方体ABCD-A 1B 1C 1D 1在空间直角坐标系中移动,但保持点( )A .B 分别在X 轴、y 轴上移动,则点C 1到原点O 的最远距离为 ( )A .B .C .5D .4【答案】D3 .(温州市2013年高三第一次适应性测试理科数学试题)正方体1111ABCD A B C D -中,1CC 与平面1A BD所成角的余弦值为()A B C .23D 【答案】D4 .(浙江省绍兴一中2013届高三下学期回头考理科数学试卷)已知正方体1111D C B A ABCD -的棱长为1,N M ,是对角线1AC 上的两点,动点P 在正方体表面上且满足||||PN PM =,则动点P 的轨迹长度的最大值为() A .3B .23C .33D .6【答案】B5 .(浙江省“六市六校”联盟2013届高三下学期第一次联考数学(理)试题)如图所示,在正方体1111D C B A ABCD -中,E 为1DD 上一点,且131DD DE =,F 是侧面11C CDD 上的动点,且//1F B 平面BE A 1,则F B 1与平面11C CDD 所成角的正切值构成的集合是 ( )A .}23{ B .}1352{C .}22323|{≤≤m m D .}231352|{≤≤m m【答案】C6 .(浙江省稽阳联谊学校2013届高三4月联考数学(理)试题(word 版) )已知四面体A BCD -中,P为棱AD 的中点,则过点P 与侧面ABC 和底面BCD 所在平面都成60的平面共有(注:若二面角l αβ--的大小为120,则平面α与平面β所成的角也为60)( ) A .2个 B .4个 C .6个 D .无数个【答案】B 提示:设平面ABC 的法向量为a ,平面BCD 的法向量为b,因为二面角A BC D --的平面角的余弦值为13,即平面角大约为71 ,所以过点P 与法向量,a b 都成60的向量有4个,所以过点P 与侧面ABC 和底面BCD 所在平面都成60的平面共有4个.7 .(浙江省温州中学2013届高三第三次模拟考试数学(理)试题)已知正四面体ABCD -中,P 为AD 的中点,则过点P 与侧面ABC 和底面BCD 所在平面都成 60的平面共有(注:若二面角l αβ--的大小为120,则平面α与平面β所成的角也为 60)() A .2个 B .4个 C .6个 D .无数个非选择题部分(共100分) 【答案】 B .8 .(【解析】浙江省镇海中学2013届高三5月模拟数学(理)试题)如图ABC ∆是等腰直角三角形,其中90A ∠=︒,且,30DB BC BCD ⊥∠=︒,现将ABC ∆折起,使得二面角A BC D --为直角,1C (第10题图)ABCDE1A 1B 1D则下列叙述正确的是①0BD AC ⋅=; ②平面BCD 的法向量与平面ACD 的法向量垂直;③异面直线BC 与AD 所成的角为60︒;④直线DC 与平面ABC 所成的角为30︒ ( ) A .①③ B .①④ C .①③④ D .①②③④ 【答案】【答案】B 解析:易证BD ABC ⊥面,则AC ABD ⊥面,到此很容易证明①④正确,②错误,而BC 与AD9 .(浙江省五校2013届高三上学期第一次联考数学(理)试题)一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成120 角,且12,F F 的大小分别为1和2,则有()A .13,F F 成90 角B .13,F F 成150 角C .23,F F 成90 角D .23,F F 成60 角【答案】() A .10.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则()A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为060【答案】A11.(浙江省宁波市2013届高三第一学期期末考试理科数学试卷)正方体ABCD-A 1B 1C 1D 1中BC 1与截面BB 1D 1D所成的角是 () A .6π B .4π C .3π D .2π 【答案】A 二、填空题12.(浙江省永康市2013年高考适应性考试数学理试题 )如图,斜边长为4的直角ABC ∆,=90B ∠ ,60A ∠= 且A 在平面α上,B ,C 在平面α的同侧,M 为BC 的中点.若ABC ∆在平面α上的射影是以A 为直角顶点的三角形''C AB ∆,则M 到平面α的距离的取值范围是____.【答案】5(2,)213.(浙江省温州八校2013届高三9月期初联考数学(理)试题)在二面角βα--l 中,,,,,βα⊂⊂∈∈BD AC l B l A 且,,l BD l AC ⊥⊥已知,1=AB 2==BD AC ,5=CD , 则二面角βα--l 的余弦值为___________【答案】2114.(浙江省宁波一中2013届高三12月月考数学(理)试题)正四面体S —ABC 中,E 为SA 的中点,F为ABC ∆的中心,则直线EF 与平面ABC 所成的角的正切值是___________________.15.(浙江省2013年高考模拟冲刺(提优)测试二数学(理)试题)在三棱锥S-ABC 中,△ABC 为正三角形,且A 在面SBC 上的射影H 是△SBC 的垂心,又二面角H-AB-C 为300,则SAAB=________; 16.(浙江省杭州四中2013届高三第九次教学质检数学(理)试题)如图,在正方形ABCD 中,E ,F 分别为线段AD ,BC 上的点,∠ABE =20°,∠CDF =30°.将△ABE 绕直线BE 、△CDF 绕直线CD 各自独立旋转一周,则在所有旋转过程中,直线AB 与直线DF 所成角的最大值为_________.【答案】70°17.(浙江省杭州高中2013届高三第六次月考数学(理)试题)1ABC ∆和2ABC ∆是两个腰长均为 1 的等腰直角三角形,当二面角12C AB C --为60 时,点1C 和2C 之间的距离等于 __________.(请写出所有可能的值)三、解答题18.(浙江省杭州二中2013届高三6月适应性考试数学(理)试题)等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =12CE EA =(如图1).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --成直二面角,连结1A B 、1AC (如图2). (Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60 ?若存在,求出PB 的长,若不存在,请说明理由.【答案】证明:(1)因为等边△ABC 的边长为3,且AD DB =12CE EA =,所以1AD =,2AE =. 在△ADE 中,60DAE ∠= ,由余弦定理得DE ==. 因为222AD DE AE +=,所以AD DE ⊥.折叠后有1A D DE ⊥. 因为二面角1A DE B --是直二面角,所以平面1A DE ⊥平面BCED . 又平面1A DE 平面BCED DE =,1A D ⊂平面CDF1A DE ,1A D DE ⊥,所以1A D ⊥平面BCED .(2)解法1:假设在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60 .如图,作PH BD ⊥于点H ,连结1A H 、1A P .由(1)有1A D ⊥平面BCED ,而PH ⊂平面BCED ,所以1A D ⊥PH .又1A D BD D = ,所以PH ⊥平面1A BD .所以1PA H ∠是直线1PA 与平面1A BD 所成的角. 设PB x=()03x ≤≤,则2x BH =,PH x =.在Rt △1PA H 中,160PA H ∠= ,所以112A H x =. 在Rt △1A DH中,11A D =,122DH x =-. 由22211A D DH A H +=,得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭.解得52x =,满足03x ≤≤,符合题意.所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60 ,此时52PB =. 解法2:由(1)的证明,可知ED DB ⊥,1A D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、1DA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系D xyz -如图设2PB a =()023a ≤≤,则BH a =,PH =,2DH a =-. 所以()10,0,1A ,()2,0P a -,()E .所以()12,,1PA a =-.因为ED ⊥平面1A BD ,所以平面1A BD 的一个法向量为()DE = .因为直线1PA 与平面1A BD 所成的角为60 ,所以11sin 60PA DE PA DE===, 解得54a =.即522PB a ==,满足023a ≤≤,符合题意. 所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60 ,此时52PB =.19.(浙江省考试院2013届高三上学期测试数学(理)试题)如图,平面ABCD ⊥平面ADEF ,其中ABCD为矩形,ADEF 为梯形, AF ∥DE ,AF ⊥FE ,AF =AD =2 DE =2.(Ⅰ) 求异面直线EF 与BC 所成角的大小;(Ⅱ) 若二面角A-BF-D 的平面角的余弦值为13,求AB 的长.【答案】本题主要考查空间点、线、面位置关系,异面直线所成角、二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力.满分15分. (Ⅰ) 延长AD ,FE 交于Q .因为ABCD 是矩形,所以 BC ∥AD ,所以∠AQF 是异面直线EF 与B C 所成的角.在梯形ADEF 中,因为DE ∥AF ,AF ⊥FE ,AF =2,DE =1得(第20题图)∠AQF =30°(Ⅱ) 方法一:设AB =x .取AF 的中点G .由题意得 DG ⊥AF .因为平面ABCD ⊥平面ADEF ,A B ⊥AD,所以 AB ⊥平面ADEF , 所以 AB ⊥DG . 所以DG ⊥平面ABF .过G 作GH ⊥BF ,垂足为H ,连结DH ,则DH ⊥BF , 所以∠DHG 为二面角A -BF -D 的平面角. 在直角△AGD 中,AD =2,AG =1,得 DG在直角△BAF 中,由AB BF =sin ∠AFB =GH FG,得 GHx=所以 GH.在直角△DGH 中,DGGH,得DH=因为cos ∠DHG =GH DH =13,得 x, 所以(第20题图)AB. 方法二:设AB =x .以F 为原点,AF ,FQ 所在的直线分别为x 轴,y 轴建立空间直角坐标系Fxyz .则 F (0,0,0),A (-2,0,0),EDB (-2,0,x ), 所以 DFBF=(2,0,-x ).因为EF ⊥平面ABF ,所以平面ABF 的法向量可取1n=(0,1,0).设2n=(x 1,y 1,z 1)为平面BFD 的法向量,则111120,0,x z x x -=⎧⎪⎨=⎪⎩ 所以,可取2n因为cos<1n ,2n >=1212||||n n n n ⋅⋅=13,得 x, 所以 AB.20.(浙江省温州市十校联合体2013届高三上学期期末联考理科数学试卷)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC 交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1. (I)证明:EM⊥BF;(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.(第20题图)(第20题图)【答案】解:(1)3AM BM =,.如图,以A 为坐标原点,垂直于AC 、AC 、AE 所在的直线为,,x y z 轴建立空间直角坐标系.由已知条件得(0,0,0),(0,3,0),(0,0,3),3,0),(0,4,1)A M E B F,(0,3,3),(,1)ME BF ∴=-=.由(0,3,3)(,1)0ME BF ⋅=-⋅=, 得MF BF ⊥, EM BF ∴⊥(2)由(1)知(3,3),(,1)BE BF =-= . 设平面BEF 的法向量为(,,)n x y z =,由0,0,n BE n BF ⋅=⋅=得3300y z y z ⎧-+=⎪⎨++=⎪⎩,]令x =1,2y z ==,)2n ∴= ,由已知EA ⊥平面ABC ,所以取面ABC 的法向量为(0,AE =设平面BEF 与平面ABC 所成的锐二面角为θ,则cos cos ,n AE θ→=<>==,平面BEF 与平面ABC 所成的锐二面角的余弦值为21.(浙江省名校新高考研究联盟2013届高三第一次联考数学(理)试题)如图,AB 为圆O 的直径,点E 、F 在圆O 上,EF AB //,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2=AB ,1=EF .(Ⅰ)求证:平面⊥DAF 平面CBF ;(Ⅱ)求直线AB 与平面CBF 所成角的大小;(Ⅲ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60 ?(I)证明: 平面⊥ABCD 平面ABEF ,AB CB ⊥, 平面 ABCD 平面ABEF =AB ,⊥∴CB 平面ABEF .⊂AF 平面ABEF ,CB AF ⊥∴, 又AB 为圆O 的直径,BF AF ⊥∴, ⊥∴AF 平面CBF⊂AF 平面ADF ,∴平面⊥DAF 平面CBF . (II)根据(Ⅰ)的证明,有⊥AF 平面CBF , ∴FB 为AB 在平面CBF 内的射影,因此,ABF ∠为直线AB 与平面CBF 所成的角 6分 EF AB // ,∴四边形ABEF 为等腰梯形, 过点F 作AB FH ⊥,交AB 于H .2=AB ,1=EF ,则212=-=EF AB AH .在AFB Rt ∆中,根据射影定理AB AH AF ⋅=2,得1=AF21sin ==∠AB AF ABF , 30=∠∴ABF . ∴直线AB 与平面CBF 所成角的大小为 30(Ⅲ)设EF 中点为G ,以O 为坐标原点,OA 、OG 、AD 方向分别为x 轴、y 轴、z 轴方向建立空间直角坐标系(如图).设t AD =)0(>t ,则点D 的坐标为),0,1(t 则 (1,0,)C t -,又1(1,0,0),(1,0,0),(2A B F -1(2,0,0),(,)2CD FD t ∴==设平面DCF 的法向量为),,(1z y x n =,则10n CD ⋅= ,10n FD ⋅=.即20,0.x y tz =⎧⎪⎨+=⎪⎩ 令3=z ,解得t y x 2,0== )3,2,0(1t n =∴由(I)可知AF ⊥平面CFB ,取平面CBF的一个法向量为21(,0)2n AF ==- ,依题意1n与2n 的夹角为 6060cos ∴12=,解得t =因此,当AD,平面与DFC 平面FCB 所成的锐二面角的大小为60 .22.(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word 版) )如图,一个正ABC '∆和一个平行四边形ABDE 在同一个平面内,其中8AB BD AD ==,AB DE ,的中点分别为F G ,. 现沿直线AB 将ABC '∆翻折成ABC ∆,使二面角C AB D --为120︒,设CE 中点为H . (Ⅰ) (i)求证:平面//CDF 平面AGH ; (ii)求异面直线AB 与CE 所成角的正切值; (Ⅱ)求二面角C DE F --的余弦值.【答案】解法一:(Ⅰ) (i)证明:连FD . 因为ABDE 为平行四边形,F G 、分别为AB DE 、中点, 所以FDGA 为平行四边形,所以//FD AG又H G 、分别为CE DE 、的中点,所以//HG CD FD CD ⊄、平面AGH ,AG HG 、⊂平面AGH ,所以//FD 平面AGH ,//CD 平面AGH ,而FD CD ⊂、平面CDF ,所以平面//CDF 平面AGH(ii)因为//DE AB ,所以CED ∠或其补角即为异面直线AB 与CE 所成的角因为ABC 为正三角形,BD AD =,F 为AB 中点,所以AB CF AB DF ⊥⊥,,从而AB ⊥平面CFD ,而//DE AB ,所以DE ⊥平面CFD ,因为CD ⊂平面CFD ,所以DE CD ⊥由条件易得CF DF ===又CFD ∠为二面角C AB D --的平面角,所以120CFD ∠=︒,所以CD所以tan CD CED DE∠=(Ⅱ) 由(Ⅰ)的(ii)知DE ⊥平面C F D ,即CD DE FD DE ⊥⊥,,所以C D F ∠即为二面角C DE F --的平面角222cos 2CD DF CF CDF CD DF +-∠===⋅解法二:(Ⅰ) (i )同解法一;(ii) 因为ABC 为正三角形,BD AD =,F 为AB 中点,所以AB CF AB DF ⊥⊥,,从而CFD ∠为二面角C AB D --的平面角且AB ⊥平面CFD ,而AB ⊂平面ABDE ,所以平面CFD ⊥平面ABDE .作CO ⊥平面ABDE 于O ,则O 在直线DF 上,又由二面角C AB D --的平面角为120CFD ∠=︒,故O 在线段DF 的延长线上. 由CF=6FO CO ==以F 为原点,FA FD FZ 、、为x y z 、、轴建立空间直角坐标系,如图,则由上述及已知条件得各点坐标为()040A ,,,()040B -,,,()00D ,()80E ,()06C -,,所以()080AB =-,,,()86CE =- 你的首选资源互助社区所以异面直线AB 与CE 所成角的余弦值为()cos AB CE AB CE AB CE ∙===⋅,,=(Ⅱ)由(Ⅰ)的(ii)知()()06080CD DE =-= ,,,,设平面C D E 的法向量为1=n ()x y z ,,,则由1⊥n CD ,1⊥n DE 得6080.z y ⎧-=⎪⎨=⎪⎩,令z =得1=n (60,又平面DEF 的一个法向量为()2001=,,n ,而二面角C DE F --为锐二面角,所以二面角C DE F --的余弦为121212cos ∙=⋅,n n n n n n 23.(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)如图:在直三棱柱111ABC A B C -中,1AB AC ==,90BAC ∠= .(Ⅰ)若异面直线1A B 与11B C 所成的角为60 ,求棱柱的高h ;(Ⅱ)设D 是1BB 的中点,1DC 与平面11A BC 所成的角为θ,当棱柱的高h 变化时,求sin θ的最大值.【答案】解法1:(Ⅰ)由三棱柱111C B A ABC -是直三棱柱可知,1AA 即为高,如图1,因为11//C B BC ,所以BC A 1∠是异面直线B A 1与11C B 所成的角或其补角, 连接1A C ,因为AB AC =,所以11A B AC =. 在Rt△ABC 中,由1AB AC ==,90BAC ∠= ,可得BC 又异面直线1A B 与11B C 所成的角为60 ,所以160A BC ∠= ,即△1A BC 为正三角形.于是111A B B C =.在Rt△1A AB 中,1A B 得11AA =,即棱柱的高为1 (Ⅱ)设1(0)AA h h =>,如图1,过点D 在平面11A B BA 内作1DF A B ⊥于F ,则 由11AC ⊥平面11BAA B ,DF ⊂平面11BAA B ,得11AC DF ⊥. 而1111AC A B A = ,所以DF ⊥平面11A BC .故1DC F ∠就是1DC 与平面11A BC 所成的角,即1DC F θ∠= 在Rt △DFB 中,由2hBD =,得DF =,在Rt △11DB C 中,由12h B D =,11B C =得1DC , 在Rt △1DFC 中,1sin DF DC θ===令()f h =,(Ⅰ)因为异面直线1A B 与11B C 所成的角60 ,所以111111||cos60||||B C A B B C A B ⋅=⋅,12=,解得1h = (Ⅱ)由D 是1BB 的中点,得(1,0,)2h D ,于是1(1,1,)2hDC =- .设平面11A BC 的法向量为(,,)x y z =n ,于是由1A B ⊥ n ,11AC ⊥n ,可得 1110,0,A B AC ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,0,x hz y -=⎧⎨=⎩ 可取(,0,1)h =n , 于是1sin |cos ,|DC θ=<>n .而111|||||cos ,|||||h h DC DC DC -+⋅<>===⋅n n n令()f h =,因为22899h h++≥,当且仅当228h h =,即h =,等号成立.所以()f h ==,故当h ,sin θ24.(浙江省新梦想新教育新阵地联谊学校2013届高三回头考联考数学(理)试题 )如图,在四棱锥P ABCD -中,PA ⊥底面A,AD AB ⊥,CD AC ⊥ ,︒=∠60ABC ,BC AB PA == ,E 是PC 的中点.(Ⅰ)证明:CD AE ⊥; (Ⅱ)证明:PD ⊥平面ABE ; (Ⅲ)求二面角A PD C --的正切值.ABCDPE【答案】解法一:(Ⅰ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD , 故PA CD ⊥.AC CD PA AC A ⊥= ,∵,CD ⊥∴平面PAC .[而AE ⊂平面PAC ,CD AE ⊥∴(Ⅱ)证明:由PA AB BC ==,60ABC ∠=°,可得AC PA =. E ∵是PC 的中点,AE PC ⊥∴.由(Ⅰ)知,AE CD ⊥,且PC CD C = ,所以AE ⊥平面PCD .而PD ⊂平面PCD ,AE PD ⊥∴.PA ⊥∵底面ABCD PD ,在底面ABCD 内的射影是AD ,AB AD ⊥,AB PD ⊥∴. 又AB AE A = ∵,综上得PD ⊥平面ABE(Ⅲ)过点A 作AM PD ⊥,垂足为M ,连结EM .则(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则EM PD ⊥.因此AME ∠是二面角A PD C --的平面角.由已知,得30CAD ∠=°.设AC a =,可得PA a AD PD AE ====,,,.在ADP Rt △中,AM PD ⊥∵,AMPD PA AD =∴··,则a PA AD AM PD===··. 在AEM Rt △中,sin AE AME AM ==所以二面角A PD C --的正切值为7解法二:(Ⅰ)证明:以AB 、AD 、AP 为x 、y,z 轴建立空间直角坐标系,设AB=a.60ABC AB BC ABC ∠==∴∆o Q ,,是正三角形6030BAC DAC AD ∴∠=∴∠=∴=oo,,(),0,,00,0,,2a C D P a ⎛⎫⎛⎫∴ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,42a a E ⎛⎫∴ ⎪ ⎪⎝⎭,0,,242a a a CD AE ⎛⎫⎛⎫∴=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭uu u r uu u r 220,88a a CD AE CD AE ∴⋅=-+=∴⊥uu u r uu u rABCDPEFMACDPEM(Ⅱ)证明:()(),0,0,,0,0,,B a AB a PD a ⎛⎫∴==- ⎪ ⎪⎝⎭uu u r uu u r Q 又 220,022a a PD AB PD AE ∴⋅=⋅=-=uu u r uu u r uu u r uu u r,PD AB PD AE ∴⊥⊥,AB AE A PD ADE =∴⊥I 又平面(Ⅲ)设平面PDC 的法向量为(),,n x y z =r则()0202az n a yx ⎧-=⎪⎧⎪⎪∴=⎨=⎪-+=⎪⎩r 即 又平面APD 的法向量是()1,0,0,cos ,,m m n m n =∴==u r u r r u r rtan ,m n =u r r所以二面角A PD C --的正切值是725.(浙江省宁波市十校2013届高三下学期能力测试联考数学(理)试题)如图,ABC∆中,90,1,B AB BC D E ∠=== 、两点分别在线段AB AC 、上,满足,(0,1)AD AEAB ACλλ==∈.现将ABC ∆沿DE 折成直二面角A DE B --. (1)求证:当12λ=时,ADC ABE ⊥面面;(2)当(0,1)λ∈时,二面角E AC D --的大小能否等于4π?若能,求出λ的值;若不能,请说明理由.【答案】ABCDEAB CD E26.(浙江省温州中学2013届高三第三次模拟考试数学(理)试题)如图,在三棱锥ABCP -中,22,4======BC AB AC PC PB PA(I)求证:平面ABC ⊥平面APC(II)若动点M 在底面三角形ABC 上,二面角M PA C --的余弦值为322,求BM 的最小值.【答案】 解:(1)取AC 中点O,因为AP=BP,所以OP⊥OC 由已知易得三角形ABC 为直角三角形,∴OA=OB=OC,⊿POA≌⊿POB≌⊿POC,∴OP⊥OB∴OP⊥平面ABC, ∵OP 在平面PAC 中,∴平面ABC ⊥平面APC ( )[ ZXXK] (2) 以O 为坐标原点,OB 、OC 、OP 分别为 x 、y 、z 轴建立如图所示空间直角坐标系. 由题意平面PAC 的法向量1(1,0,0)n OB →→==,设平面PAM 的法向量为()()2,,,,,0n x y z M m n =((),,2,0AP AM m n ∴==+由220,0AP n AM n ⋅=⋅=()2020y mx n y ⎧+=⎪∴⎨++=⎪⎩,取)221n n m ⎛⎫+=-⎪ ⎪-⎝⎭21cos ,n n →→∴<>===∴0-∴BM的最小值为垂直距离d =27.(【解析】浙江省镇海中学2013届高三5月模拟数学(理)试题)如图,在梯形ABCD中,//,,60AB CD AD CD CB a ABC ===∠=︒,平面ACFE ⊥ 平面ABCD ,四边形ACFE 是矩形,AE a =,点M 在线段EF 上.(1)求证:BC ⊥平面ACFE ;(2)求二面角B EF D --的余弦值.【答案】 证明:(1)在梯形ABCD 中,∵,,60AB CD AD DC CB a ABC ===∠=︒ ,∴四边形ABCD 是等腰梯形, 且30,120,DCA DAC DCB ∠=∠=︒∠=︒∴90ACB DCB DCA ∠=∠-∠=︒,∴.AC BC ⊥又∵平面ACFE ⊥平面ABCD ,交线为AC ,∴BC ⊥平面ACFE . (2)方法一;(几何法)取EF 中点G ,EB 中点H ,连结DG 、GH 、DH , ∵容易证得DE =DF ,∴.DG EF ⊥∵BC ⊥平面ACFE ,∴.BC EF ⊥ 又∵EF FC ⊥,∴.EF FB ⊥ 又∵GH FB ,∴.EF GH ⊥∴DGH ∠是二面角B —EF —D 的平面角.在△BDE 中,,.DE DB BE ==== ∴222BE DE DB =+∴90EDB ∠=︒,∴.DH =又,.DG GH ==∴在△DGH 中,由余弦定理得cos DGH ∠=即二面角B —EF —D 的平面角余弦值为1010方法二;(向量法)以C 为坐标原点,建立如图所示的直角坐标系:所以)0,0,3(a EF -=,),,0(a a BF -=,),2,23(a aa DF -=分别设平面BEF 与平面DEF 的法向量为),,(1111z y x n =,),,(2222z y x n =所以⎪⎩⎪⎨⎧=+-=⋅=-=⋅00311111az ay BF n ax EF n ,令11=y ,则1,011==z x又⎪⎩⎪⎨⎧=++-=⋅=-=⋅022*********az y a x a DF n ax EF n ,显然02=x ,令21-,122==z y 则 所以)1,1,0(1=n ,,设二面角的平面角为θθ,为锐角所以θ28.(2013届浙江省高考压轴卷数学理试题)如图,在斜三棱柱111ABC A B C -中,侧面11AA B B ⊥底面ABC ,侧棱1AA 与底面ABC 成60°的角,12AA =.底面ABC 是边长为2的正三角形,其重心为G 点, E 是线段1BC 上一点,且113BE BC =.(1)求证:GE //侧面11AA B B ;(2)求平面1B GE 与底面ABC 所成锐二面角的正切值; (3)在直线..AG 上是否存在点T ,使得AG T B ⊥1?若存在,指出点T 的位置;若不存在,说明理由.【答案】【解析】解法1:(1)延长B 1E 交BC 于点第20题图F ,11B EC ∆ ∽△FEB ,BE =21EC 1,∴BF =21B 1C 1=21BC , 从而点F 为BC 的中点.∵G 为△ABC 的重心,∴A 、G 、F 三点共线.且11//,31AB GE FB FE FA FG ∴==, 又GE ⊄侧面AA 1B 1B ,∴GE //侧面AA 1B 1B .(2)在侧面AA 1B 1B 内,过B 1作B 1H ⊥AB ,垂足为H ,∵侧面AA 1B 1B ⊥底面ABC ,∴B 1H ⊥底面ABC .又侧棱AA 1与底面ABC 成60°的角,AA 1=2,∴∠B 1BH =60°,BH =1,B 1H =.3 在底面ABC 内,过H 作HT ⊥AF ,垂足为T ,连B 1T ,由三垂线定理有B 1T ⊥AF , 又平面B 1CE 与底面ABC 的交线为AF ,∴∠B 1TH 为所求二面角的平面角. ∴AH =AB +BH =3,∠HAT =30°,∴HT =AH 2330sin =︒.在Rt△B 1HT 中,332tan 11==∠HT HB TH B , 从而平面B 1GE 与底面ABC(3)(2)问中的T 点即为所求,T 在AG 的延长线上,距离A 点233处. 解法2:(1)∵侧面AA 1B 1B ⊥底面ABC ,侧棱AA 1与底面ABC 成60°的角,∴∠A 1AB =60°, 又AA 1=AB =2,取AB 的中点O ,则AO ⊥底面ABC . 以O 为原点建立空间直角坐标系O —xyz 如图,则()0,1,0A -,()0,1,0B,)C,(1A,(10,B,1C .∵G 为△ABC的重心,∴G ⎫⎪⎪⎭.113BE BC =,∴E ,∴113CE AB ⎛== ⎝ . 又GE ⊄侧面AA 1B 1B ,∴GE //侧面AA 1B 1B .(2)设平面B 1GE 的法向量为(,,)a b c =n ,则由10,0.B E GE ⎧⋅=⎪⎨⋅=⎪⎩ n n得0,0.b b -=⎪=⎪⎩可取=-n 又底面ABC 的一个法向量为()0,0,1=m设平面B 1GE 与底面ABC 所成锐二面角的大小为θ,则cos ||||θ⋅==⋅m n m n .由于θ为锐角,所以sin θ==,进而tan θ=故平面B 1GE 与底面ABC (3))0,1,33(=AG ,设)0,,33(λλλ==AG AT , )3,3,33(11--=+=λλAT A B T B , 由AG T B ⊥1,03311=-+=⋅∴λλAG T B ,解得49=λ 所以存在T 在AG 延长线上,2332349===AF AG AT . 29.(浙江省2013年高考模拟冲刺(提优)测试二数学(理)试题)如图:在多面体EF-ABCD 中,四边形ABCD 是平行四边形,△EAD 为正三角形,且平面EAD ⊥平面ABCD,EF∥AB, AB=2EF=2AD=4,060=∠DAB .(Ⅰ)求多面体EF-ABCD 的体积;(Ⅱ)求直线BD 与平面BCF 所成角的大小.【答案】30.(浙江省温岭中学2013届高三高考提优冲刺考试(五)数学(理)试题)如图,在长方形ABCD中,2=AB ,1=AD ,E 为DC 的中点,现将DAE ∆沿AE 折起,使平面DAE ⊥平面ABCE , 连DB ,DC ,BE .(Ⅰ)求证:BE ⊥平面ADE ; (Ⅱ)求二面角C BD E --的余弦值.【答案】所以所求二面角的余弦值为11222 解法二(坐标法)ACBAB(第20题)如图,取AE 的中点O ,则⊥DO 面ABCE .作EB OF //,则AE OF ⊥. 以O 为原点,OA 、OF 、OD 为轴建立空间坐标系xyz O - 则)2200(,,D ,)0,222(,-B ,)022,2(,-C ,)0022(,,A .所以)02222(,,--=BC ,)22222(--=,,DB ,)22,0,22(-=DA . 设面DBC 的法向量为),,(1z y x n =,则 ⎪⎪⎩⎪⎪⎨⎧=-+-=⋅=--=⋅0222220222211z y x DB n y x BC n ,取)3,1,1(1--=n设面DBE 的法向量为2n ,则DA n //2,取)1,0,1(2-=n 11222,cos 21>=<n n ,所以所求二面角的余弦值为11222 31.(浙江省嘉兴市第一中学2013届高三一模数学(理)试题)如图,直角梯形ABCD有EC=FD=2.(I )求证:AD 丄B F :(II )若线段EC 上一点M 在平面BDF 上的射影恰好是BF 的中点N,试求二面角 B-MF-C 的余弦值.【答案】解:(Ⅰ)证明:∵DC BC ⊥,且2==CD BC ,∴2=BD 且45=∠=∠BDC CBD ;又由DC AB //,可知45=∠=∠CBD DBA∵2=AD ,∴ADB ∆是等腰三角形,且45=∠=∠DBA DAB , ∴90=∠ADB ,即DB AD ⊥;∵⊥FD 底面ABCD 于D,⊂AD 平面ABCD,∴DF AD ⊥, ∴⊥AD 平面DBF.又∵⊂BF 平面DB F,∴可得BF AD ⊥(Ⅱ)解:如图,以点C 为原点,直线CD 、CB 、CE 方向为x 、y 、z 轴建系.可得)0,2,22(),2,0,2(),0,2,0(),0,0,2(A F B D ,又∵ N 恰好为BF 的中点,∴)1,22,22(N又∵⎪⎩⎪⎨⎧=⋅=⋅00DF MN BD MN ,∴可得10=z .故M 为线段CE 的中点设平面BMF 的一个法向量为),,(1111z y x n =, 且)2,2,2(--=BF ,)1,2,0(-=BM ,由⎪⎩⎪⎨⎧=⋅=⋅0011n BM n BF 可得⎪⎩⎪⎨⎧=+-=--02022211111z y z y x , 取⎪⎩⎪⎨⎧===213111z y x 得)2,1,3(1=n又∵平面MFC 的一个法向量为)0,1,0(2=n , ∴63,cos 21<n n .故所求二面角B-MF-C 的余弦值为6332.(浙江省稽阳联谊学校2013届高三4月联考数学(理)试题(word 版) )如图,在矩形ABCD 中,21AB ,BC ,E ==为边AB 上一点,以直线EC 为折线将点B 折起至点,P 并保持PEB ∠为锐角,连接,,,PA PC PD 取PD 中点F ,若有//AF平面.PEC (I)求线段AE 的长;(II)当60PEB ∠=时(i)求证:平面PEC ⊥平面CDAE ;(ii)求平面PEC 与平面PAD 所成角的余弦值.【答案】解:(I)取PC 的中点G ,连接,FG EG ,//,//,//FG CD AE CD FG AE ∴ ,,,,A F G E ∴四点共面 //AF 平面,//PCE AF GE ∴AFGE ∴为平行四边形11122,GF CD AE AB =∴== (II)(i)证明: 异面直线,PE CD 所成的角为60,60PEB ∴∠=1,1 PE BE PB ==∴=,取CE 中点O , 1PE PC == 且90EDC ∠= ,同理BO =所以222,,, OP OB BP PO OB PO CE PO CDAE +=∴⊥⊥∴⊥平面,PO PCE PCE CDAE ⊆∴⊥ 平面平面平面(ii)将该几何体补形成如图所示的长方体,以点B 为坐标原点建立空间直角坐标系,1102012022(,(,,),(,,)P A D 取平面PCE 的一个法向量110(,,)m =设平面PAD 法向量为(,,)n x y z =,1310022(,,),(,AD AP ==- ,由00n AD n AP ⎧=⎪⎨=⎪⎩得03(,,)n z =,取3z =,得03()n =cos ,||||m n m n m n ∴<>==平面PEC 与平面MAB 133.(浙江省嘉兴市2013届高三上学期基础测试数学(理)试题)如图,1111ABCD A B C D -是棱长为1的正方体,四棱锥1111P A B C D -中,P ∈平面11DCC D,11PC PD ==. C1C A第20题(Ⅰ)求证:平面11PA B 平面11ABC D ;(Ⅱ)求直线1PA 与平面11ADD A 所成角的正切值.【答案】取11C D 的中点H ,连结PH ,AH .2511==PD PC ,111=C D ,∈P 平面11D DCC , ∴21,111=⊥H D C D PH ,∴12121=-=H D PD PH ,∴A A D D PH 11////, A A PH 1=,∴四边形AH PA 1为平行四边形,∴AH PA //1,(第20题)PBDC1B A1A 1C 1D H又⊂AH 平面11D ABC ,⊄1PA 平面11D ABC , ∴//1PA 平面11D ABC在正方体ABCD 中, AB B A //11, ∴//11B A 平面11D ABC ,1111A B A PA = ,∴平面//11B PA 平面11D ABC(II)方法1以直线1,,DD DC DA 为轴轴轴,z y x ,的如图所示空间直角坐标系,令,则)1,0,1(1A ,,2,21,0⎪⎭⎫ ⎝⎛P )0,0,0(D ∴ ,1,21,11⎪⎭⎫⎝⎛--=PA∵ =n (0,1,0)是平面11A ADD 的一个法向量 设直线1PA 与平面11A ADD 所成角为θ31sin θ,42tan =θ ∴直线1PA 与平面11A ADD 所成角的正切值为42方法2:∵AH PA //1,∴直线1PA 与平面11A ADD 所成角等于直线AH 与平面11A ADD 所成角. 正方体1111D C B A ABCD -中,显然⊥1HD 平面11A ADD , ∴1HAD ∠就是直线AH 与平面11A ADD 所成角在1HAD Rt ∆中,211=H D ,21=AD ,42tan 111==∠AD H D HAD∴直线1PA 与平面11A ADD 所成角的正切值为42. 34.(浙江省杭州高中2013届高三第六次月考数学(理)试题)如图,已知长方形ABCD中,1,2==AD AB ,M 为DC 的中点. 将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥(2)点E 是线段DB 上的一动点,当二面角D AM E --大小为3π时,试确定点E 的位置.【答案】取AM 的中点O,AB 的中点B,则OD OA ON ,,两两垂直,以O 为原点建立空间直角坐标系,如图.根据已知条件,得)0,0,22(A ,)0,2,22(-B ,)0,0,22(-M ,)22,0,0(D (1)由于)0,2,0(),22,0,22(-=-=AD ,则0=⋅BM AD ,故BM AD ⊥.(2)设存在满足条件的点E,并设DB DE λ=, 则)22,2,22()22,,(--=-λE E E z y x 则点E的坐标为)2222,2,22(λλλ--.(其中]1,0[∈λ)易得平面ADM 的法向量可以取)0,1,0(1=n ,设平面AME 的法向量为),,(2z y x n =,则)0,0,2(-=AM,)2222,2,2222(λλλ---=AE 则⎪⎩⎪⎨⎧=-++--=⋅=-=⋅0)2222()2()2222(0222λλλz y x AE n x AM n 则λλ2:)1(:0::-=z y x ,取)2,1,0(2λλ-=n *由于二面角D AM E --大小为3π,则A|,cos |3cos212121n n =><=π214)1(122=+--=λλλ,由于]1,0[∈λ,故解得332-=λ.故当E 位于线段DB 间,且332-=DB DE 时,二面角D AM E --大小为3π35.(浙江省杭州四中2013届高三第九次教学质检数学(理)试题)如图,已知ABCD 是边长为1的正方形,AF ⊥平面ABCD ,CE ∥AF ,)1(>=λλAF CE . (Ⅰ)证明:BD ⊥EF ;(Ⅱ)若AF =1,且直线BE 与平面ACE 所成角的正弦值为1023,求λ的值.【答案】本题满分14分.(Ⅰ)方法1:连结BD 、AC ,交点为O .∵ABCD 是正方形 ∴BD ⊥AC ∵AF ⊥平面ABCD ∴AF ⊥BD ∴BD ⊥平面ACEF ∴BD ⊥EF方法2:如图建立空间直角坐标系A-x yz,∵)0,0,1(B ,)0,1,0(D ∴)0,1,1(-= 设),0,0(h F ,那么),1,1(h E λ, 则))1(,1,1(h EF λ---= ∴0=⋅EF BD ∴BD ⊥EF(Ⅱ)方法1:连结OE ,由(Ⅰ)方法1知,BD ⊥平面ACEF , 所以∠BEO 即为直线BE 与平面ACE 所成的角∵AF ⊥平面ABCD ,CE ∥AF ,∴CE ⊥平面ABCD ,CE ⊥BC , ∵BC =1,AF =1,则CE =λ,BE =21λ+,BO =22, ∴Rt△BEO 中, 1023122sin 2=λ+==∠BE BO BEO , 因为1>λ,解得34=λ 方法2:∵),1,0(λ=BE ,由(Ⅰ)法1知,BD ⊥平面ACEF , 故)0,1,1(-=是平面ACE 的法向量 记直线BE 与面ACE 所成角为θ,则sin , ;因为1>λ,解得34=λ36.(浙江省乐清市普通高中2013届高三上学期期末教学质量检测数学(理)试题)如图,底角为060的等腰梯形ABFE 垂直于矩形ABCD ,1,2==EF AB . (1)求证:平面⊥ADF 平面BCF ;(2)当AD 长为2时,求二面角A EF D --的余弦值的大小.【答案】(1)证明:∵平面⊥ABEF 平面ABCD ,且AB AD ⊥∴⊥AD 平面ABEF ∵⊂BF 平面ABEF ∴BF AD ⊥①在梯形ABEF 中,BF AF ⊥② 又∵A AF AD = ③由①②③得⊥BF 平面ADF ∴平面⊥ADF 平面BCF(2)解:分别取DC AB EF ,,的中点N M G ,,,两两连接, 易证MGN ∠就是所求二面角的一个平面角α 计算得23=GM ,又∵2==AD MN37.(浙江省六校联盟2013届高三回头联考理科数学试题)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD, ABC=60°,PA=AB=BC,E是PC的中点.(Ⅰ)证明:CD ⊥AE;(Ⅱ)证明:PD⊥平面ABE;(Ⅲ)求二面角A-PD-C的正切值.【答案】38.(浙江省温州市2013届高三第三次适应性测试数学(理)试题(word 版) )已知四棱锥ABCD P -,⊥PA 底面ABCD ,AC AD AB BC AD ,,//⊥与bd 交于点O ,又,6,32,2,3====BC AB AD PA(Ⅰ) 求证:⊥BD 平面PAC ;(Ⅱ)求二面角A PB O --的余弦值.【答案】39.(浙江省重点中学协作体2013届高三摸底测试数学(理)试题)如图,斜三棱柱111C B A ABC -,已知侧面C C BB 11与底面ABC 垂直且∠BCA =90°,∠160B BC = ,1BB BC ==2,若二面角C B B A --1为30°,(Ⅰ)证明C C BB AC 11平面⊥及求1AB 与平面C C BB 11所成角的正切值; (Ⅱ)在平面B B AA 11内找一点P,使三棱锥C BB P 1-为正三棱锥,并求P 到平面C BB 1距离【答案】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想及应用意识. 满分14分.解:(Ⅰ)面C C BB 11⊥面ABC ,因为面C C BB 11⋂面C C BB 11=BC ,BC AC ⊥, 所以⊥AC 面C C BB 11取1BB 中点E ,连接AE CE ,,在1CBB ∆中,01160,2=∠==CBB CB BB1CBB ∆∴是正三角形,1BB CE ⊥∴,又⊥AC 面C C BB 11且⊂1BB 面C C BB 11, AE BB ⊥∴1,即CEA ∠即为二面角C B B A --1的平面角为30°,⊥AC 面C C BB 11,CE AC ⊥∴,在ECA Rt ∆ 中,130tan ,30=⋅=∴=CE AC CE ,又⊥AC 面C C BB 11,A CB 1∠∴即1AB 与面C C BB 11所成的线面角, 在CA B Rt 1∆中,21tan 11==∠CB AC A CB (Ⅱ)在CE 上取点1P ,使1211=E P CP ,则因为CE 是BC B 1∆的中线, 1P ∴是BC B 1∆的重心,在ECA ∆中,过1P 作P P 1//CA 交AE 于P ,⊥AC 面C C BB 11,P P 1//CA⊥∴1PP 面1CBB ,即P 点在平面1CBB 上的射影是1BCB ∆的中心,该点即为所求,ABC11 1A C BCD且311=AC PP ,311=∴PP 40.(浙江省温州八校2013届高三9月期初联考数学(理)试题)如图,四棱锥P ABCD -的底面ABCD为矩形,且1PA AD ==,2AB =,120,90PAB PBC ︒︒∠=∠=,(Ⅰ)平面PAD 与平面PAB 是否垂直?并说明理由; (Ⅱ)求直线PC 与平面ABCD 所成角的正弦值.DCBAP【答案】(I)平面PAD ⊥平面PAB ;证明:由题意得AD AB ⊥且//AD BC 又BC PB ⊥,则DA PB ⊥ 则DA ⊥平面PAB ,故平面PAD ⊥平面PAB(Ⅱ)解法1:以点A 为坐标原点,AB 所在的直线为y 轴建立空间直角坐标系如右图示则(0,0,1)D ,(0,2,1)C,1,0)2P -可得5,1)2CP =--,平面ABCD 的单位法向量为(1,0,0)m =,设直线PC 与平面ABCD 所成角为θ,则cos()2||||m CP m CP πθ⋅-===⋅则sin θ=,即直线PC 与平面ABCD解法2:由(I)知DA ⊥平面PAB ,∵AD ⊂面ABCD ∴平面ABCD⊥平面PAB,在平面PAB 内,过点P 作PE⊥AB,垂足为E,则PE⊥平面ABCD,连结EC,则∠PCE 为直线PC 与平面ABCD 所成的角, 在Rt△P EA中,∵∠PAE=60°,PA=1,∴PE =,又2222cos1207PB PA AB PA AB =+-⋅=∴PC ==在Rt△PEC中sin PE PC θ===41.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,在四面体BCDA -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC;方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////PO QH PQ OH ∴,且ABCDPQM(第20题图)OH BCD ⊂,所以//PQ 面BDC ;(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===,在RT BCG ∆中,2sin BGBCG BG BCααα∠=∴=∴=,所以在R T B H G ∆中, 13HG =∴=,所以在RT CHG ∆中tan tan 60CG CHG HG ∠====tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;42.(浙江省诸暨中学2013届高三上学期期中考试数学(理)试题)如图,已知四棱锥ABCDP -中,⊥PA 平面ABCD ,底面ABCD 是直角梯形,90DAB ABC ∠=∠=︒,E 是线段PC 上一点,PC ⊥平面BDE . (Ⅰ)求证:BD ⊥平面PAC(Ⅱ)若4PA =,2AB =,1BC =,求直线AC 与平面PCD 所成角的正弦值.。
浙江省2014届理科数学复习试题选编32:抛物线(学生版)一、选择题1 .(浙江省永康市2013年高考适应性考试数学理试题 )已知抛物线1C :y x 22=的焦点为F ,以F为圆心的圆2C 交1C 于,A B ,交1C 的准线于,C D ,若四边形ABCD 是矩形,则圆2C 的方程为()A .221()32x y +-= B . 221()42x y +-= C .22(1)12x y +-=D .22(1)16x y +-=2 .(浙江省五校联盟2013届高三下学期第一次联考数学(理)试题)已知P 为抛物线x y 42=上一个动点,Q 为圆1)4(22=-+y x 上一个动点,那么点P 到点Q 的距离与点P 到y 轴距离之和最小值是 () A .171+ B .172- C .25+ D .171-3 .(浙江省宁波市金兰合作组织2013届高三上学期期中联考数学(理)试题)过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则AOB ∆的面积为()A BC D .4 .(浙江省诸暨中学2013届高三上学期期中考试数学(理)试题)抛物线24y x =的焦点为F ,准线l 与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB l ⊥,垂足为B ,则四边形ABEF 的面积等于()A .B .C .D .5 .(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word 版) )直线3440x y -+=与抛物线24x y =和圆()2211x y +-=从左到右的交点依次为A B C D ,,,,则ABCD的值为 () A .16 B .116C .4D .146 .(浙江省杭州四中2013届高三第九次教学质检数学(理)试题)已知抛物线y 2=2px(p>0)的焦点F()A B .2C 7 .(浙江省温州市2013届高三第二次模拟考试数学(理)试题)抛物线y 2=2px(p>0)的准线交x 轴了点C,焦点为F. ()A .B是抛物线的两点.己知 ()A .B,C三点共线,且|AF|,|BF|成等差数列,直线AB的斜率为k,则有 ()非选择题部分(共100分)8 .(浙江省温州八校2013届高三9月期初联考数学(理)试题)设动圆M 与y 轴相切且与圆C :0222=-+x y x 相外切, 则动圆圆心M的轨迹方程为() A .24y x = B .24y x =-C.24y x=或0(0)y x =<D .24y x =或0y =9 .(浙江省温岭中学2013届高三冲刺模拟考试数学(理)试题)如图,已知点P 是双曲线C :)0,0(12222>>=-b a by a x 左支上一点,F 1,F 2是双曲线的左、右两个焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交于M ,N两点,点N 恰好平分线段PF 2,则双曲线的离心率是() A .5 B .2 C .3D .2二、填空题10.(浙江省嘉兴市第一中学2013届高三一模数学(理)试题)己知抛物线y 2=4x 的焦点为F,若点A, B是该抛物线上的点,=∠AFB11.(浙江省温岭中学2013届高三高考提优冲刺考试(三)数学(理)试题 )已知F 为抛物线)0(2>=a ay x 的焦点,O 为坐标原点.点M 为抛物线上的任一点,过点M 作抛物线的切线交x 轴于点N ,设21,k k 分别为直线MO 与直线NF 的斜率,则=21k k ________.12.(浙江省2013年高考模拟冲刺(提优)测试一数学(理)试题)已知抛物线C :)0(22>=p px y 的焦点为F ,准线与x 轴交于M 点,过M 点斜率为k 的直线l 与抛物线C 交于A 、B 两点,若||45||AF AM =,则k 的值_______.13.(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)已知直线()y k x m =-与抛物线22(0)y px p =>交于B A ,两点,且OA OB ⊥,又OD AB ⊥于D , 若动点D 的坐标满足方程2240x y x +-=,则m =_______.14.(浙江省宁波市2013届高三第二次模拟考试数学(理)试题)已知曲线12221,22:4:l x y C x y C 直线和-=+=与C 1、C 2分别相切于A 、B,直线2l ,(不同于1l )与C 1、C 2分别相切于点C 、D,则AB 与CD 交点的横坐标是__________.15.(浙江省黄岩中学2013年高三5月适应性考试数学(理)试卷 )已知抛物线)0(2:2>=p px y M焦点为F ,直线2pmy x +=与抛物线M 交于B A ,两点,与y 轴交于点C ,且||||BF BC =,O 为坐标原点,那么BOC ∆与AOC ∆面积的比值为________.16.(浙江省温州市2013届高三第三次适应性测试数学(理)试题(word 版) )已知点),(a a A ,)1,1(++a a B ,动点P 到点)0,1(M 的距离比到2-=x 的距离小1的轨迹为曲线C ,且线段AB 与曲线C 有且仅有一个焦点,则a 的取值范围是______. 17.(浙江省温州十校联合体2013届高三期中考试数学(理)试题)在平面直角坐标系xOy 中,已知焦点为F 的抛物线y 2=2x 上的点P 到坐标原点O 的距离为15,则线段PF 的长为_____.18.(浙江省温岭中学2013届高三冲刺模拟考试数学(理)试题)P 为抛物线C :x y 42=上一点,若P点到抛物线C 准线的距离与到顶点距离相等,则P 点到x 轴的距离为_____________.19.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设F 为抛物线xy C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于________.20.(浙江省六校联盟2013届高三回头联考理科数学试题)过抛物线24y x =的焦点作一条倾斜角为a,长度不超过8的弦,弦所在的直线与圆2234x y +=有公共点,则a 的取值范围是_______________21.(浙江省海宁市2013届高三2月期初测试数学(理)试题)已知抛物线26y x =,准线l 与x 轴交于点M ,过M 作直线交抛物线于,A B 两点(A 在,M B 之间),点A 到l 的距离为2,则||||AB MA =____. 三、解答题22.(浙江省杭州二中2013届高三6月适应性考试数学(理)试题)已知抛物线2:4C y x =,直线:l y x b =-+与抛物线交于,A B 两点.(Ⅰ)若以AB 为直径的圆与x 轴相切,求该圆的方程;(Ⅱ)若直线l 与y 轴负半轴相交,求AOB ∆面积的最大值.23.(浙江省嘉兴市2013届高三第二次模拟考试理科数学试卷)如图,已知抛物线py x C 2:21=的焦点在抛物线121:22+=x y C 上,点P 是抛物线1C 上的动点. (Ⅰ)求抛物线1C 的方程及其准线方程;(Ⅱ)过点P 作抛物线2C 的两条切线,M 、N 分别为两个切点,设点P 到直线MN 的距离为d ,求d 的最小值.24.(温州市2013年高三第一次适应性测试理科数学试题)已知点11(,)A x y ,22(,)B x y 是抛物线24y x=上相异两点,且满足122x x +=.(Ⅰ)若AB 的中垂线经过点(0,2)P ,求直线AB 的方程;(Ⅱ)若AB 的中垂线交x 轴于点M ,求AMB ∆的面积的最大值及此时直线AB 的方程.25.(浙江省宁波市2013届高三第一学期期末考试理科数学试卷)如图,设点(第21题)2213(,):(1)4P m n C x y ++=是圆上的动点,过点P 作抛物线22:(0)C x ty t =>的两条切线,切点分别是A 、B.已知圆C 1的圆心M 在抛物线C 2的准线上. (I)求t 的值;(Ⅱ)求PA PB ⋅的最小值,以及取得最小值时点P 的坐标.26.(浙江省建人高复2013届高三第五次月考数学(理)试题)已知抛物线22212:,: 1.4y C y x C x =+=椭圆(1)设12,l l 是C 1的任意两条互相垂直的切线,并设12l l M = , 证明:点M 的纵坐标为定值;(2)在C 1上是否存在点P ,使得C 1在点P 处切线与C 2相交于两点A 、B ,且AB 的中垂线恰为C 1的切线?若存在,求出点P 的坐标;若不存在,说明理由.27.(浙江省温州中学2013届高三第三次模拟考试数学(理)试题)如图,已知抛物线C :2ax y =)0(>a 与射线1l :12-=x y )0(≥x 、2l :)0(12≤--=x x y 均只有一个公共点,过定点)1,0(-M 和)41,0(N 的动圆分别与1l 、2l 交于点A 、B ,直线AB 与x 轴交于点P .(Ⅰ)求实数a 及NP AB ⋅的值;(Ⅱ)试判断:||||MB MA +是否为定值?若是,求出该定值;若不是,说明理由.28.(浙江省2013年高考模拟冲刺(提优)测试二数学(理)试题)圆C 的圆心在y 轴上,且与两直线l 1:0105=+-+y x ;l 2:0105=--+y x 均相切. (I)求圆C 的方程;(II)过抛物线2ax y =上一点M ,作圆C 的一条切线ME,切点为E,且MC ME ⋅的最小值为4,求此抛物线准线的方程.29.(浙江省乐清市普通高中2013届高三上学期期末教学质量检测数学(理)试题)已知点F 是抛物线y x C 4:21=与椭圆)0(1:22222>>=+b a b x a y C 的公共焦点,且椭圆的离心率为21. (1)求椭圆C 的方程;(2)设P 是在x 轴上方的椭圆上任意一点,F 是上焦点,过P 的直线PQ 与圆222b y x =+相切于Q 点,问:||||PQ PF +是否为定值,若是,求出该定值;若不是,请说明理由.30.(浙江省温岭中学2013届高三冲刺模拟考试数学(理)试题)以抛物线my x 22=(0>m )的顶点O 为圆心的圆,截该抛物线的准线所得的弦长为m 3 (Ⅰ)求圆C 的方程;(Ⅱ)过圆C 上任一点M 作该圆的切线l ,它与椭圆1222=+y a x (R a ∈,且2>a )相交于A 、B 两点,当OB OA ⊥时,求m 的可能取值范围.31.(浙江省绍兴一中2013届高三下学期回头考理科数学试卷)已知抛物线)0(2:2>=p py x C 的焦点为F ,抛物线上一点A 的横坐标为1x )0(1>x ,过点A 作抛物线C 的切线1l 交x 轴于点D ,交y 轴于点Q ,交直线:2pl y =于点M ,当2||=FD 时, 60=∠AFD . (1)求证:AFQ ∆为等腰三角形,并求抛物线C 的方程;(2)若B 位于y 轴左侧的抛物线C 上,过点B 作抛物线C 的切线2l 交直线1l 于点P ,交直线于点N ,求PMN ∆面积的最小值,并求取到最小值时的1x 值.32.(浙江省温州十校联合体2013届高三期中考试数学(理)试题)若椭圆2212:1(02)4x y C b b +=<<,抛物线22:2(0)C x py p =>的焦点在椭圆的顶点上. (1)求抛物线2C 的方程;(2)过(1,0)M -的直线l 与抛物线2C 交P , Q 两点,又过P , Q 作抛物线2C 的切线12,l l ,当12l l ⊥时,求直线l 的方程.33.(浙江省嘉兴市2013届高三上学期基础测试数学(理)试题)如图,11(,)A x y ,22(,)B x y 是抛物线2:2C x py =(p 为正常数,p>0)上的两个动点,直线AB 与x 轴交于点P,与y 轴交于点Q,且2124p y y = (Ⅰ)求证:直线AB 过抛物线C 的焦点; (Ⅱ)是否存在直线AB,使得113?PA PB PQ+=若存在,求出直线AB 的方程;若不存在,请说明理由.34.(浙江省杭州市2013届高三第二次教学质检检测数学(理)试题)已知直线y=2x-2与抛物线x 2=2py(p>0)交于M 1,M 2两点,直线y=2p与y 轴交于点F.且直线y =2p恰好平分∠M 1FM 2. (I)求P 的值; (Ⅱ)设A 是直线y=2p 上一点,直线AM 2交抛物线于另点M 3,直线M 1M 3交直线y=2p于点B,求OA ·OB的值.35.(浙江省宁波市金兰合作组织2013届高三上学期期中联考数学(理)试题)在平面直角坐标系xOy中,F 是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M ,直线1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值. 36.(浙江省金华十校2013届高三4月模拟考试数学(理)试题)已知抛物线2:2(0),C y px p M=>点的坐标为(12,8),N 点在抛物线C 上,且满足3,4ON OM =O 为坐标原点.(I)求抛物线C 的方程;(II)以点M 为起点的任意两条射线12,l l 关于直线l :y=x —4,并且1l 与抛物线C 交于A 、B 两点,2l 与抛物线C 交于D 、E 两点,线段AB 、DE 的中点分别为G 、H 两点.求证:直线GH 过定点,并求出定点坐标.浙江省2014届理科数学复习试题选编32:抛物线(学生版)参考答案一、选择题 1. B 2. B3. C4. C5. B6. C7. D8. C9. A.⎪⎩⎪⎨⎧=+=-22222221c y x by a x 得,c b y P 2=,∴c b y N 22=,得c ab x N 2=,从而c c ab x P 2-=. ∵P 是双曲线上,∴1)(2242222=--cb b ca c ab ,化简得,b a =2,得5=e .二、填空题10.2 11. 21-解析:设),(200a x x M ,则过点M 的抛物线的切线方程为:ax x x a x y 2000)(2+-=,令0=y 得:021x x N =,故)0,2(0x N ,)4,0(aF ,即:022x a k k NF -==,又axx a x k k MO 0021===,故2121-=k k12. 34±13. 414.12 15. 4116. [1,0][3,4]-⋃17.7218. 2;得P 点到焦点距离与到顶点距离相等,∴214==p x P ,得2||=P y . 19. 1±20.21. 2 三、解答题22.解:(Ⅰ)联立24y x b y x=-+⎧⎨=⎩,消x 并化简整理得2440y y b +-=. 依题意应有16160b ∆=+>,解得1b >-.设1122(,),(,)A x y B x y ,则12124,4y y y y b +=-=-,设圆心00(,)Q x y ,则应有121200,222x x y y x y ++===-. 因为以AB 为直径的圆与x 轴相切,得到圆半径为0||2r y ==,又||AB === .所以||24AB r ===,解得12b =-. 所以121203222x x y b y b x +-+-+===,所以圆心为3(,2)2-.故所求圆的方程为223()(2)42x y -++=.(Ⅱ)因为直线l 与y 轴负半轴相交,所以0b <,又直线l 与抛物线交于两点,由(Ⅰ)知1b >-,所以10b -<<,点O 到直线l 的距离d =, 所以1||2AOB S AB d ∆===.令223()(1)g b b b b b =+=+,10b -<<22'()323()3g b b b b b =+=+,()g b ∴在2(1,)3--增函数,在2(,0)3-是减函数()g b ∴的最大值为24()327g -=. 所以当23b =-时,AOB ∆的面. 23.解:(Ⅰ)1C 的焦点为)2,0(pF ,所以102+=p,2=p 故1C 的方程为y x 42=,其准线方程为1-=y (Ⅱ)设),2(2t t P ,)121,(211+x x M ,)121,(222+x x N ,则PM 的方程:)()121(1121x x x x y -=+-,所以12122112+-=x tx t ,即02242121=-+-t tx x . 同理,PN :121222+-=x x x y ,02242222=-+-t tx x MN 的方程:)()121(121)121(121222121x x x x x x x y --+-+=+-, 即))((21)121(12121x x x x x y -+=+-.由⎪⎩⎪⎨⎧=-+-=-+-0224022422222121t tx x t tx x ,得t x x 421=+,21211221t tx x -=- 所以直线MN 的方程为222t tx y -+=于是222222241)1(241|24|tt tt t t d ++=+-+-=.令)1(412≥+=s t s ,则366216921=+≥++=s s d (当3=s 时取等号). 所以,d 的最小值为324.方法一:解:(I)当AB 垂直于x 轴时,显然不符合题意,所以可设直线AB 的方程为y kx b =+,代入方程24y x =得:222(24)0k x kb x b +-+=∴122422kbx x k-+== 得:2b k k=- ∴直线AB 的方程为2(1)y k x k=-+∵AB 中点的横坐标为1,∴AB 中点的坐标为2(1,)k∴AB 的中垂线方程为1213(1)y x x k k k k=--+=-+ ∵AB 的中垂线经过点(0,2)P ,故32k =,得32k =∴直线AB 的方程为3126y x =-(Ⅱ)由(I)可知AB 的中垂线方程为13y x k k=-+,∴M 点的坐标为(3,0)因为直线AB 的方程为2220k x ky k -+-= ∴M 到直线AB的距离d ==由222204k x ky k y x⎧-+-=⎨=⎩得222204k y ky k -+-=, 212122482,k y y y y k k -+=⋅=12||||AB y y =-=∴214(1AMB S k ∆=+t =,则01t <<, 234(2)48S t t t t =-=-+,2'128S t =-+,由'0S =,得t =即k =时max S =此时直线AB的方程为30x ±-= (本题若运用基本不等式解决,也同样给分) 法二:(1)根据题意设AB 的中点为(1,)Q t ,则2121222121244AB y y y y k y y x x t--===--由P 、Q 两点得AB 中垂线的斜率为2k t =-, 由2(2)1t t -⋅=-,得43t =∴直线AB 的方程为3126y x =- (2)由(1)知直线AB 的方程为2(1)y t x t-=- AB 中垂线方程为(1)2ty t x -=--,中垂线交x 轴于点(3,0)M点M 到直线AB的距离为d ==由22(1)4y t x ty x⎧-=-⎪⎨⎪=⎩得:22248(2)0x x t -+-= 221212(2)2,4t x x x x -+==1||2S AB d ∴=⋅==≤=当243t =时,S此时直线AB方程为310x ±-=25.12||||AB x x ∴=-=26.即27.解:(I)联立221y ax y x ⎧=⎨=-⎩得:2210ax x -+=440,1a a ∴∆=-=∴=设动圆()222235:88Q x t y t ⎛⎫⎛⎫-++=+ ⎪ ⎪⎝⎭⎝⎭(5544t -<<,圆与1l ,2l 相切时取到等号)联立()2222135:88:21Q x t y t l y x ⎧⎛⎫⎛⎫-++=+⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪=-⎩得:214,525t t A ⎛⎫+ ⎪⎝⎭同理得:214,525t t B ⎛⎫--⎪⎝⎭4821:5552AB t t t l y x ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭,令0y =得2,05t P ⎛⎫ ⎪⎝⎭0NP AB ∴⋅=(Ⅱ)||||MB MA +5544t t ⎫++-=⎪⎭是定值. (动圆()222235:88Q x t y t ⎛⎫⎛⎫-++=+ ⎪ ⎪⎝⎭⎝⎭,5544t -<<,圆与1l ,2l 相切时取到等号)(或由A B y y =,及几何法得||||MB MA +=28.29. 解:(1)∵1=c ,21=a c ∴2=a ,即椭圆方程为13422=+x y(2)设),(y x P ,则)4(2112)41(312)1(||222222y y y y y y x y x PF -=+-+-=+-+=-+=22||OQAO PQ -=y y y y x 213)41(332222=-+-=-+=∴2||||=+PQ PF =定值30.解(Ⅰ):已知抛物线的准线方程是2my -=(0>m ),由于圆C 截抛物线的准线所得的弦长为m 3,所以圆C 的半径m m m r =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=22232,故所求圆的方程是222m y x =+ 31.解:(1)设⎪⎪⎭⎫ ⎝⎛p x x A 2,211,则A 处的切线方程为p x x p x y l 2:2111-=,所以⎪⎭⎫ ⎝⎛0,21x D ,⎪⎪⎭⎫ ⎝⎛-p x Q 2,021所以AF px p FQ =+=2221;即AFQ ∆为等腰三角形 又D 为线段AQ 的中点,所以4=AF ,得:⎪⎩⎪⎨⎧=+=+1642222121p x p x p 所以2=p ,.4:2y x C =(2)设)0(),(222<x y x B ,则B 处的切线方程为42222xx x y -=由)4,2(42422121222211x x x x P xx x y xx x y +⇒⎪⎪⎩⎪⎪⎨⎧-=-=, 由)1,22(14211211x x M y x x x y +⇒⎪⎩⎪⎨⎧=-=,同理)1,22(22x x N +, 所以面积212211221221116)4)(()41)(2222(21x x x x x x x x x x x x S --=---+=① 设AB 的方程为b kx y +=,则0>b 由044422=--⇒⎩⎨⎧=+=b kx x y x bkx y ,得⎩⎨⎧-==+bx x kx x 442121代入①得:bbk b b b b k S ++=++=2222)1(64)44(1616,要使面积最小,则应0=k ,得到bbb S 2)1(+=② 令t b =,得t t t t t t S 12)1()(322++=+=,222)1)(13()(tt t t S +-=', 所以当)33,0(∈t 时)(t S 单调递减;当),33(+∞∈t )(t S 单调递增, 所以当33=t 时,S 取到最小值为9316,此时312==t b ,0=k , 所以311=y ,即3321=x32.解:(1)由椭圆方程得2a =,c e a ==所以c =1b == 由题意得:抛物线的焦点应为椭圆的上顶点,即(0,1) 所以2p = 抛物线方程为24x y =(2) 可判断直线l 的斜率存在,设直线l 的方程为(1)y k x =+ 设P Q 、坐标为1122(,),(,)x y x y 联立2(1)4y k x x y=+⎧⎨=⎩ 整理得 2440x kx k --=33. (Ⅰ)由题意知,直线AB 的斜率存在,且不为零.设直线AB 的方程为:b kx y += (0≠k ,0>b )由⎩⎨⎧=+=pyx b kx y 22,得0222=--pb pkx x . ∴⎪⎩⎪⎨⎧-==+>+=∆pb x x pk x x pb k p 22084212122, ∴2222121214)2(22b ppb p x p x y y =-=⋅=. ∵4221p y y =,∴422p b =,∵0>b ,∴2p b =.∴直线AB 的方程为:2pkx y +=.抛物线C 的焦点坐标为)2,0(p,∴直线AB 过抛物线C 的焦点 (Ⅱ)假设存在直线AB ,使得||3||1||1PQ PB PA =+, 即3||||||||=+PB PQ PA PQ . 作x AA ⊥/轴,x BB ⊥/轴,垂足为/A 、/B ,∴ 212121//222||||||||||||||||y y y y p y py p BB OQ AA OQ PB PQ PA PQ +⋅=+=+=+ ∵p pk p x x k y y +=++=+221212)(,4221p y y =∴||||||||PB PQ PA PQ +=42222pp pk p +⋅=242+k 由3242=+k ,得21±=k . 故存在直线AB ,使得||3||1||1PQ PB PA =+.直线AB 方程为221p x y +±= 34.(第21题)(Ⅰ) 由⎩⎨⎧=-=py x x y 2222 ,整理得0442=+-p px x ,设MR 1R(11,y x ),MR 2R(22,y x ),则⎪⎩⎪⎨⎧=⋅=+>-=∆p x x p x x p p 440161621212 , ∵ 直线2py =平分21FM M ∠,∴ 021=+F M F M k k , ∴0222211=-+-x p y x p y ,即:022********=--+--x px x p x ,∴ 0)22(42121=⋅+⋅+-x x x x p ,∴ 4=p ,满足0>∆,∴4=p (Ⅱ) 由(1)知抛物线方程为y x 82=,且⎩⎨⎧==+16162121x x x x ,)8,(2111x x M ,)8,(2222x x M ,设)8,(2333xx M ,A )2,(t ,)2,(a B ,由A 、MR 2R 、MR 3R 三点共线得232AM M M k k =,∴ tx x x x --=+22232288,即:16)(22323222-=+-+x x x t x x x , 整理得:16)(3232-=+-x x t x x , ①由B 、MR 3R 、MR 1R 三点共线,同理可得 16)(3131-=+-x x a x x , ② ②式两边同乘2x 得:2322132116)(x x x x x a x x x -=+-, 即:232316)16(16x x x a x -=+-, ③由①得:16)(3232-+=x x t x x ,代入③得:23231616)(1616x a x x ta a x -=++--, 即:)()(163232x x at x x +=+,∴ 16=at . ∴ 204=+=⋅at OB OA35.225'()828f t t t =--,当554t ≤≤时,5'()'()64f t f ≥=,()f t 在5,54⎡⎤⎢⎥⎣⎦递增,故当54t =,即12k =时,有最小值13236.。
浙江省杭州市2013届高三第二次教学质检检测数学(理)试题一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i 是虚数单位,则11i ii i++=+( ) A .1322i -+ B .1322i - C .3122i + D .3122i - 2.已知集合{|sin()sin ,(0,)},{|cos()cos ,2A k Z kB k Z k pp q q q p q q q =?=??=(0,)},()2z A B p= 则ð( )A .{|2,}k k n n Z =B .{|21,}k k n n Z =-C .{|4,}k k n n Z =D .{|41,}k k n n Z =- 3.设P 为函数()sin()f x x p =的图象上的一个最高点,Q 为函数()cos()g x x p =的图象上的一个最低点,则|PQ|最小值是( )AB .2 CD .4.设直线::(0)l y kx m m =+ ,双曲线2222:1(0,0)x y C a b a b+=>>,则“b k a =-”是“直线l 与双曲线C 恰有一个公共点“的( )A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分也不必要条件5.若存在实数x ,y 使不等式组0320,60x y x y x y ì- ïïï-+ íïï+- ïïî与不等式20x y m -+ 都成立,则实数m 的取值范围是( )A .m≥0B . m≤3C .m≥lD .m≥36.设数列{a n }是首项为l 的等比数列,若11{}2n n a a ++是等差数列,则12231111()()22a a a a +++2012201311()2a a +++ 的值等于( ) A . 2012B . 2013C . 3018D . 30197.已知双曲线2222:1(0,0)y x C a b a b+=>>,A ,B 是双曲线的两个顶点.P 是双曲线上的一点,且与点B在双曲线的同一支上.P 关于y 轴的对称点是Q 若直线AP ,BQ 的斜率分别是k 1,k 2,且k 1·k 2=45-,则双曲线的离心率是( )A.5B .94C .32D .958.若函数()(1).xf x x e =+,则下列命题正确的是( )A .对任意21m e <-,都存在x R Î,使得()f x m < B .对任意21m e >-,都存在x R Î,使得()f x m < C .对任意21m e <-,方程()f x m =只有一个实根 D .对任意21m e>-,方程()f x m =总有两个实根9.在直角坐标中,A (3,1),B (-3,-3),C (l .4).P 是AB 和AC夹角平分线上的一点,且AP =2,A .()1313- B .(-C .(55-D (-10.如图,平面a 与平面b 交于直线l ,A ,C 是平面a 内 不同的两点,B ,D 是平面b 内不同的两点,且A ,B . C .D 不在直线l 上,M ,N 分别是线段AB ,CD 的中点,下列判断正确的是( )A .若AB 与CD 相交,且直线AC 平行于l 时,则直线BD与l 可能平行也有可能相交B .若AB ,CD 是异面直线时,则直线MN 可能与l 平行C .若存在异于AB ,CD 的直线同时与直线AC ,MN ,BD都相交,则AB ,CD 不可能是异面直线D .M ,N 两点可能重合,但此时直线AC 与l 不可能相交 二、填空题(本大题共7小题,每小题4分,共28分)11.已知2cos ()3x x R =,则cos()3x p-= 。
第九次教学质量检测 数学(理)试题卷【考生须知】1.试卷分试题卷和答题卷,满分150分,考试时间120分钟。
2.答题前,在答题卷密封区内填写班级.学号,姓名.试场号.座位号。
3.所有答案必须写在答题卷上,写在试卷上无效。
4.考试结束,只上交答题卷。
参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么13V Sh= n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π= ()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 的共轭复数为z ,若(l-i) z =2i,则复数z=( ) A. -i B. -1 +i C. 1 D. -1-i2.已知),,2(),,1,1(t t t t t =--=,则||-的最小值为( )A .553B .555C .55D .5113.某程序框图如图所示,则该程序运行后输出的S 的值为( )A .14B .12C . 1 D4.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .若A 、B 两个袋子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,则p的值为 ( )A .31B .3013C .3017D .215.已知直线l 和平面βα,,下下列命题正确的是( ) A .若l ∥α,βα⊥,则β⊥l B .若l ∥α,α∥β,则l ∥β C .若l ∥α,β⊂l ,则α∥βD .若l ⊥α,β⊂l ,则βα⊥6.在等差数列{an}中,若4681012a a a a a ++++= 90,则101413a a -的值为( ) A. 12 : B. 14 C. 16 D. 18 7.设:p 关于x 的方程x2+2ax+b=0 有实数根,且两根均小于2,:q a≥2且|b| ≤4, 则下列说法正确的是( ) A .p 是q 的充要条件 B .p 是q 的充分不必要条件C .p 是q 的必要不充分条件 D .p 是q 的既不充分也不必要条件8.已知抛物线y2=2px(p>0)的焦点F 恰好是双曲线12222=-b y a x 的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为( ) A. 2 B. 2 C. 12+ D.12-( 第8题图)9.已知函数 ()x f y =是定义在R 上的增函数,函数()1-=x f y 的图象关于点(1, 0)对称. 若对任意的R y x ∈,,不等式()()0821622<-++-y y f x x f 恒成立,则当x >3时,22y x +的取值范围是( )A. (3, 7)B. (9, 25)C. (13, 49)D. (9, 49)10.设的定义域为D ,若满足下面两个条件,则称为闭函数.①在D内是单调函数;②存在,使f(x)在[a,b]上的值域为[a,b].如果为闭函数,那么k的取值范围是( )A.k<lB.C. k >-1D.非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是______(单位:m2).正视图侧视图俯视图12.若)()1(92Raaxx∈-的展开式中9x的系数为221-,则a的值等于。
浙江省杭州市第四中学 2024年数学高三上期末质量检测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()222,02,0x x x f x x x x ⎧-+≥⎪=⎨-<⎪⎩,若关于x 的不等式()()20f x af x +<⎡⎤⎣⎦恰有1个整数解,则实数a 的最大值为( )A .2B .3C .5D .82.下列说法正确的是( )A .命题“00x ∃≤,002sin x x ≤”的否定形式是“0x ∀>,2sin x x >”B .若平面α,β,γ,满足αγ⊥,βγ⊥则//αβC .随机变量ξ服从正态分布()21,N σ(0σ>),若(01)0.4P ξ<<=,则(0)0.8P ξ>= D .设x 是实数,“0x <”是“11x <”的充分不必要条件 3.i 为虚数单位,则32i 1i-的虚部为( ) A .i - B .i C .1- D .1 4.抛物线23x ay =的准线方程是1y =,则实数a =( )A .34-B .34C .43-D .435.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞D .(3,1)--6.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .7.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )A .110B .15C .140D .9408.已知函数()(1)x f x x a e =--,若22log ,a b c ==则( ) A .f (a )<f (b ) <f (c )B .f (b ) <f (c ) <f (a )C .f (a ) <f (c ) <f (b )D .f (c ) <f (b ) <f (a ) 9.已知函数3ln ()3ln x a x f x a x x =-+-在区间()1,+∞上恰有四个不同的零点,则实数a 的取值范围是( ) A .(,3)(3,)e +∞ B .[)0,eC .()2,e +∞D .(,){3}e -∞ 10.已知31(2)(1)mx x --的展开式中的常数项为8,则实数m =( )A .2B .-2C .-3D .311.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a ⊂α,b ⊂β,a //β,b //α,则“a //b “是“α//β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 12.函数()x f x e ax =+(0a <)的图像可以是( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
浙江省杭州市重点高中2013届高考数学4月命题比赛参赛试题9数学(理科)试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷上填写学校、班级、考号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:果事件A ,B 互斥,那么)()()(B P A P B A P +=+. 球的表面积公式24R S π=,其中R 表示球的半径. 球的体积公式334R V π=,其中R 表示球的半径.柱体的体积公式Sh V =,其中S 表示柱体的底面积,h 表示柱体的高.第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知集合}1{>=x x A , }21{<<-=x x B ,则B A =(A) }21{<<-x x } (B) }1{->x x (C) }11{<<-x x (D) }21{<<x x (2)已知复数z 满足2z i i ⋅=-,i 为虚数单位,则=z(A) 12i --(B) 12i -+(C) 12i - (D) 12i +(3)某程序框图如右图所示,该程序运行后输出S 的值是(A) 10 (B) 12 (C) 100(D) 102(4)已知实数y x ,满足不等式组2020350x y x y x y -≥⎧⎪+≥⎨⎪+-≤⎩,,, 则y x +2的最大值是(A) 0 (B) 3 (C) 4 (D) 5 (5)“22ab >”是 “22log log a b >”的(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件(6)若7)1(axx -展开式中含x 的项的系数为280,则a = (A) 2- (B) 2 (C )21- (D )21(7)设n m ,为两条不同的直线,α是一个平面,则下列结论成立的是(A) n m //且α//m ,则α//n (B ) n m ⊥且α⊥m ,则α//n (C )n m ⊥且α//m ,则α⊥n (D ) n m //且α⊥m ,则α⊥n (8)设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这5个球随机放入这5个盒子内,要求每个盒子内放一个球,记“恰有两个球的编号与盒子的编号相同”为事件A ,则事件A 发生的概率为 (A)61(B )41(C )31(D )21 (9)离心率为1e 的椭圆与离心率为2e 的双曲线有相同的焦点,且椭圆长轴的端点、短轴的端点、焦点到双曲线的一条渐近线的距离依次构成等比数列,则=--112221e e(丽水2013届高考第一次模拟第8题改编) (A) 1e -(B )2e - (C )11e -(D )21e -(10)定义在),0(+∞上的函数)(x f 满足:)(2)2(x f x f =,且当]2,1(∈x 时,x x f -=2)(, 若21,x x 是方程=)(x f )10(≤<a a 的两个实数根,则21x x -不可能...是(丽水2013届高考第一次模拟第10题改编)(A )24(B )72 (C )96 (D )120第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) (11)已知ααsin 562sin =,)2,0(πα∈,则=αtan .(12)某几何体的三视图如图所示,则该几何体的体积为 .(13)若函数220()0x x x f x ax x x ⎧-≥⎪=⎨-<⎪⎩,,,,是奇函数,则=a .(14)已知数列{}n a 的首项11a =,其前n 项和n n a n S ⋅=2*)(N n ∈,则=9a .(15)有甲、乙、丙三位同学,投篮命中的概率如下表:现请三位同学各投篮一次,设ξ表示命中的次数,若E ξ=6,则a = . (16)若正数a b ,满足12=+b a ,则ab b a ++224的最大值为 .(17)如图,已知圆M :4)3()3(22=-+-y x ,四边形ABCD为圆M 的内接正方形,E 为边AB 的中点,当正方形ABCD 绕圆心M 转动,同时点F 在边AD 上运动时,OF ME ⋅的最大值是 .三、解答题(本大题共5小题,共72分.) 18、(本题满分14分)已知m ()cos sin x x x ωωω=+,n ()cos sin ,2sin x x x ωωω=-,其中0ω>,若函数()f x n m •=,且()f x 的对称中心到()f x 对称轴的最近距离不小于4π(Ⅰ)求ω的取值范围;(Ⅱ)在ABC ∆中,,,a b c 分别是角, , A B C 的对边,且1, 2a b c =+=,当ω取最大值时,()1f A =,求ABC ∆的面积. (重庆模拟一16改编)19、(本题满分14分)QQ 先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出, 则它每晚要吃掉1条青鱼(规定青鱼不吃鱼). (1)求这7条鱼中至少有6条被QQ 先生吃掉的概率;(2)以ξ表示这7条鱼中被QQ 先生吃掉的鱼的条数,求ξ的分布列及其数学期望E ξ.(重庆模拟三17改编)20、(本小题满分14分)如图,四棱锥P ABCD -的底面为正方形,侧棱PA ⊥底面ABCD ,且2PA AD ==,,,E F H 分别是线段,,PA PD AB 的中点.(Ⅰ)求证:PB //平面EFH ; (Ⅱ)求证:PD ⊥平面AHF ; (Ⅲ)求二面角H EF A --的大小. (成都七中高三第二次模拟18题改编) 21、(本小题满分15分)已知(2, 0)A -,(2, 0)B 为椭圆C 的左、右顶点,F 为其右焦点,P 是椭圆C 上异于A ,B 的动点,且A P B ∆面积的最大值为3 (Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)直线AP 与椭圆在点B 处的切线交于点D ,当直线AP 绕点A 转动时,试判断以BD 为直径的圆与直线PF 的位置关系,并加以证明.(慈溪2012高考模拟21题改编)22、(本题满分15分)已知函数1()(2)(1)2ln ,().(,)xf x a x xg x xe a e -=---=∈R 为自然对数的底数(I )当1,()a f x =时求的单调区间;(II )若函数1()(0,),2f x a 在上无零点求的最小值;(III )若对任意给定的(](]00,,0,(1,2)i x e e x i ∈=在上总存在两个不同的,使得0()(),i f x g x a =成立求的取值范围。
2013年绍兴市高三教学质量调测数 学(理)注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式: 如果事件A ,B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+V S h =如果事件A ,B 相互独立,那么其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A在一次试验中发生的概率是p,那13V Sh =么n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高 ()n P k =(1)k kn k n C p p --(0,1,2,,)k n =⋅⋅⋅台体的体积公式球的表面积公式 121()3V h S S =+ 24RS π=其中12,S S 分别表示台体的上、下底面积,h 球的体积公式表示台体的高334R V π=其中R 表示球的半径第Ⅰ卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的)1.设全集}0|{>=x x U ,集合}03|{>-=x x M ,则U M =ðA .}30|{≤<x xB .}3|{<x xC .}3|{≤x xD .}30|{<<x x2.设等差数列{}n a 前n 项和为n S ,若234a S +=-,43a =,则公差为 A .1-B .1C .2D .33.若a ,∈b R ,则“0,0>>b a ”是“0>+b a ”的 理科数学一模试题卷 第1页(共6页)俯视图侧视图正视图A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.某四棱锥的底面为正方形,其三视图如图所示, 则该四棱锥的体积等于A .1B .2C .3D .45.函数()s i n 2c o s 2fx x x =-在下列哪个区间上 单调递增A .5ππ[,]44--B .π3π[,]88-C .3π7π[,]88D .3π7π[,]446.已知实数y x 满足210,330,1,x y x y x ++≥⎧⎪-+≥⎨⎪≤⎩则4z x y =-的最小值为A .5B .2-C .4-D . 5-7.已知n m ,是两条不同的直线,βα⊥ 的是A .βα//,,n m n m ⊥⊥B .βα⊥⊥n m n m ,,//C .βα//,//,n m n m ⊥D .βα⊥n m n m ,//,//8.已知双曲线22221x y a b-=(F ,O 为坐标原点,以OF为直径的圆与双曲线的一条渐近线相交于AOF 的面积为b,则双曲线的离心率等于A .3BC .D .9.已知函数22log ,()12x f x x ⎧⎪=⎨-⎪⎩若方程()(=∈f x t t )R 有四个不同的实数(第4题)αOABCD根,,,,则1x x x x 的取值范围为A .(30,34)C .(32,34)D .(32,36)10.α,顶A 与A .12236+ B .2215+C .426+ D .12225+第Ⅱ卷(共100分)二、填空题 (本大题共7小题,每小题4分,共28分)11.已知i 为虚数单位,则13i1i+-= ▲ . 12.某程序框图如图所示,若输入16x =,则运行后输出的值 是 ▲ .13.1-展开式的常数项是 ▲ . 14.34,a a 依次构成公差不为零的等差数列.若数列,则此等比数列的公比为 ▲ .15. 有 ▲ 种.16.已知a ,b 为平面内两个互相垂直的单位向量,若向量c 满足()λc+a =c +b (λ∈)R , 则|c |的最小值为 ▲ .17.已知a 为[0,1]上的任意实数,函数1()f x x a =-,22()1f x x =-+,323()f x x x =-+. (第12题)(第10题)理科数学一模试题卷 第3页(共6页)21.(本小题满分15分)已知A 是圆422=+yx上的一个动点,过点A 作两条直线,它们与椭圆13=+yx 都只有一个公共点,且分别交圆于点N M ,.(Ⅰ)若)0,2(-A ,求直线的方程;(Ⅱ)(i )求证:对于圆上的任一点A ,都有21l l ⊥(ii )求△AMN 面积的取值范围.22.(本小题满分15分)已知函数()2f x x =+2(3)(1)l n p x p x-+-(∈p )R . (Ⅰ)若()x 无极值点,求p 的取值范围;(Ⅱ)设为函数()x 的一个极值点,问在直线0x x =的右侧,函数()y f x =的图象上是否存在点11(,())Ax f x ,B ))(,(22x f x )(21x x <,使得p x x x f x f -=--3)()(1212成立?若存在,求出的取值范围;若不存在,请说明理由.(第21题)(第20题)理科数学一模试题卷 第5页(共6页)2013年绍兴市高三教学质量调测数学(理)参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分)1.A 2.C 3.A 4.B 5.B 6.C 7.D 8.D 9.C 10.A 二、填空题 (本大题共7小题,每小题4分,共28分)11.12i -+ 12.7 13.1514.或2 15.2116.17.①④三、解答题 (本大题共5小题,共72分.解答应写出文字说明、证明过程或演算过程) 18.(本小题满分14分) 解:(Ⅰ)由已知得BCDS ∆=13s i n 23B C B D B ⋅⋅=, 又2BC =,3sin 2B =得23B D =.……………………3分在△BCD 中,由余弦定理得CD =22221222332⎛⎫=+-⨯⨯⨯ ⎪⎝⎭273=, 所以CD 的长为273. ……………………7分(Ⅱ)方法1:因为6s i n 2s i n D E C D A D A A===. ……………………10分在△BCD 中,由正弦定理得s i n s i n B C C DB DC B=∠,又2B D C A∠=, 得26s i n 22s i n s i n 60A A =︒, ……………………12分 解得2cos 2A =,所以4A π=即为所求. ……………………14分方法2:在△ABC 中,由正弦定理得2sin sin =ACA B,又由已知得,E 为AC 中点,2∴=AC AE ,所以3s i n s i n 2AE A B ⋅==. ……………………10分 又s i n t a n D E A A ==,所以s i n c o s A E A D E A⋅=⋅6co s A =,……12分则0,0,⎧⋅=⎪⎨⋅=⎪⎩u u u r r u r r PA n m n 即2220,0,x y z y --=⎧⎨=⎩ 取(1,0,1)n =r . ……………………5分∴直线A O 与平面PAB 所成角θ满足 sin 12,…………7分 所以直线O A 与平面PAB 所成角为30. ……………………8分方法2:过O 点作O H A B ⊥,垂足为H ,连接P H . 过O 作O K P H ⊥,垂足为K ,连接A K . PO ⊥Q 平面ABCD ,∴P O A B ⊥.O H A B ⊥Q ,∴AB ⊥平面POH . 又OK ⊂平面POH , ∴A B O K ⊥,又O K P H ⊥,∴OK ⊥平面PAB ∴OAK ∠就是O A 与平面PAB 所成角.……3分 ∵P A P D =,∴P 点在平面ABCD 上的射影O 在线 段A D 的中垂线上,设A D 的中点为E ,连接,EP EO ∴AD EP AD EO ⊥⊥,,∴PEO ∠为二面角P - 在等腰△PAD 中,∵4AD =,∴2==ED EA ∴22=PE.在Rt △PEO 中,得2O P O E == 又2OH AE ==,2PO =,在Rt △POH ∴1s i n 2O K O A K O A ∠==,∴30O A K ∠=o. 所以直线O A 与平面PAB 所成角为30o . ……………………8分 (Ⅱ)设AB x =,则8P B x =-,连接O B .在Rt △POB 中,222OB PO PB +=,又由(Ⅰ)得OE AE ⊥,OE AE =,∴45O A E ∠=o ,∴45O A B ∠=o. ……………………9分 在△OAB 中,222OB AO AB =+-2cos AO AB OAB ⋅∠284x x =+-,又22)8(x PB -=,∴22)8()48(4x x x -=-++,得313=,即133A B =. ……………………11分∴三棱锥P A B D -的体积13-∆=⋅P ABD ABD V S OP 111352423239=⨯⨯⨯⨯=. ……14分 21.(本小题满分15分) 解:(Ⅰ)设)2(+=x k y ,代入13=+yx 消去y,得222(13)12k x k x ++21230k +-=.………………2分由0=∆得,012=-k ,设的斜率分别为k k ,得1,121=-=k k .所以直线的方程分别为2,2+=--=x y x y . ………………4分(Ⅱ)(i )证明:①当中有一条斜率不存在时,不妨设无斜率,因为与椭圆只有一个公共点,所以其方程为3±=x.当方程为3=x时,此时与E②当31<<p 时,1-=p x,此时,2)1(2121-<<-p x p .……………………14分综上,存在满足条件的点A ,且当1p <-时,1x 的取值范围为1(,2p+-当13p <<时,1x 的取值范围为(1,p -. ……………………15分理科数学一模答案 第5页(共5页)。
杭州四中高三年级 2012学年第九次教学质量检测数学(理)试题卷【考生须知】1.试卷分试题卷和答题卷,满分150分,考试时间120分钟。
2.答题前,在答题卷密封区内填写班级.学号,姓名.试场号.座位号。
3.所有答案必须写在答题卷上,写在试卷上无效。
4.考试结束,只上交答题卷。
参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式 ()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高 ()()()P A B P A P B ⋅=⋅ 棱锥的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 13V S h =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π=()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.A. -iB. -1 +iC. 1D. -1-i2.已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( )A .553B .555C .55D .5113.某程序框图如图所示,则该程序运行后输出的S 的值为( )A .14 B .12 C . 1 4.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .若A 、B 两个袋 子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,则p 的值为 ( ) (第3题)A .31 B .3013 C .3017 D .215.已知直线l 和平面βα,,下下列命题正确的是( )A .若l ∥α,βα⊥,则β⊥lB .若l ∥α,α∥β,则l ∥β C .若l ∥α,β⊂l ,则α∥β D .若l ⊥α,β⊂l ,则βα⊥ 6.在等差数列{an}中,若4681012a a a a a ++++= 90,则101413a a -的值为( ) A. 12 :B. 14C. 16D. 187.设:p 关于x 的方程x 2+2ax +b =0 有实数根,且两根均小于2,:q a ≥2且|b | ≤4, 则下列说法正确的是( ) vA .p 是q 的充要条件B .p 是q 的充分不必要条件C .p 是q 的必要不充分条件D .p 是q 的既不充分也不必要条件8右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为( )( 第8题图)9.已知函数 ()x f y =是定义在R 上的增函数,函数()1-=x f y 的图象关于点(1, 0)对称. 若对任意的R y x ∈,,不等式()()0821622<-++-y y f x x f 恒成立,则当x >3时,22y x +的取值范围是( )A. (3, 7)B. (9, 25)C. (13, 49)D. (9, 49)10. 设的定义域为D ,若满足下面两个条件,则称为闭函数.①在D 内是单调函数;②存在,使f(x)在[a,b]上的值域为[a,b].如果为闭函数,那么k 的取值范围是( ) A.k <l B.C. k >-1D.非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是______(单位:m 2).正视图 侧视图 俯视图12.若)()1(92R a ax x ∈-的展开式中9x 的系数为221-,则a 的值等于 。
13.有七名同学站成一排照相,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有_________.14..已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的n m += ▲ . 15.某种平面分形图如下图所示一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段 到n级分形图.16.如图,在正方形ABCD 中,E ,F 分别为线段AD ,BC 上的点,∠ABE =20°,∠CDF =30°.将△ABE 绕直线BE 、△CDF 绕直线CD 各自独立旋转一周,则在所有旋转过程中,直线AB 与直线DF 所成角的最大值为_________.17.函数|1|,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是________. (第16题图 三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. 18.(本小题满分14分)已知△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,若A 、B 、C 成等差数列,b =1,记角A=x ,a +c =f (x ).(Ⅰ)当x ∈[6π,3π]时,求f (x )的取值范围;(Ⅱ)若56)6(=-πx f ,求sin2x 的值. 19.(本小题满分14分)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单位是毫克/100毫升),当20≤Q ≤80时,为酒后驾车;当Q >80时,为醉酒驾车.某市公安局交通管理部门于2013年2月的某天晚上8点至11点在市区设 点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q ≥140的人数计入120≤Q <140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X 的分布列和期望.甲 乙 1 9n 68 2 0 2 m D F20.(本小题满分14分)如图,已知ABCD 是边长为1的正方形,AF ⊥平面ABCD , CE ∥AF ,)1(>=λλAF CE . (Ⅰ)证明:BD ⊥EF ; (Ⅱ)若AF =1,且直线BE 与平面ACE 所成角的正弦值为1023,求λ的值.21.(本小题满分15分) 在直角坐标平面中,△ABC 的两个顶点为(0,1)A -,(0,1)B .平面内两点G 、M 同时满足:① G 为△ABC的重心, ② MA MB MC == ,③GM ∥AB.(Ⅰ)求顶点C 的轨迹E 的方程;(Ⅱ)设P Q R N 、、、都在曲线E 上 ,定点F的坐标为,已知PF ∥FQ,RF ∥FN且0PF RF ⋅= .求四边形PRQN 面积S 的最大值和最小值.22.(本小题满分15分)设x m =和x n =是函数21()ln (2)2f x x x a x =+-+的两个极值点,其中m n <, (Ⅰ) 求实数a 的取值范围;(Ⅱ) 求()()f m f n +的取值范围; (Ⅲ)若2a ≥-,求()()f n f m -的最大值. (注:e 是自然对数的底数.)理数学答案及评分标准一、选择题: 本题考查基本知识和基本运算。
每小题5分, 满分50分。
(1) D (2) A (3) C (4) B (5) D (6) A (7) C(8) C (9) C(10) B二、填空题: 本题考查基本知识和基本运算。
每小题4分, 满分28分。
(11) 624+ (12) 2(13) 192(14) 9 (15) (Ⅰ)323n ⋅- (Ⅱ)299()3n -⋅ (16) 70° (17) )2,23()23,1(⋃三、解答题:本大题共5小题,共72分。
(18) (本题满分14分)。
解:(Ⅰ)由已知 A 、B 、C 成等差数列,得2B =A +C ,∵ 在△ABC 中, A +B +C =π,于是解得3π=B ,32π=+C A .∵ 在△ABC 中,C cB b A a sin sin sin ==,b =1, ∴ C A c a sin 3sin1sin 3sin 1ππ+⋅=+)]32sin([sin 332A A -+=π]sin 32cos cos 32sin [sin 332A A A ππ-+=A A cos sin 3+=)6sin(2π+=A , 即 )6sin(2)(π+=x x f . …………………………………………………………6分 由6π≤x ≤3π得3π≤x +6π≤2π,于是3≤)(x f ≤2,即f (x )的取值范围为[3,2] . ………………………………………………8分 (Ⅱ)∵56)66sin(2)6(=+-=-πππx x f ,即53sin =x . ∴ 54sin 1cos 2±=-±=x x . ……………………………………………………9分若54cos -=x ,此时由2254-<-知x >43π,这与32π=+C A 矛盾.∴ x 为锐角,故54cos =x . ……………………………………………………12分∴ 2524cos sin 22sin ==x x x .……………………………………………………14分 (19)。
(本题满分14)。
解: (1) (0.0032+0.0043+0.0050)×20=0.25,0.25×60=15,所以此次拦查中醉酒驾车的人数为15人. ………… ……………6分 (2) 易知利用分层抽样抽取8人中含有醉酒驾车者为2人;所以x 的所有可能取值为0,1,2;P(x =0)=3836C C =145,P(X=1)=381226C C C =2815,P(x =2)=382216C C C =283 X 的分布列为………………………………12分432832281511450)(=⨯+⨯+⨯=X E.………………14分 (20) 本题满分14分。
(Ⅰ)方法1:连结BD 、AC ,交点为O.∵ABCD 是正方形 ∴BD ⊥AC ……2分∵AF ⊥平面ABCD ∴AF ⊥BD ……4分∴BD ⊥平面ACEF ……6分∴BD ⊥EF ……7 方法2:如图建立空间直角坐标系A -x yz ,∵)0,0,1(B ,)0,1,0(D ∴)0,1,1(-=…2分 设),0,0(h F ,那么),1,1(h E λ, …4分 则))1(,1,1(h λ---= …5分 ∴0=⋅EF BD ∴BD ⊥EF …7分(Ⅱ)方法1:连结OE ,由(Ⅰ)方法1知,BD ⊥平面ACEF ,所以∠BEO 即为直线BE 与平面ACE 所成的角. ……10分 ∵AF ⊥平面ABCD ,CE ∥AF ,∴CE ⊥平面ABCD ,CE ⊥BC ,∵BC =1,AF =1,则CE =λ,BE =21λ+,BO =22, ∴Rt △BEO 中, 1023122sin 2=λ+==∠BE BO BEO , …13分 因为1>λ,解得34=λ. ……15分 方法2:∵),1,0(λ=,由(Ⅰ)法1知,BD ⊥平面ACEF , 故)0,1,1(-=BD 是平面ACE 的法向量. ……10分 记直线BE 与面ACE 所成角为θ,则1023121sin 2=λ+⋅==θ,…13分;因为1>λ,解得34=λ…14分(21)(本题满分15分)。