第17章《勾股定理》学案
- 格式:doc
- 大小:448.50 KB
- 文档页数:13
- 1 -18.1 勾股定理(一) (一)课前预习 1.直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若∠B=30°,则∠B 的对边和斜边:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。
(二)、勾股定理的证明勾股定理的证明方法很多,你能否利用右图:赵爽弦图证明呢?1.已知:在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a 、b 、c 。
求证: 222a b c +=勾股定理的内容是: 。
(三)学以致用 在Rt△ABC 中,已知两边求第三边-------简称“知二求一” 1.在Rt△ABC 中,90C ∠=︒ , ⑴如果a =6,b =8,求c 的值; ⑵如果a =5,b =12,求c 的值; ⑶如果a =9,c =41,求b 的值; 练习 1.若一个直角三角形的两直角边分别为9和12,则第三边的长为( ) A.13 B. 13 C. 5 D.15 2.若一个直角三角形的斜边长为26,一条直角边长为24,则另一直角边长为( ) A.8 B.10 C.50 D.36 3.在Rt △ABC 中,∠C=90°,若a ︰b =3︰4,c=10,求a ,b 的值。
注意:⑴只有在直角三角形中,才能用勾股定理;⑵在用勾股定理求第三边时,要分清直角三角形的斜边和直角边; (四)当堂检测:1.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.2.在Rt△ABC,∠C=90°;⑴ 已知a =b =5,求c ;⑵已知c =17,b =8,求a ;⑶ 已知a ∶b =1∶2,c=5,求a ; ⑷已知b=15,∠A=30°,求a ,c 。
3.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,求斜边的长?4.一个直角三角形的两边长分别为3cm 和4cm ,求第三边的长?5.已知,如图在正ΔABC 中,AB=BC=CA=2cm .求ΔABC 的面积.BDbaD C C A- 2 -EFDCBA18.1 勾股定理(二)(一)回顾复习:1.勾股定理:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。
如果梯子底端离建筑物5米,17米长的梯子可以达到该建筑物的高度是多少?根据题目的意思,我们画出如右图所示的图形,已知AB =17米,AC =5米, ∠ACB =90°,如何求这个三角形的BC 边的长呢?教材精华知识点1 有关勾股定理的历史古时候,把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦,因此有勾3、股4、弦5之说.历史上,周朝数学家商高对周公说:“故折矩,勾广三,股修四,经隅五.”意思是说:矩形以其对角线相折所成的直角三角形中,如果勾为3,股为4,那么弦必为5.这足以说明我国是最早了解勾股定理的国家之一.知识点2 勾股定理的探索让我们通过计算面积的方法探索勾股定理.观察图18-1,正方形A 中有9个小方格,即A 的面积是9个单位面积.正方形B 中有9个小方格,即B 的面积是9个单位面积.正方形C 中有18个小方格,即C 的面积是18个单位面积.可以发现,C 的面积=A 的面积+B 的面积.知识点3 勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222a b c +=. 即直角三角形两直角边的平方和等于斜边的平方.【拓展】 (1)勾股定理存在的前提是直角三角形,如果不是直角三角形,那么三边之间就没有这种关系了.(2)勾股定理把“形”与“数”有机地结合起来,即把直角三角形这一“形”与三边关系这一“数”结合起来,是数形结合思想的典范.(3)勾股定理的证明.证明勾股定理的方法有许多,现在给出几种证法(拼图法):证法1:如图18-2所示,因为大正方形的边长是a+b ,所以面积为2()a b +,而中间小正方形的面积为c 2,周围四个直角三角形面积和为4×12ab ,故有22()a b c +=+4×12ab ,整理得222a b c +=.证法2:如图18-3所示,图为大正方形的边长是a+b ,所以它的面积为2()a b +,又因为该正方形的边长与如图18-2所示的正方形的边长相等,所以面积也相等.故有22a b ++4×12ab =c 2+4×12ab ,整理得222a b c +=.证法3:如图18-4所示,该图是由两个全等的直角三角形和一个以c 为直角边的等腰直角三角形拼成的.∵S 梯形211()()()22a b a b a b =++=+,S 梯形12ab =×2+212c =ab +212c ,∴2211()22a b ab c +=+,整理得222a b c +=. 证法4:如图18-5所示,该图是由4个全等的直角三角形拼成的,且中间是正方法.∵以c 为边的大正方形面积是c 2,而4个直角三角形的面积和为4×12ab ,且中间的小正方形的面积是2()b a -.∴c 2=4×12ab +(b-a )2,整理得222a b c +=.知识点4 勾股定理的应用(1)运用直角三角形三边的数量关系来解决生活中的实际问题,如已知直角三角形的两条直角边长,求斜边长.(2)运用直角三角形三边的数量关系的变式,即勾股定理变式.由222a b c +=可以得到如下关系:①222=-;③22b c aa c b=-;②222b c a=-;⑤22=-.a c bc a b=+;④22课堂检测基础知识应用题1、在△ABC中,∠C=90°.(1)若a=5,b=12,求c;(2)若c=26,b=24,求a.2、在一棵树的10 m高处有两只猴子,其中一只爬下树走向离树20 m的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?综合应用题3、如图18-10所示,在△ABC中,∠A=60°,AB=15 cm,AC=24 cm,求BC 的长.4、如图18-11所示,A ,B 两个村子在河CD 同侧,A ,B 两村到河的距离分别为AC =1 km ,BD =3 km,CD =3 km.现要在河边CD 上建一水厂,向A ,B 两村输送自来水,铺设水管的工程费用为每千米2000元.请在CD 上选择水厂的位置O ,使铺设水管的费用最省,并求出铺设水管的总费用.探索创新题5、已知Rt △ABC 中,∠A ,∠B ,∠C 的对边长分别为a,b,c ,设△ABC 的面积为S ,周长为l .(1) 请你完成下面的表格;(2)仔细观察上表中你填定的数据规律,如果a,b,c 为已知的正实数,且a+b-c=m ,那么a,b,c a+b-cSl3,4,5 5,12,13 8,15,17S= (用含m的代数式表示);l(3)请说明你写的猜想的推理过程.体验中考1、图18-19是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26C.47 D.942、如图18-20所示,长方体的长为15,宽为10,高为20,点B与点C的距离为5,一只蚂蚁如果沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.21B.25C.105D.35学后反思【解题方法小结】(1)求不规则图形面积应用割补法把图形分解为特殊的图形.(2)四边形中常通过作辅助线构造直角三角形,以利用勾股定理.(3)点到线的最短距离是垂线段的长度,在同一题中可能反复应用勾股定理.附: 课堂检测及体验中考答案 课堂检测1、解析 利用勾股定理222a b c +=来求未知边长.【解题方法】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股定理原式还是变式.解:在△ABC 中,∠C =90°,所以222a b c +=. (1)因为222a b c +=,a =5,b =12,所以2222251225144169c a b =+=+=+=,所以c =13. (2)因为222a b c +=,c=36,b=24,所以222222624676576100a c b =-=-=-=.所以a=10.2、解析 如图18-9所示,设A 为树根,D 为树顶,B 为猴子所在处,则AB =10 m,C 为池塘,设BD =x m,已知两只猴子走过的路程相等,即DB+CD=AB+AC ,就可以应用勾股定理求出CD ,继而求出树高AD .解:如图18-9所示,B 为猴子初始位置,则AB =10 m,C 为池塘,则AC =20 m. 设BD =x m,则树高AD =(10+x )m. ∵BD+CD=AB+AC ,∴x+CD =20+10. ∴CD =(30-x )m.在Rt △ACD 中,∠A =90°,由勾股定理得222AC AD CD +=,∴202+(10+x)2=(30-x) 2,∴x=5.∴树高AD=10+5=15(m).3、解析本题中并没有直接给出直角三角形,可作垂线构造直角三角形.已知∠A=60°,因此作AB边上的高或AC边上的高,运用含30°角的直角三角形的性质及勾股定理进行求解.解:过点C作CD⊥AB,垂足为D,所以∠ADC=90°.因为∠A=60°,所以∠ACD=30°.所以AD=12AC=12×24=12(cm).又因为AB=15 cm,所以BD=AB-AD=15-12=3(cm).在Rt△ADC中,222222412432CD AC AD=-=-=.在Rt△BCD中,22224323441BC DC BD=+=+=.所以BC(cm).4、解析若最省钱只需AO+BO最小,可将A,O,B放在一条线段上考虑,故只需找到点A关于CD的对称点A′,连接A′B交CD于O,则水厂建在O点处即可,构造直角三角形,应用勾股定理就可求出各边长.解:作点A关于CD的对称点A′,连接A′B交CD于点O,则O点就是水厂的位置.过A′作A′H∥CD交BD延长线于H,∴△A′HB为直角三角形.在Rt△A′HB中,A′H=CD=3,BH=BD+DH=BD+A′C=BD+AC=1+3=4,由勾股定理得A′B,∴总费用为2000×5=10000(元).5、解:(1)表格中左栏从上至下依次填2,4,6,右栏从上至下依次填12,1,32.(2)4m (3)推理过程如下: 因为222a b c +=,所以()22111()()444lm a b c a b c a b c ⎡⎤=+++-=+-⎣⎦=2222221111(2)(2)24442a ab bc a b c ab ab ab ++-=+-+=⨯=. 又因为S =12ab ,所以14S lm =,即4m ml =.体验中考1、C 解析 由正方形面积和勾股定理可得E 的面积为(32+52)+(22+32)=47.2、B 解析 空间为AB A.17.2 勾股定理的逆定理知识精点1.勾股定理的逆定理:若一个三角形的三条边满足关系式222c b a =+,则这个三角形是直角三角形.2.勾股定理的作用:判断一个三角形是不是直角三角形. 3.用勾股定理及其逆定理解决一些实际问题.重、难、疑点重点:掌握用勾股定理的逆定理判断一个三角形是否为直角三角形,或两条直线是否垂直. 难点:用勾股定理及其逆定理解决一些实际问题. 疑点:如何将实际问题转化为直角三角形的判定问题.典例精讲例1 试判断:三边长分别为)0(122,12,2222>++++n n n n n n 的三角形是不是直角三角形? 方法指导:先确定最大边,再用勾股定理的逆定理判断. 解:∵01)22()122(22>=+-++n n n n ,)0(02)12()122(22>>=+-++n n n n n ,∴1222++n n 为三角形的最大边.又∵14884)122(23422++++=++n n n n n n ,14884)12()22(234222++++=+++n n n n n n n ,∴22222)12()22()122(+++=++n n n n n .由勾股定理的逆定理可知,此三角形为直角三角形.方法总结:判定一个三角形是否是直角三角形,先确定最大边,再看最大边的平方是否是另两边的平方和.若是则是直角三角形,反之不是.举一反三 试判断:三边长分别为)0(,2,2222>>+-n m n m mn n m 的三角形是不是直角三角形?解:∵m>n>0,∴222222,2n m n m mn n m ->+>+. ∴22n m +为三角形的最大边,又∵224224222242)2()(n m n n m m mn n m ++-=-,22422422242)(n m n n m m n m ++-=+,∴2222222)()2()(n m mn n m +=+-.由勾股定理的逆定理可知,此三角形为直角三角形.例2 如图,在正方形ABCD 中,E 是BC 的中点,F 为CD 上一点,且CD CF 41=.求证:△AEF 是直角三角形.方法指导:要证△AEF 是直角三角形,由勾股定理的逆定理,只要证222AF EF AE =+即可. 解:证明:设正方形ABCD 的边长为a ,则21==CE BE ,a CF 41=,A DF 43=. 在Rt △ABE 中,由勾股定理得:22222245)21(a a a BE AB AE =+=+=.同理在Rt △ABE 中,由勾股定理得:2222221625)43(a a a DF AD AF =+=+=.在Rt △CEF 中,由勾股定理得:222222165)41()21(a a a CF CE EF =+=+=.∴222EF AE AF +=. ∴△AEF 是直角三角形.方法总结:利用代数方法,计算三角形的三边长,看它们是否符合勾股定理的逆定理,以判断三角形是否是直角三角形,这是解决几何问题常用的方法之一.举一反三 如图,在四边形ABCD 中,∠B=90°,AB=BC=4,CD=6,DA=2,求∠DAB 的度数.解:连接AC ,在Rt △ABC 中,∠B=90°,AB=BC=4,∴∠BAC=45°,321616222=+=+=BC AB AC .在△ADC 中,22236324CD AC AD ==+=+, ∴△ADC 是直角三角形,∠DAC=90°. ∴∠DAB=∠BAC+∠DAC=45°+90°=135°.例3 如图,△DEF 中,DE=17cm ,EF=30cm ,EF 边上的中线DG=8cm ,求△DEF 的面积.方法指导:利用勾股定理的逆定理解题. 解:∵EF=30cm ,∴cm EF EG 1521==, ∵2891722==DE ,64822==DG ,2251522==EG , ∴222EG DG DE +=.∴△DGE 是直角三角形,即DG ⊥EF , ∴212021cm DG EF S DEF =⋅=∆. 方法总结:利用勾股定理的逆定理可证两线垂直.举一反三 已知如图,∠B=∠D=90°,∠A=60°,AB=10,CD=6,求四边形ABCD 的面积.解:延长AD 、BC 交于点E .在Rt △ABE 中,∠B=90°,∠A=60°,AB=10, ∴AE=20. 由勾股定理可得:31022=-=AB AE BE , ∴3503101021=⨯⨯=∆ABE S . 在Rt △CDE 中,∠CDE=90°,∠E=30°,CD=6, ∴36,1222=-==CD CE DE CE . ∴31836621=⨯⨯=∆CDE S . ∴四边形ABCD 的面积为:332318350=-.例4 已知△ABC 的三边长为a ,b ,c ,且满足442222b a c b c a -=-,试判断△ABC 的形状. 方法指导:要判断三角形的形状,应从已知条件入手,分析各边之间的关系,从而得出正确结论.解:∵44222b a c b c a -=-2, ∴))(()(2222222b a b a c b a -+=-. ∴0))((22222=+-+b a c b a . ∴0222=-+c b a 或022=-b a . 当0222=-+c b a 时,有222c b a =+.由勾股定理的逆定理知,此时三角形是直角三角形; 当022=-b a 时,有a=b ,此时三角形是等腰三角形. 综上,△ABC 是直角三角形或等腰三角形.方法总结:此题易犯的错误是由))(()(2222222b a b a c b a -+=-得0222=-+c b a ,漏掉022=-b a 这种情况,从而漏掉等腰三角形这种可能性.举一反三 若△ABC 的三边满足条件c b a c b a 262410338222++=+++,试判断△ABC 的形状.解:∵c b a c b a 262410338222++=+++, ∴0262410338222=---+++c b a c b a . ∴0)13()12()5(222=-+-+-c b a . ∴a=5,b=12,c=13.∴222c b a =+,∴△ABC 是直角三角形.例5 如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .方法指导:可将直线的互相垂直问题转化成直角三角形的判定问题. 解:∵在Rt △BCD 中,BC=4,CD=3, ∴由勾股定理得:253422222=+=+=CD BC BD , 即BD=5.在△ABD 中,∵BD=5,AB=13,AD=12, ∴222BD AD AB +=,由勾股定理逆定理知:△ABD 是直角三角形, 且∠ADB=90°,∴AD ⊥BD .方法总结:判断三角形中的垂直或证明三角形是直角三角形的时候,应用勾股定理的逆定理,只要满足表达式的形式,就可判断三角形是直角三角形.举一反三 如图,在△ABC 中,AD ⊥BD ,垂足为D ,AB=25,CD=18,BD=7,求AC . 解:在Rt △ADB 中,AB=25,BD=7,由勾股定理得:57672522222=-=-=BD AB AD . ∴AD=24.在Rt △ADC 中,∵AD=24,CD=18, ∴3018242222=+=+=CD AD AC .例6 如图,已知△ABC 中,AB=AC ,D 为BC 上任一点,求证:22AB DC BD AD =⋅+.方法指导:证明线段的平方关系,应注意到勾股定理的表达式里有平方关系,因此需要构造直角三角形,从而为用勾股定理创造前提条件.解:过点A 作AE ⊥BC 于E . ∵AB=AC ,∴BE=EC .又∵AE ⊥BC ,∴222BE AE AB +=,222ED AE AD +=.∴2222ED BE AD AB -=-BD CD ED BE ED EC ED BE ED BE ⋅=-+=-+=))(())((.∴22AB DC BD AD =⋅+.方法总结:构造直角三角形是解决几何问题的常用方法和手段,往往是通过作高来构造直角三角形.在解决问题的过程中,代数和几何的知识经常结合应用.举一反三 如图所示,DE=m ,BC=n ,∠EBC 与∠DCB 互余,求22CE BD +.知识网络学法点津勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边.同步练习一1.已知一个三角形的三边分别为3k ,4k ,5k (k 为正整数),则这个三角形是__________三角形,理由是__________.2.若一个三角形的三边长为m+1,8,m+3,当m=__________时,此三角形是直角三角形,且其中m+3是斜边.3.在△ABC 中,a=2,b=5,则当____________2=c 时,∠C=90°.4.如果一个三角形的三条边长分别是a ,b ,c ,当4:3:1::222=c b a 时,那么这个三角形是__________三角形.5.已知△ABC 中,AB=k ,AC=2k —1,BC=3,当k=__________时,∠C=90°.6.我们知道,像“3,4,5”,“6,8,10”,“5,12,13”,“7,24,25”这样的每组三个数是勾股数;已知m 、n 是正整数,m<n ,设三个勾股数中的最大一个是22m n +.(1)用含n ,m 的代数式表示前两个勾股数是__________、__________.(2)如a ,b ,c 是一组勾股数,并且这三个数没有大于1的公因数,则这样的一组勾股数称为基本勾股数.例如“3,4,5”,“5,12,13”,“7,24,25”.请再写出一组不同于这三例的基本勾股数:__________.7.如果线段a ,b ,c 能组成一个直角三角形,那么2,2,2cb a ( )A .也能组成一个直角三角形B .只能组成一个锐角三角形C .不能组成三角形D .无法确定8.以下列长度的各组线段为边,能组成直角三角形的是( ) A .2cm ,3cm ,5cmB .2cm ,1.5cm ,2.5cmC .7cm ,8cm ,10cmD .cm cm cm 2225,4,39.三角形各边(从小到大)长度的平方比如下列各组数据,其中不是直角三形的是( ) A .1:1:2B .1:3:4C .9:25:26D .25:144:16910.下列各组数中,以a ,b ,c 为边长的三角形不是直角三角形的是( ) A .a=1.5,b=2,c=3 B .a=7,b=24,c=25 C .a=6,b=8,c=10D .a=3,b=4,c=511.三角形的三边长为a ,b ,c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形12.给出下列几组数:(1)5,6,7;(2)8,15,6;(3))(,2,2222m n m n mn m n >+-;(4)1,2,122+-n n n .其中能作为直角三角形的三条边长的有( )A .1个B .2个C .3个D .4个13.适合下列条件的△ABC 中,直角三角形的个数为( )(1)51,41,31===c b a ;(2)a=b ,∠A=45°;(3)∠A=32°,∠B=58°;(4)a=7,b=24,c=25;(5)a=2.5,b=2,c=3.14.一个三角形三边的长分别是15cm ,20cm ,25cm ,这个三角形最长边上的高是( ) A .12cmB .10cmC .cm 2112D .cm 211015.如图18.2-4,四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD 的面积.16.已知:如图18.2-5,在△ABC 中,AC=5,AB=12,BC=13,求BC 边上的高AD .17.初春时分,两组同学到村外平坦的原野上采集植物标本,分手后,他们向不同的两个方向前进,第一组的速度是30m/min ,第二组的速度是40m/in ,半小时后两组同学同时停下来,而此时两组同学相距1500m .(1)两组同学行走的方向是否成直角?(2)如果接下来两组同学以原来的速度相向而行,多长时间后能相遇?18.如图18.2-6,长方形ABCD 中,AB=3,BC=4,E ,F 分别在AB ,BC 上,且BE=BF=1.问△EFD 是否是直角三角形?并说明理由.19.先阅读下列文字,然后按要求回答问题:如图18.2-7,在△ABC 中,CD ⊥AB 于D ,且AD BD CD ⋅=2,∠A ,∠B 都是锐角.在Rt △ABC 中,222AD AC CD -=.所以AD BD AD AC ⋅=-22,即AD BD AD AC ⋅+=22,AB AD BD AD AD AC ⋅=+=)(2.如果在Rt △BDC 中,按照上述推理可得到什么结论呢?进而可得到△ABC 是什么形状的三角形?同步练习二1.如图,长方形ABCD 的长AB=12,宽CB=10,E 是BC 的中点.那么AE=_________.2.如图,正方体ABCD —A ′B ′C ′D ′的棱长是3,那么______________2=AC ,__________2='C A .3.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所爬行的最短路线的长是__________________________________.4.工人师傅常用如下方法来检验电线杆是否垂直于地面.现测得拉线AB=10m ,BD=8m ,AD=6m .问此时电线杆是否与地面垂直?_____________,因为___________________.5.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,如果其中最大的正方形的边长是7cm ,则正方形A ,B ,C ,D 的面积的和是_____________.6.如图,一块直角三角形的纸片,两直角边AC=6cm ,BC=8cm .现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.如图,正方形ABCD 中,AO ⊥BD ,OE ,FG ,HI 都垂直于AD ;EF ,GH ,IJ 都垂直于AO .如已知IJ=1.求BD 的长.8.△ABC 中,AB=m —5,AC=m+11,BC=24,则当m=_____________时,∠B=90°. 9.△ABC 中,三边a ,b ,c 满足)2()(222c b c a c b c ++=++,那么△ABC 是_________三角形.10.如图,四边形ABCD 中,∠BAD=90°,AD=3cm ,AB=4cm ,BC=5cm ,CD=6cm . (1)连接BD ,判别△CBD 的形状. (2)求四边形ABCD 的面积.11.(1)如图(1),一个梯子AB 长2.5m ,顶端A 靠在墙AC 上,这时梯子下端B 与墙根C 距离为1.5m ,梯子滑动手停在DE 的位置上,如图(2)所示,测得BD 的长为0.5m ,问梯子顶端A 下落的距离是否也为0.5m ?为什么?(2)如图(3)梯子AB 靠在墙上,梯子底端A 到墙根O 的距离是2m ,梯子顶端B 到地面的距离是7m .现将梯子的底端A 向左移动到A ′,使梯子的底端A ′到墙根O 的距离为3m ,同时梯子的顶端B 下降至B ′,那么BB ′;①等于1m ;②大于1m ;③小于1m .其中正确结论的序号是__________.参 考 答 案同步练习一1.直角;勾股定理的逆定理 2.14 3.29 4.直角 5.2.5 222BC AC AB +=,即9)12(422+-=k k ,则9144422++-=k k k ,解得k=2.5. 6.(1)mn m n 2;22-因为42242222)(m n m n m n ++=+,而42222224)(m n m n m n +-=-,2224)2(n m mn =,所以2222222)2()()(mn m n m n +-=+.(2)20,21,29 7.A 设c 为斜边,则222c b a =+,两边同乘以41,得222414141c b a =+,即222)2()2()2(c b a =+ 8.B 要注意D 中的2225,4,3,即9,16,25三边不能组成直角三角形的三边,因为22225169≠+ 9.B 10.A 11.B 12.B 13.B 14.A15.连接AC ,则AC=5,可证△ACD 为直角三角形.36125214321=⨯⨯+⨯⨯=ABCD S 16.1360=AD 17.(1)第一组行走m 9003030=⨯,第二组行走m 12003040=⨯.因为22215001200900=+,所以行走方向成直角.(2)设再经过xmin 相遇,则(30+40)x=1500,故min 7150=x . 18.是.在Rt △AED 中204222222=+=+=AD EA ED .同理求得2,182==EF DF 。
勾股定理【学习目标】1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
3、【学习重点】了结勾股定理的由来,并能用它来解决一些简单的问题。
【学前准备】1、画一个直角三角形并测量三边的长。
2、准备一张坐标纸【自学探究】阅读课本回答下列问题1、直角三角形的两条直角边的长度分别为a=3㎝,b=4㎝和a=6㎝,b=8㎝。
① 你量出斜边c的长度。
3cm6cm(1)(2)②进行有关的计算:(1)a2+b2=c2= (2) a2+b2=c2=③得出结论:2、思考:(1)观察图1-1。
A的面积是__________个单位面积;B的面积是__________个单位面积;C的面积是__________个单位面积。
(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(3)你能发现图1-1中三个正方形A,B,C围成的直角三角形三边的关系吗?(4)你能发现课本图1-3中三个正方形A,B,C围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。
预习后你还有什么问题?最想和大家讨论交流的问题是什么?【合作交流】勾股定理:例题:引例【随堂练习】1、练习【巩固练习】1.在△ABC中,∠C=90°,(l)若 a=5,b=12,则 c=(2)若c=41,a=9,则b=2.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为。
3.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或 32 D.37 或 334.一个长方体抽斗的长为24cm,宽为7cm,在抽斗里放铁条,铁条最长能是多少?【小结】你学到了什么:知识方面方法你还有什么问题:【今日作业】1. 求出下列直角三角形中未知边的长度。
探索勾股定理-(1)(第1课时)学生姓名:学习目标:会探索勾股定理,会初步利用勾股定理解决实际问题。
重难点:会用勾股定理求直角三角形的边长学习过程:一、课前预习:1、三角形按角的大小可分为:、、。
2、三角形的三边关系:三角形的任意两边之和;任意两边之差。
3、直角三角形的两个锐角;直角三角形中最长边是。
4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。
二、自主探究:探究一:探索直角三角形三边的特殊关系:(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;(2)猜想:直角三角形的三边关系为。
探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。
勾股定理:直角三角形 等于 ;几何语言表述:如图1.1-1,在Rt ΔABC 中, C = 90°, 则: ; 若BC=a ,AC=b ,AB=c ,则上面的定理可以表示为: 。
三、课堂练习:1、求下图中字母所代表的正方形的面积12米处。
旗4、如图,点C 是以AB 为直径的半圆上一点,∠ACB=90°, AC=3,BC=4,则图中阴影部分的面积是多少?四、课后反思第4题BC A探索勾股定理-(2)(第2课时)学生姓名:学习目标:掌握勾股定理,理解利用拼图验证勾股定理的方法。
能运用勾股定理解决一些实际问题。
重难点:勾股定理的应用。
学习过程: 一、知识回顾:1、直角三角形的勾股定理:2、求下列直角三角形的未知边的长二、自主探究:利用拼图验证勾股定理活动一:用四个全等的直角三角形拼出图1,并思考: 1.拼成的图1中有_______个正方形,___个直角三角形。
2.图中大正方形的边长为_______,小正方形的边长为_______。
3.你能请用两种不同方法表示图1中大正方形的面积,列出一个等式,验证勾股定理吗?分析:大正方形的面积= 边长的平方 =小正方形的面积+ 个直角三角形的面积得: ( + )2= 2+ ×12ab . 化简可得:活动二:用四个全等的直角三角形拼出图2验证勾股定理。
《勾股定理》教学设计拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了。
原来,他发现了地砖上的三个正方形存在某种数学关系。
教学过程流程教学活动教师与学生行为教学效果预估与对策设计意`图(二)自主探索,合作交流探究活动1:问题1:你能发现下图中三个正方形面积之间有怎样的关系?问题2:下图中的各组图形面积之间都有上述的结果吗?对于问题(2)、(3)教师给学生足够的思考时间,然后让学生交流合作,得出结论。
问题(3)可让学生在自己准备好的小方格上画出,并计算A、B、C三个正方形的面积,用字母表示三个正方形面积之间的数对等腰直角三角形三边性质的探索,学生们探究欲望会很强烈,小组交流想法也会达成共识,对于验证三个正方形面积之间的关系,在方法上会各通过设计问题串,让探索过程由浅入深,循序渐进。
经历观察、猜想、归纳这一数学学习过程,符合学生认知规律。
探索面积证法的多问题3:你能用等腰直角三角形的边长表示正方形的面积吗?由此猜想等腰直角三角形三边有怎样的关系?量关系,进而发现了等腰直角三角形三边的特殊关系。
并在小组内交流,教师适当引导,深入学生当中,倾听他们的想法。
有千秋。
教师同时辅之多媒体的动态演示,使教学效果更直观,利于学生接受,顺利突破难点。
样性,体现数学解决问题的灵活性,发展学生的合情推理能力。
教学过程流程教学活动教师与学生行为教学效果预估与对策设计意图(二)自主探索,合作交流探究活动2(课本P23):做一做:问题1:请分别计算出图中正方形A、B、C的面积,看看能得出什么结论?问题2:如果用a,b,c分别表示三个正方形的边长,三者之间的面积关系如何表示?由三个正方形所搭成的直角三角形三边存在怎样的关系?教师观察学生活动,指导与合作,让学生充分发表自己的见解,暴露他们的思维过程。
计算正方形C的面积不易求根据探索等腰直角三角形三边关系过程,学生在对探讨一般直角三角形三边性质有了一定基础。
计算正方形C的面积利用分割法和把它看做边长是整数的大正方形面积的一半很容易想到,但拼凑法会有一定困此环节设计让学生动手画一画,算一算,充分利用计算面积的不同方法,进一步体会数形结合思想,让学生经历从特殊到一般的过程,体会事物由特殊到一般的出,教师及时点拨,同时借助多媒体动态演示。
第十七章 勾股定理 单元教学计划一、教材分析本章主要研究勾股定理与其逆定理,包括它们的发现、证明和应用.首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题.在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念.二、学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
三、教学目标1.体验勾股定理的探索过程,会运用勾股定理解决简单的问题.2.会运用勾股定理的逆定理判定直角三角形.3.通过具体的例子,了解定理的含义;了解逆命题、逆定理的概念;知道原命题成了其逆命题不一定成立.四、本章知识结构网络图实际问题 → 勾股(直角三角形边长计算) ← 定理↓ 互逆定理实际问题 ← 勾股定理(判定直角三角形) → 的逆定理五、本章的重点:勾股定理及其逆定理的探索与运用.本章的难点:勾股定理的证明,勾股定理及其逆定理的运用。
六、课时安排本章教学时间约需9课时,具体安排如下:17.1 勾股定理(一) 2 课时17.1 勾股定理(二) 2 课时17.2 勾股定理的逆定理 3课时数学活动及小 结 2课时县二中集体备课教学设计学科八年级数学 教师(主备人): 张振兴 集体备课地点: 毓林楼204室 时间:2014年 3 月 11 日教学内容 17.1 勾股定理(一)教材分析 本节主要研究勾股定理与其应用,包括它们的发现、证明和应用.首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题.教学目标 1. 知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程.2.过程与方法:通过拼图活动,体验数学思维的严谨性,发展形象思维.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果.3.通过对勾股定理历史的了解,感受数学文化,激发学习热情.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神教学重点 探索和证明勾股定理教学难点 用拼图的方法证明勾股定理.教学准备 1、学生准备(有关勾股定理的材料)及四个直角边分别为a、b斜边为c 的直角三角形 一个腰长为c的等腰直角三角形2.PPT教学方法 讲授法,练习法,实验法课型课时 2课时学生分析 学生对几何图形的观察,几何图形的分析能力已初步形成。
新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
课题:17.1勾股定理 (1)姓名:________ 班级:_________ 小组:_________ 日期: No. 1 【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
【学习重、难点】学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
【学习过程】 一、前置性作业1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:2、勾股定理证明: 方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S 正方形=_______________=____________________方法二; 已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=______________ 右边S=_______________ 左边和右边面积相等, 即化简可得。
二、合作探究(小组互助)思考:(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢? 由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么_______________ ____。
Bb b b三、当堂练习1.在Rt △ABC 中,90C ∠=︒ ,(1)如果a=3,b=4,则c=________; (2)如果a=6,b=8,则c=________; (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________. 2、下列说法正确的是( )A.若a 、b 、c 是△ABC 的三边,则222a b c += B.若a 、b 、c 是Rt △ABC 的三边,则222a b c +=C.若a 、b 、c 是Rt △ABC 的三边,90A ∠=︒, 则22a b +D.若a 、b 、c 是Rt △ABC 的三边,90C ∠=︒ ,则222a b c +=3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为204、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________.5、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。
四、课堂小结本节课主要学习了哪些内容?五、达标检测1.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt△ABC =________。
2、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为 。
3、一个直角三角形的两边长分别为3cm 和4cm,则第三边的为 。
4、已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积.六、我的感悟:这节课我的最大收获是: 我不能解决的问题是:__________ ____________________________________ _____________________________ ____________________________________ _____________________________课题:17.1勾股定理 (2)姓名:________ 班级:_________ 小组:_________ 日期: No. 2 【学习目标】:1.会用勾股定理进行简单的计算。
2.勾股定理的实际应用,树立数形结合的思想、分类讨论思想。
【学习重、难点】学习重点:勾股定理的简单计算。
学习难点:勾股定理的灵活运用。
【学习过程】 一、前置性作业1、直角三角形性质有:如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示) (1)两锐角之间的关系: ;(2)若∠B=30°,则∠B 的对边和斜边: ;(3)直角三角形斜边上的 等于斜边的 。
(4)三边之间的关系: 。
(5)已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则c = 。
(已知a 、b ,求c ) a = 。
(已知b 、c ,求a ) b = 。
(已知a 、c ,求b ).2、(1)在Rt △ABC ,∠C=90°,a=3,b=4,则c= 。
(2)在Rt △ABC ,∠C=90°,a=6,c=8,则b= 。
(3)在Rt △ABC ,∠C=90°,b=12,c=13,则a= 。
二、合作探究例1:一个门框的尺寸如图所示.若薄木板长3米,宽2.2米呢?例2、如图,一个3米长的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5米.如果梯子的顶端A 沿墙下滑 0.5米,那么梯子底端B 也外移0.5米吗?(计算结果保留两位小数)分析:要求出梯子的底端B 是否也外移0.5米,实际就是求BD 的长,而BD =OD -OBBBC1m 2m A 实际问题 数学模型 O三、当堂练习1、一个高1.5米、宽0.8米的长方形门框,需要在其相对的顶点间用一条木条加固,2、从电杆离地面5m 处向地面拉一条长为7m 的钢缆,则地面 钢缆A 到电线杆底部B 的距离为。
3、有一个边长为50dm 的正方形洞口,想用一个圆盖盖住这个洞口, 圆的直径至少为 (结果保留根号)4、一旗杆离地面6m 处折断,其顶部落在离旗杆底部8m 处,则旗杆折断前高 。
如下图,池塘边有两点A ,B ,点C 是与BA 方向成直角的AC 方向上一点.测得CB =60m ,AC =20m , 你能求出A 、B 两点间的距离吗?5、如图,滑杆在机械槽内运动,∠ACB 为直角,已知滑杆AB 长100cm ,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为60cm ,当端点B 向右移动20cm 时,滑杆顶端A 下滑多长?四、课堂小结本节课主要学习了哪些内容?五、达标检测1、若等腰三角形中相等的两边长为10cm ,第三边长为16 cm ,那么第三边上的高为 ( ) A 、12 cm B 、10 cm C 、8 cm D 、6 cm2、若等腰直角三角形的斜边长为2,则它的直角边的长为 ,斜边上的高的长为 。
3、在⊿ABC 中,∠ACB=900,AB=5cm ,BC=3cm ,CD ⊥AB 与D 。
求:(1)AC 的长; (2)⊿ABC 的面积; (3)CD 的长。
六、我的感悟:这节课我的最大收获是: 我不能解决的问题是:______________________________________________ _____________________________ ____________________________________ _____________________________A EB DC课题:17.1勾股定理(3)姓名:________ 班级:_________ 小组:_________ 日期: No. 3 【学习目标】1.能运用勾股定理在数轴上画出表示无理数的点,进一步领会数形结合的思想。
2.会用勾股定理解决简单的实际问题。
【学习重、难点】学习重点:运用勾股定理解决数学和实际问题学习难点:勾股定理的综合应用。
【学习过程】一、前置性作业1、(1)在Rt△ABC,∠C=90°,a=3,b=4,则c= 。
(2)在Rt△ABC,∠C=90°,a=5,c=13,则b= 。
2、已知正方形ABCD的边长为1,则它的对角线AC= 。
二、合作探究例:用圆规与尺子在数轴上作出表示13的点,并补充完整作图方法。
步骤如下:1.在数轴上找到点A,使OA=;2.作直线l垂直于OA,在l上取一点B,使AB=;3.以原点O为圆心,以OB为半径作弧,弧与数轴交于点C,则点C即为表示13 的点.分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
如图,已知OA=OB,(1)说出数轴上点A所表示的数(2)在数轴上作出8对应的点三、当堂练习1、你能在数轴上找出表示2的点吗?请作图说明。
2、已知直角三角形的两边长分别为5和12,求第三边。
3、已知:如图,等边△ABC 的边长是6cm 。
(1)求等边△ABC 的高。
(2)求S △ABC 。
四、课堂小结本节课主要学习了哪些内容?五、达标检测1、已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。
2、已知等边三角形的边长为2cm ,则它的高为 ,面积为 。
3、已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
4、在数轴上作出表示17的点。
5、已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=3, 求线段AB 的长。
六、我的感悟:这节课我的最大收获是: 我不能解决的问题是:______________________________________________ _____________________________ ____________________________________ _____________________________DBAB课题:17.2勾股定理逆定理(1)姓名:________ 班级:_________ 小组:_________ 日期: No. 4 【学习目标】:1、了解勾股定理的逆定理的证明方法和过程;2、理解互逆命题、互逆定理、勾股数的概念及互逆命题之间的关系;3、能利用勾股定理的逆定理判定一个三角形是直角三角形.【学习重、难点】学习重点:勾股定理的逆定理及其应用。
学习难点:勾股定理的逆定理的证明。
【学习过程】 一、前置性作业1、勾股定理:直角三角形的两条_________的平方____等于______的_______,即___________.2、填空题(1)在Rt △ABC ,∠C=90°,=a 8,=b 15,则=c 。
(2)在Rt △ABC ,∠B=90°,=a 3,=b 4,则=c 。