2017-2018学年最新中考数学压轴题解题策略《相似三角形的存在性问题》
- 格式:docx
- 大小:388.40 KB
- 文档页数:9
课前导学:相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分和两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.九年级数学试题因动点产生的相似三角形问题1.如图,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.满分解答:(1)将点A(2,m)代入y=x+2,得m=4.所以点A的坐标为(2,4).将点A(2,4)代入kyx=,得k=8.(2)将点B (n ,2),代入8y x=,得n =4.所以点B 的坐标为(4,2).设直线BC 为y =x +b ,代入点B (4,2),得b =-2.所以点C 的坐标为(0,-2).由A (2,4)、B (4,2)、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB=BC=,∠ABC =90°.所以S △ABC =12BA BC ⋅=12⨯=8.(3)由A (2,4)、D (0,2)、C (0,-2),得AD=AC=.由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE .所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC=时,CE =AD=此时△ACD ≌△CAE ,相似比为1.②如图4,当CE AC CA AD ==CE=.此时C 、E 两点间的水平距离和竖直距离都是10,所以E (10,8).图3图4图22.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.3.如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.4.如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+-(m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2,2),求实数m 的值;(2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.满分解答(1)将M (2,2)代入1(2)()y x x m m =-+-,得124(2)m m=-⨯-.解得m =4.(2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4,0),E (0,2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小.设对称轴与x 轴的交点为P ,那么HP EO CP CO=.因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BC CB BF =,即2BC CE BF =⋅时,△BCE ∽△FBC .设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2.所以F ′(m +2,0).由'CO BF CE BF =4m BF +=.所以(m BF m +=.由2BC CE BF =⋅,得2(2)m +=.整理,得0=16.此方程无解.图2图3图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC .在Rt △BFF′中,由FF ′=BF ′,得1(2)()2x x m x m +-=+.解得x =2m .所以F ′(2,0)m .所以BF′=2m +2,2)BF m =+.由2BC BE BF =⋅,得2(2)2)m m +=+.解得2m =±综合①、②,符合题意的m为2+.5.如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.6.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?7.如图,已知二次函数(其中0<m<1)的图像与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=P C.(1)∠ABC的度数为°;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.8.如图,抛物线与x轴交于点A(﹣,0)、点B(2,0),与y轴交于点C(0,1),连接B C.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣<t<2),求△ABN的面积S与t的函数关系式;(3)若﹣<t<2且t≠0时△OPN∽△COB,求点N的坐标.9.如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.10.如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1满分解答(1)B 的坐标为(b ,0),点C 的坐标为(0,4b ).(2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x,x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1,0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA .当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA .所以2()14b b =-.解得843b =±Q 为(1,23+).②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。
这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。
【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。
中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x 轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P 的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D (t ,t 2+t ﹣4),连接OD .令y =0,则x 2+x ﹣4=0,解得x =﹣4或2,∴A (﹣4,0),C (2,0),∵B (0,﹣4),∴OA =OB =4,∵S △ABD =S △AOD +S △OBD ﹣S △AOB =×4×(﹣﹣t +4)+×4×(﹣t )﹣×4×4=﹣t 2﹣4t =﹣(t +2)2+4,∵﹣1<0,∴t =﹣2时,△ABD 的面积最大,最大值为4,此时D (﹣2,﹣4); (3)如图2中,设抛物线的对称轴交x 轴于点N ,过点B 作BM ⊥抛物线的对称轴于点M .则N (﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC 于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P 运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE =S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M4(1,1).13.(2023•三亚一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC 与抛物线的对称轴l交于点E.(1)求抛物线的解析式和直线BC的解析式;(2)求四边形ABDC的面积;(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC =S△ABC时,求点P的坐标;(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+3x+c(a≠0)过点A(﹣2,0)和C(0,8),∴,解得,∴抛物线的解析式为y=﹣x2+3x+8.令y=0,得.解得x1=﹣2,x2=8.∴点B的坐标为(8,0).设直线BC的解析式为y=kx+b.把点B(8,0),C(0,8)分别代入y=kx+b,得,解得,∴直线BC的解析式为y=﹣x+8.(2)如图1,设抛物线的对称轴l与x轴交于点H.∵抛物线的解析式为,∴顶点D的坐标为.∴S四边形ABDC =S△AOC+S梯形OCDH+S△BDH===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC 于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0)41。
AB_DEAC~DFAB_DF再一次列方程求相似三角形存在性处理策略知识必备一、相似的判定1、两边成比列且夹角相等的两个三角形相似,不妨简称为述.2、两角分别相等的两个三角形相似,不妨简称为加.二、相似于“s”1、一般的,若MBC 与△门肋1相似,则不具备对应关系,需要分类讨论.2、若山恥sAD 肿,贝倶备对应关系. 三、定边与定角1、“定边定长”:确定的边,其长度确定,必可求。
2、“定角定长”:确定的角,其三角函数值确定,必可求。
方法提炼一、导边处理(&LS 法)相似三角形存在性问题,基本上都可以按部就班,如下解决:第一步:先找到一组关键的等角,有时明显,有时隐蔽第二步:以这两个相等角的两邻边分两种情况对应比例列方程不妨称此通法为3法举例;如图4-2-1,在LABC 与岂DEF中,若已确定=Z D,则要使MBC与'DEF相似,需要分两种情形讨论:二、导角处理(也法)第一步:先找到一组关键的等角第二步:另两个内角分两类对应相等不妨称此通法为:加法举例:如图4-2-1,在LABC与bDEF中,若已知ZA=ZD,要使与^DEF相似,需要分两种情形讨论:Z E Z或二/F,再导角分析处理.三、温馨提示解法一(临法),通用性更强,普适性更广,往往是首选2、解法二(迅4法),导角分析,常转化为角的存在性问题若相似三角形中有一个确定的三角形,可以先对其边、角作研究,定边求定长,定角求定比然后再寻求所要的三角形,基本可以做到无往不利。
实战分析(一)显性的“相等角”【例1】如图4-3-1,在四边形曲CQ中,AZ?//90°,AB=^,AD=3,BC=4,点尸为AB上一动点,若曲尸刀与AF5C相似,则满足条件的点尸共有()个A、1B、2C、3D、4—q DEE<團4-3-1反思:相似三角形存在性问题,分类时可以先固定其中一个三角形的字母顺序,将另一个三角形换序即可,例如本体中的^ADP^KBCP或UDPsbEPC,所列方程也是3438-^固定等式的一边,将另一边的分子,分母颠倒即可,如或(一)隐性的“相等角”【例2】如图4-3-6已知二次函数的图像经过型?0),S(-3r R及原点0,顶点为U求此二次函数解析式连接EC交兀轴于点月,卩轴上是否存在点尸•使得心FOC与相似?若存在,求出尸点的坐标,若不存在,请说明理由。
玩转压轴题,争取满分之备战2018年中考数学解答题高端精品专题二等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.(2017四川省德阳市,第24题,14分)如图,在平面直角坐标系xoy中,抛物线C1:(m≠0)与x轴交于A、B两点,与y轴的负半轴交于点C,其中A(-1,0),C(0,-1).(1)求抛物线C1及直线AC的解析式;(2)沿直线AC上A至C的方向平移抛物线C1,得到新的抛物线C2,C2上的点D为C1上的点C的对应点,若抛物线C2恰好经过点B,同时与x轴交于另一点E,连结OD、DE,试判断ΔODE的形状,并说明理由;(3)在(2)的条件下,或P为线段OE(不含端点)上一动点,作PF⊥DE于F,PG⊥OD于G,设PF=h1,PG=h2,试判断h1.h2的值是否存在最大值,若存在,求出这个最大值,并求出此时P点的坐标,若不存在,请说明理由.【解析】试题解析:解:(1)设直线AC的解析式为:y=kx+b,把A(﹣1,0),C(0,﹣1)代入得:,解得:,∴AC的解析式为:y=﹣x﹣1;把A(﹣1,0),C(0,﹣1)代入得:中,∵,∴,∴抛物线C1:;(3)如图2,设P (x ,0),连接PD ,则OP =x ,PE =5﹣x ,S △OPD =×5h 2=×4x ,h 2=,由勾股定理得:DE ==,S △PDE =× =,h 1=,h 1h 2= = =,当x =时,h 1h 2的值最大,是,此时点P (,0).【名师点睛】本题考查了二次函数的有关知识,一次函数的有关知识,矩形的性质,解题的关键是灵活应用待定系数法确定函数解析式,学会运用平移的规律表示二次函数的解析式,并利用面积法将最值问题转化为二次函数的最值问题,属于中考压轴题.【举一反三】抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点.(1)求抛物线解析式;(2)第一象限抛物线上有一点D,满足∠DAB=45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【解析】试题分析:(1)把B 、C 的坐标代入,解方程组即可得到结论;(2)令y =0,求出A 、B 的坐标,设直线AD 交y 轴于点N ,求出求直线AN 的解析式, 与抛物线联立成方程组,解方程组,即可得到D 的坐标;(3)求出直线AM 、AC 的解析式,当x =t 时,表示出HE ,HF ,HP ,得到HE =EF =HF ﹣HE =t +3,FP =243t t ---,由HE +EF ﹣FP =23t +()>0, 得到HE +EF >FP ,再由HE +FP >EF ,EF +FP >HE ,得到当﹣3<t <﹣1时,线段HE ,EF ,FP 总能组成等腰三角形.(3)M (﹣1,﹣4),可求直线AM 的解析式为:y =﹣2x ﹣6,直线AC 的解析式为y =﹣x ﹣3,∵当x =t 时,HE =﹣(﹣t ﹣3)=t +3,HF =﹣(﹣2t ﹣6)=2t +6,HP =﹣(223t t +-)∴HE =EF =HF ﹣HE =t +3,FP =243t t ---,∵HE +EF ﹣FP =2223433t t t t ++++=+()()>0,∴HE +EF >FP ,又HE +FP >EF ,EF +FP >HE ,∴当﹣3<t <﹣1时,线段HE ,EF ,FP 总能组成等腰三角形.点睛:本题是二次函数的综合题,难度较大.解答第(2)问的关键是:利用∠DAB =45°,找出直线AN 与y 轴交点的坐标;解答第(3)问的关键是:用含t 的代数式表示出HE ,HF ,HP ,EF 的长.类型二 【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.如图,已知抛物线y=﹣214x +bx+4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为(﹣2,0).(1)求抛物线的解析式;(2)连接AC 、BC ,求线段BC 所在直线的解析式; (3)在抛物线的对称轴上是否存在点P ,使△ACP 为等腰三角形?若存在,求出符合条件的P 点坐标;若不存在,请说明理由.【解析】(1)利用待定系数法求出抛物线解析式;(2)在抛物线解析式中,令x =0,可求出点C 坐标;令y =0,可求出点B 坐标.再利用待定系数法求出直线BD 的解析式; (3)本问为存在型问题.若△ACP 为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.解:(1)∵抛物线y =﹣14x 2+bx +4的图象经过点A (﹣2,0), ∴﹣14×(﹣2)2+b ×(﹣2)+4=0, 解得:b =32, ∴抛物线解析式为 y =﹣14x 2+32x +4, 又∵y =﹣14x 2+32x +4=﹣14(x ﹣3)2+254, ∴对称轴方程为:x =3.(2)在y =﹣14x 2+32x +4中,令x =0,得y =4, ∴C (0,4);令y =0,即﹣14x 2+32x +4=0,整理得x 2﹣6x ﹣16=0, 解得:x =8或x =﹣2,∴A (﹣2,0),B (8,0).设直线BC 的解析式为y =kx +b ,把B (8,0),C (0,4)的坐标分别代入解析式,得:80{ 4k b b +==, 解得: 1{ 24k b =-=,∴直线BC 的解析式为:y =﹣12x +4. (3)存在,理由:∵抛物线的对称轴方程为:x =3,可设点P (3,t ),∵A (﹣2,0),C (0,4),∴ACAQCQ①当AQ =CQ 时,, 25+t 2=t 2﹣8t +16+9,解得t =0,∴P 1(3,0);②当AC =AP 时,有∴t 2=﹣5,此方程无实数根,∴此时△ACP 不能构成等腰三角形;③当AC =CP时,有整理得:t 2﹣8t +5=0,解得:t=4±11,∴点P坐标为:P2(3,4+11),P3(3,4﹣11).综上所述,存在点P,使△ACP为等腰三角形,点P的坐标为:P1(3,0),P2(3,4+11),P3(3,4﹣11).【名师点睛】本题是一道二次函数综合题.存在性是本题的难点,而突破难点的关键在于要利用分类思想进行解题.【举一反三】如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=1.25.(1)求直线AC的解析式.(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE 沿DE折叠后点O落在边AB上O′处?【解析】试题分析:(1)先确定A点和C点坐标,然后利用待定系数法求直线AC的解析式;(2)设1,12M t t⎛⎫-+⎪⎝⎭,讨论:当DM DC=时,2225131,424t t⎛⎫⎛⎫⎛⎫-+-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭解方程求出t,再求出MD的解析式,从而得到P点坐标;当MD MC=时,易得M点的坐标,接着求出MD的解析式,从而得到P点坐标;当CM =CD 时, ()2221321,24t t ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭解方程求出t ,再确定MD 的解析式,从而得到P 点坐标;(3)如图2,作O ′H ⊥x 轴于H ,则5'4O D OD ==, 设O ′(m ,1),利用勾股定理得的22255144m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得1212,2m m ==,当m =2时,求出AE 长得到50,2E ⎛⎫ ⎪⎝⎭,利用待定系数法求出抛物线解析式为23169864y x ⎛⎫=-++ ⎪⎝⎭,然后利用抛物线的平移变换求解;当12m =时,同样可得抛物线解析式为23548y x x =-++,再利用抛物线的平移变换求解. 试题解析:(1)∵OA =1,OC =2,∴A (0,1),C (2,0),设直线AC 的解析式为y =kx +b ,把A (0,1),C (2,0)代入得20{ 1,k b b +==解得1{ 21k b =-=,∴直线AC 的解析式为112y x =-+; (2)存在.553,0,2444D CD ⎛⎫=-= ⎪⎝⎭, 设1,12M t t ⎛⎫-+ ⎪⎝⎭, 当DM =DC 时, 2225131,424t t ⎛⎫⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭解得124,25t t == (舍去),则43,55M ⎛⎫ ⎪⎝⎭,此时MD 的解析式为45,33y x =-+ P 点坐标为50,3⎛⎫ ⎪⎝⎭; 当MD =MC 时,则M 点的坐标为133,,816⎛⎫ ⎪⎝⎭此时MD 的解析式为15,28y x =- P 点坐标为50,8⎛⎫- ⎪⎝⎭; 当CM =CD 时, ()2221321,24t t ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭解得1220352035,1010t t +-==, 则203535,1020M ⎛⎫+- ⎪ ⎪⎝⎭或203535,1020⎛⎫- ⎪ ⎪⎝⎭, 此时MD 的解析式为()()552524y x -=--+或()()55252,4y x +=+- P 点坐标为55100,⎛⎫- ⎪ ⎪⎝⎭或55100,⎛⎫-- ⎪ ⎪⎝⎭, 综上所述,P 点坐标为50,3⎛⎫ ⎪⎝⎭或50,8⎛⎫- ⎪⎝⎭或55100,⎛⎫- ⎪ ⎪⎝⎭或55100,4⎛⎫-- ⎪ ⎪⎝⎭,;(3)△ODE 沿DE 折叠后点O 落在边AB 上O ′处,如图2,作O ′H ⊥x 轴于H ,则5'4O D OD ==, 设O ′(m ,1), 在Rt 'O DH V 中, 22255144m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 解得1212,2m m ==, 当m =2时,AO ′=2,而EO ′=EO =EA +1, ()22221EA EA ∴+=+,解得32EA =, 50,2E ⎛⎫∴ ⎪⎝⎭, 设平移的抛物线解析式为2y x bx c =-++,把550,,,024E D ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入得52{ 2550,164c b c =-++=解得34{ 52b c =-=, ∴抛物线解析式为23542y x x =--+, 23169864y x ⎛⎫=-++ ⎪⎝⎭Q , ∴抛物线2y x =-先向左38单位,再向上平移16964单位,才能使得平移后的抛物线过点D 和点E ; 当12m =时, 1'2AO =,而EO ′=EO =1−AE , ()22211,2EA AE ⎛⎫∴+=- ⎪⎝⎭解得38EA =, 50,8E ⎛⎫∴ ⎪⎝⎭, 同样可得抛物线解析式为23548y x x =-++, 2349864y x ⎛⎫=--+ ⎪⎝⎭Q , ∴抛物线2y x =-先向右38单位,再向上平移4964单位,才能使得平移后的抛物线过点D 和点E .类型三 【确定满足等腰三角形的动点的运动时间】典例指引3.如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与X 轴的交点为A,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒).(1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.【解析】试题分析:(1)已知抛物线的解析式,当x=0时,可求得B 的坐标;由于BC ∥OA ,把B 的纵坐标代入抛物线的解析式,可求出C 的坐标;当y=0时,可求出A 的坐标.求顶点坐标时用公式法或配方法都可以;(2)当四边形ACQP 是平行四边形时,AP 、CQ 需满足平行且相等的条件.已知BC ∥OA ,只需求t 为何值时,AP=CQ ,可先用t 表示AP ,CQ ,再列出方程即可求出t 的值; (3)当0<t<92时,根据OA=18,P 点的速度为4单位/秒,可得出P 点总在OA 上运动.△PQF 中,Q 到PF 的距离是定值即OB 的长,因此只需看PF 的值是否有变化即可得出S △PQF 是否为定值,已知QC ∥PF ,根据平行线分线段成比例定理可得出:QC QD QE QCOP DP EF AF===,因此可得出OP=AF ,那么PF=PA+AF=PA+OP=OA ,由于OA 的长为定值即PF 的长为定值,因此△PQF 的面积是不会变化的.其面积的值可用12OA•OB 求出;(4)可先用t 表示出P ,F ,Q 的坐标,然后根据坐标系中两点间的距离公式得出PF 2,PQ 2,FQ 2,进而可分三种情况进行讨论:①△PFQ 以PF 为斜边.则PF 2=PQ 2+FQ 2,可求出t 的值;②△PFQ 以PQ 为斜边,方法同①;③△PFQ 以FQ 为斜边,方法同①.综合三种情况即可得出符合条件的t 的值. 试题解析:(1)214y x x 10189=--, 令y=0,得x 2−8x −180=0, 即(x −18)(x+10)=0, ∴x=18或x=−10. ∴A(18,0)在214y x x 10189=--中,令x=0得y=−10, 即B(0,−10). 由于BC ∥OA ,故点C 的纵坐标为−10,由−10=214x x 10189--得,x=8或x=0, 即C(8,−10)且易求出顶点坐标为(4,−989),于是,A(18,0),B(0,−10),C(8,−10),顶点坐标为(4,−989); (2)若四边形PQCA 为平行四边形,由于QC ∥PA. 故只要QC=PA 即可, 而PA=18−4t ,CQ=t , 故18−4t=t 得t=185; (3)设点P 运动t 秒,则OP=4t ,CQ=t ,0<t<4.5, 说明P 在线段OA 上,且不与点OA 、重合, 由于QC ∥OP 知△QDC ∽△PDO , 故144QD QC t DP OP t === ∵△AEF ∽△CEQ ,∴AF:CQ=AE:EC=DP:QD=4:1, ∴AF=4t=OP , ∴PF=PA+AF=PA+OP=18又∵点Q 到直线PF 的距离d=10, ∴S △PQF=12PF ⋅d=12×18×10=90, 于是△PQF 的面积总为90;∴414−2,②若QP=QF,则(5t−8)2+100=(5t+10)2+100.即(5t−8)2=(5t+10)2,无0⩽t⩽4.5的t满足。
中考数学压轴题:二次函数综合、相似三角形存在性问题1.如图,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若C1C2=65,求m的值.2.如图,抛物线y=ax2+bx+√3与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C.(1)求抛物线的解析式,并直接写出点D的坐标;(2)连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.3.如图,二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.(1)求该抛物线的解析式;(2)判断△BCM的形状,并说明理由;(3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.4.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.6.如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.7.如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)D是C关于x轴的对称点,P是抛物线上的一点,当△PBD与△AOC相似时,求符合条件的P点的坐标.8.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连接BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.(1)求抛物线的表达式;(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P 运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;9.如图,已知二次函数y =﹣x 2+bx +c (b ,c 为常数)的图象经过点A (3,1),点C (0,4),顶点为点M ,过点A 作AB ∥x 轴,交y 轴于点D ,交该二次函数图象于点B ,连接BC .(1)求该二次函数的解析式及点M 的坐标;(2)点P 是直线AC 上的动点,若点P ,点C ,点M 所构成的三角形与△BCD 相似,请直接写出所有点P 的坐标.10.如图,抛物线y =ax 2+bx 经过两点A (﹣1,1),B (2,2).过点B 作BC ∥x 轴,交抛物线于点C ,交y 轴于点D .(1)求此抛物线对应的函数表达式及点C 的坐标;(2)若抛物线上存在点M ,使得△BCM 的面积为72,求出点M 的坐标; (3)连接OA 、OB 、OC 、AC ,在坐标平面内,求使得△AOC 与△OBN 相似(边OA 与边OB 对应)的点N 的坐标.11.如图1,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.。
中考数学压轴题分析:相似三角形的存在性问题几何图形的存在性问题是中考常见的问题。
本文内容选自2020年广东省中考数学压轴题,考查相似三角形的存在性问题,难度不小。
一个三角形形状大小确定,另外一个三角形有两个动点。
具体请看下面内容。
【中考真题】(2020·广东)如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上.当与相似时,请直接写出所有满足条件的点的坐标.【分析】题(1)利用待定系数法求解析式,根据BO=3AO=3,得出点,点坐标,代入求抛物线解析式。
题(2)求BD的解析式,需要确定点D的坐标。
由于题目已知BC与CD的比例关系,可以考虑过点D作x轴的垂线,得到一个A字型的相似,求出点D的横坐标,代入二次函数的解析式,然后即可得到结论。
当然,如果先设直线BD的解析式为y=kx-3k,联立二次函数的解析式,得到一元二次方程的两根x1与x2的关系即可求出k的值。
题(3)中需要确定与△ABD相似的△BPQ。
由于A、B、D三点的位置的固定的,坐标也是确定的。
那么形状与大小就确定了。
先求出3边长度,且易得∠BAD为钝角。
而∠PBQ不可能为钝角,所以只需要分两种情况讨论即可:①点B与点B对应;②点B与点D对应。
两种情况中边的比例又有两种情况,因此分为4种情况讨论。
设PQ的坐标,然后根据比例关系得出结论。
【答案】解:(1),点,点,抛物线解析式为:,,;(2)如图1,过点作于,,,,,,,点横坐标为,点坐标为,,设直线的函数解析式为:,由题意可得:,解得:,直线的函数解析式为;(3)点,点,点,,,,,对称轴为直线,直线与轴交于点,点,,,,如图2,过点作于,,,,,如图,设对称轴与轴的交点为,即点,若,,,,,当,,,点,;当,,,点,;若,,,当,,,点,;当,,,点,;综上所述:满足条件的点的坐标为,或,或,或,.。
中考数学解法探究专题相似三角形的存在性问题考题研究:相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。
难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.解题攻略:相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。
应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).解题思路:相似三角形存在性问题需要注意的问题:1、若题目中问题为,则对应线段已经确定。
2、若题目中为与相似,则没有确定对应线段,此时有三种情况:①,②、③、3、若题目中为与,并且有、(或为90°),则确定了一条对应的线段,此时有二种情况:①、,②、需要分类讨论上述的各种情况。
例题解析1.如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在,请说明理由.2.图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE 相似,若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且△DAM和△BCE相似,求点M坐标.4.在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边AB在x 轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B(,)、C(,);并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.连接MB和MC,当△OCE∽△OBC时,判断四边形AEMC的形状,并给出证明;(3)有一动点P在(1)中的抛物线上运动,是否存在点P,以点P为圆心作圆能和直线AC和x轴同时相切?若存在,求出圆心P的坐标;若不存在,请说明理由.5.如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.(1)求抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.6.如图,抛物线C1:y=ax2+bx+4与x轴交于A(﹣3,0),B两点,与y轴交于点C,点M(﹣,5)是抛物线C1上一点,抛物线C2与抛物线C1关于y轴对称,点A、B、M关于y轴的对称点分别为点A′、B′、M′.(1)求抛物线C1的解析式;(2)过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.8.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.9.如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A (﹣1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.10.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点B、C的坐标;(2)求△ABC的内切圆半径;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.11.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设点P是位于直线BC下方的抛物线上一动点,过点P作y轴的平行线交直线BC于点Q,求线段PQ的最大值;(3)在(2)的条件下,抛物线的对称轴与直线BC交于点M,问是否存在点P,使以M、P、Q为顶点的三角形与△CBO相似?若存在,请求出点P的坐标;若不存在,请说明理由.12.已知某二次函数的图象与x轴分别相交于点A(﹣3,0)和点B(1,0),与y轴相交于C(0,﹣3m)(m>0),顶点为点D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?13.如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)连接CD、BC,求∠DBC余切值;(3)设点M在线段CA的延长线上,如果△EBM和△ABC相似,求点M的坐标.14.如图,抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于C点,抛物线的对称轴l与x轴交于M点.(1)求抛物线的函数解析式;(2)设点P是直线l上的一个动点,当PA+PC的值最小时,求PA+PC长;(3)在直线l上是否存在点Q,使以M、O、Q为顶点的三角形与△AOC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.参考答案与试题解析一.解答题(共15小题)1.如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把点G的坐标代入抛物线的解析式中可求得m的值;(2)①根据(1)中的m值写出抛物线的解析式,分别求抛物线与x轴和y轴的交点坐标,根据坐标特点写出AB和OC的长,利用三角形面积公式求△ABC 的面积;②由对称性可知:x=1,点A和B关于抛物线的对称轴对称,所以由轴对称的最短路径可知:连接BC与对称轴的交点即为点H,依据待定系数法可求得直线BC 的解析式,将x=1代入得:y=,则点H的坐标为(1,);(3)在第四象限内,抛物线上存在点M,使得以点A、B、M为顶点的三角形与△ACB相似,根据∠ACB与∠ABM为钝角,分两种情况考虑:①当△ACB∽△ABM 时;②当△ACB∽△MBA时,利用相似三角形的判定与性质,确定出m的值即可.【解答】解:(1)把点G(2,2)代入抛物线y=﹣(x+2)(x﹣m)中得:2=﹣(2+2)(2﹣m),m=4;(2)①由(1)得抛物线的解析式为:y=﹣(x+2)(x﹣4),当x=0时,y=﹣(0+2)(0﹣4)=2,∴C(0,2),∴OC=2,当y=0时,﹣(x+2)(x﹣4)=0,x=﹣2或4,∴A(﹣2,0),B(4,0),∴AB=2+4=6,∴S△ABC=AB?OC=×6×2=6;则△ABC的面积是6;②∵A(﹣2,0),B(4,0),由对称性得:抛物线的对称轴为:x=1,∵点A和B关于抛物线的对称轴对称,∴连接BC与对称轴的交点即为点H,此时AH+CH为最小,设直线BC的解析式为:y=kx+b,把B(4,0),C(0,2)代入得:,解得:,∴直线BC的解析式为:y=﹣x+2,当x=1时,y=,∴H(1,);(3)存在符合条件的点M,由图形可知:∠ACB与∠ABM为钝角,分两种情况考虑:①当△ACB∽△ABM时,则有,即AB2=AC?AM,∵A(﹣2,0),C(0,2),即OA=OC=2,∴∠CAB=45°,∠BAM=45°,如图2,过M作MN⊥x轴于N,则AN=MN,∴OA+ON=2+ON=MN,设M(x,﹣x﹣2)(x>0),把M坐标代入抛物线解析式得:﹣x﹣2=﹣(x+2)(x﹣m),∵x>0,∴x+2>0,∵m>0,∴x=2m,即M(2m,﹣2m﹣2),∴AM==2(m+1),∵AB2=AC?AM,AC=2,AB=m+2,∴(m+2)2=2 ?2(m+1),解得:m=2±2,∵m>0,∴m=2+2;②当△ACB∽△MBA时,则,即AB2=CB?MA,∵∠CBA=∠BAM,∠ANM=∠BOC=90°,∴△ANM∽△BOC,∴,∵OB=m,设ON=x,∴=,即MN=(x+2),令M[x,﹣(x+2)](x>0),把M坐标代入抛物线解析式得:﹣(x+2)=﹣(x+2)(x﹣m),同理解得:x=m+2,即M[m+2,﹣(m+4)],∵AB2=CB?MA,CB=,AN=m+4,MN=(m+4),∴(m+2)2=?,整理得:=0,显然不成立,综上,在第四象限内,当m=2 +2时,抛物线上存在点M,使得以点A、B、M为顶点的三角形与△ACB相似.2.图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE 相似,若存在,求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将点E(0,3)代入抛物线的解析式求得a的值,从而可得到抛物线的解析式;(2)过点B作BF⊥y轴,垂足为F.先依据配方法可求得点B的坐标,然后依据点A、B、E三点的坐标可知△BFE和△EAO为等腰直角三角形,从而可证明△BAE为直角三角形,接下来证明△BFE∽△EOA,由相似三角形的性质可证明=,从而可得到∠CBE=∠EAB,于是可证明∠CBA=90°,故此CB是△ABE 的外接圆的切线;(3)过点D作DP′⊥DE,交y轴与点P′,过点E作EP″⊥DE,交x轴与点P″.然后证明△DEO、△P′DO、△EP″O均与△BAE相似,然后依据相似三角形的性质分别可求得DO、OP′、OP″的长度,从而可求得点P的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3).∵将点E(0,3)代入抛物线的解析式得:﹣3a=3,∴a=﹣1.∴抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴B(1,4).(2)如图1所示:过点B作BF⊥y轴,垂足为F.∵A(3,0),E(0,3),∴OE=OA=3.∴∠OEA=45°.∵E(0,3),B(1,4),∴EF=BF.∴∠FEB=45°.∴∠BEA=90°.∴AB为△ABE的外接圆的直径.∵∠FEB=∠OEA=45°,∠EOA=∠BFE,∴△BFE∽△AOE.∴tan∠EAB==.∵tan∠CBE=,∴∠CBE=∠EAB.∵∠EAB+∠EBA=90°,∴∠CBE+∠EBA=90°,即∠CBA=90°.∴CB是△ABE的外接圆的切线.(3)如图2所示:∵且∠DOE=∠BEA=90°,∴△EOD∽△AEB.∴当点P与点O重合时,△EPD∽△AEB.∴点P的坐标为(0,0).过点D作DP′⊥DE,交y轴与点P′.∵∠P′ED=∠DEO,∠DOE=∠EDP′,∴△EDP′∽△EOD.又∵△EOD∽△AEB,∴△EDP′∽△AEB.∵∠ODP′+∠OP′D=90°,∠DEP′+∠OP′D=90°,∴∠ODP′=∠DEP′.∴=,即.∴OP′=.∴点P′的坐标为(0,﹣).过点E作EP″⊥DE,交x轴与点P″.∵∠EDP″=∠EDO,∠EOD=∠DEP″,∴△EDO∽△P″DE.∵又∵△EOD∽△AEB,∴△EDP″∽△AEB.∴∠EP″O=∠BAE.∴tan∠EP″O==,即=.∴OP″=9.∴P″(9,0).综上所述,点P的坐标为(0,0)或(0,﹣)或(9,0).3.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且△DAM和△BCE相似,求点M坐标.【考点】HF:二次函数综合题.【分析】(1)利用待定系数法求抛物线,然后把解析式配成顶点式,从而得到D 的坐标;(2)先利用抛物线的对称性得到E(2,3),作EH⊥BC于H,如图1,易得△OBC为等腰直角三角形得到∠OCB=45°,BC=OB=3,接着判断△CHE为等腰直角三角形得到CH=EH=CE=,所以BH=2,然后利用正切的定义求解;(3)直线x=﹣1交x轴于F,如图2,解方程﹣x2+2x+3=0得A(﹣1,0),再利用正切定义得到tan∠AD=,所以∠CBE=∠ADF,根据相似三角形的判定方法,当点M在点D的下方时,设M(1,m),当=时,△DAM∽△BCE;当=时,△DAM∽△BEC,于是利用相似比得到关于m的方程,解方程求出m即可得到对应的M点的坐标;当点M在D点上方时,则∠ADM与∠CBE互补,则可判断△DAM和△BCE不相似,【解答】解:(1)∵抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),∴,解得,∴抛物线解析式为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)抛物线的对称轴为直线x=1,∵点C与E点为抛物线上的对称点,∴E(2,3),作EH⊥BC于H,如图1,∵OC=OB,∴△OBC为等腰直角三角形,∴∠OCB=45°,BC=OB=3,∴∠ECB=45°,∴△CHE为等腰直角三角形,∴CH=EH=CE=,∴BH=BC﹣CH=2,在Rt△BEH中,tan∠EBH===,即tan∠CBE的值为;(3)直线x=﹣1交x轴于F,如图2,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0)∵A(﹣1,0),D(1,4),∴AF=2,DF=4,∴tan∠ADF==,而tan∠CBE=,∴∠CBE=∠ADF,AD==2,BE==,BC=3,当点M在点D的下方时,设M(1,m),当=时,△DAM∽△BCE,即=,解得m=,此时M点的坐标为(1,);当=时,△DAM∽△BEC,即=,解得m=﹣2,此时M点的坐标为(1,﹣2);当点M在D点上方时,则∠ADM与∠CBE互补,则△DAM和△BCE不相似,综上所述,满足条件的点M坐标为(1,),(1,﹣2).4.在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边AB在x 轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B(3,0)、C(0,);并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.连接MB和MC,当△OCE∽△OBC时,判断四边形AEMC的形状,并给出证明;(3)有一动点P在(1)中的抛物线上运动,是否存在点P,以点P为圆心作圆能和直线AC和x轴同时相切?若存在,求出圆心P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)利用解直角三角形求出OC的长度,再求出OB的长度,从而可得点B、C的坐标,然后利用待定系数法求二次函数解析式解答;(2)根据相似三角形对应边成比例列式求出OE的长度,再根据点A的坐标求出AO的长度,进而∠MEB=∠AEC=60°.即可得出结论;(3)分在x轴上方和x轴上方两种情况,利用含30°的直角三角形的性质即可得出结论.【解答】解:(1)∵点A(﹣1,0),∴OA=1,由图可知,∠BAC是三角板的60°角,∠ABC是30°角,所以,OC=OA?t a n60°=1×=,OB=OC?cot30°=×=3,所以,点B(3,0),C(0,),设抛物线解析式为y=ax2+bx+c,则,解得,所以,抛物线的解析式为y=﹣x2+x+;故答案为:3,0,0,;学科网(2)四边形AEMC是菱形.∵△OCE∽△OBC,∴,即,解得OE=1,∴E(1,0)在抛物线对称轴上,∴△CAE为等边三角形,∴∠AEC=∠A=60°.又∵∠CEM=60°,∴∠MEB=∠AEC=60°.∴点C与点M关于抛物线的对称轴(x=1)对称.C(0,),∴M(2,).∴MC=AE=2,MC∥AE∴四边形AEMC是平行四边形.∵AC=CM=2∴四边形AEMC是菱形.(3)由⊙P与直线AC和x轴同时相切,易知点P在两线夹角的平分线上,①当在x轴上方时,如图,∠PAO=30°,设点P坐标为(m,﹣m2+m+),过P作PQ⊥x轴,交点为Q,则AQ=PQ,得m+1=(﹣m2+m+)解得,m1=2,m2=﹣1(舍去),所以点P坐标为(2,)②当在x轴下方时,∠PAO=60°,设点P坐标为(n,﹣n2+n+),过P'作P'Q'⊥x轴,交点为Q',则AQ'=P'Q',得(n+1)=﹣(﹣n2+n+)解得,n1=6,n2=﹣1(舍去),所以点P坐标为(6,﹣7)综上所述,存在点P满足条件,点P坐标为(2,)或(6,﹣7).5.如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.(1)求抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由矩形的性质可求得C点坐标,再利用待定系数法可求得抛物线的解析式;(2)用t可分别表示出CQ、PC的长,当∠PQC=∠DAE=90°,有△ADE∽△QPC;当∠QPC=∠DAE=90°,有△ADE∽△PQC,利用相似三角形的性质可分别得到关于t的方程,可求得t的值;(3)由题意可知CE为平行四边形的对角线,根据抛物线的对称性可知当M为抛物线顶点时满足条件,再由平行四边形的性质可知线段MN被线段EC平分,可求得N点坐标.【解答】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.∴C(8,0),∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0),∴,解得,∴抛物线的解析式为y=﹣x2+x;(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即=,解得t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即=,解得t=.∴当t的或时,以P、Q、C为顶点的三角形与△ADE相似;(3)存在符合条件的M、N点,EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点;则M(4,);而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则N(4,﹣);∴存在符合条件的M、N点,且它们的坐标为M(4,),N(4,﹣).6.如图,抛物线C1:y=ax2+bx+4与x轴交于A(﹣3,0),B两点,与y轴交于点C,点M(﹣,5)是抛物线C1上一点,抛物线C2与抛物线C1关于y轴对称,点A、B、M关于y轴的对称点分别为点A′、B′、M′.(1)求抛物线C1的解析式;(2)过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把A(﹣3,0),M(﹣,5)代入y=ax2+bx+4,得到关于a、b 的二元一次方程组,解方程组求出a、b的值,即可得到抛物线C1的解析式;(2)根据抛物线C1的解析式求出B(1,0),C(0,4).根据关于y轴对称的两点坐标特征以及抛物线的对称性得出M′(,5),B′(﹣1,0),A′(3,0),∠∠CA′A,那么AB′=2.利用待定系数法求出直线A′C的解析式,求出D(,CAA′=2).由勾股定理得出AC==5,DA′==.设P(m,0).分m<3与m>3两种情况讨论即可.【解答】解:(1)把A(﹣3,0),M(﹣,5)代入y=ax2+bx+4得,,解得,所以抛物线C1的解析式为y=﹣x2﹣x+4;学科网(2)令y=0,则﹣x2﹣x+4=0,解得x1=﹣3,x2=1,∴B(1,0),令x=0,则y=4,∴C(0,4).由题意,知M′(,5),B′(﹣1,0),A′(3,0),∠CAA′=∠CA′A,∴AB′=2.设直线A′C的解析式为y=px+q.把A′(3,0),C(0,4)代入,得,解得,∴y=﹣x+4,当x=时,y=﹣×+4=2,∴D(,2).由勾股定理得,AC==5,DA′==.设P(m,0).当m<3时,此时点P在点A′的左边,若=,即有△DA′P∽△CAB′,∴=(3﹣m),解得m=2,∴P(2,0).若=,即有△DA′P∽△B′AC,∴=(3﹣m),解得m=﹣,∴P(﹣,0).当m>3时,此时点P在点A′的右边,∵∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P,∴此情况,△DA′P与△B′AC不能相似.综上所述,存在点P(2,0)或(﹣,0)满足条件.7.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把抛物线解析式化为顶点式可求得A点坐标,联立直线与抛物线解析式,解方程组,可求得B、C的坐标;(2)由A、B、C三点的坐标可求得AB、BC和AC的长,可判定△ABC为直角三角形,且可得=,可证得结论;(3)设M(x,0),则P(x,﹣x2+2x),从而可表示出OM和PM的长,分=和=两种情况,分别得到关于x的方程,可求得x的值,可求得P点坐标.【解答】解:(1)∵y=﹣x2+2x=﹣(x﹣1)2+1,∴A(1,1),联立直线与抛物线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)证明:∵A(1,1),B(2,0),C(﹣1,﹣3),∴AB==,BC==3,AC==2,∴AB2+BC2=2+18=20=AC2,∴△ABC是以AC为斜边的直角三角形,∴∠ABC=∠ODC,∵C(﹣1,﹣3),∴OD=1,CD=3,∴==,∴△ODC∽△ABC;(3)设M(x,0),则P(x,﹣x2+2x),∴OM=|x|,PM=|﹣x2+2x|,∵∠OMP=∠ABC=90°,∴当以△OPM与△ABC相似时,有=或=两种情况,①当=时,则=,解得x=或x=,此时P点坐标为(,)或(,﹣);②当=时,则=,解得x=5或x=﹣1(与C点重合,舍去),此时P点坐标为(5,﹣15);综上可知存在满足条件的点P,其坐标为(,)或(,﹣)或(5,﹣15).8.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.【考点】HF:二次函数综合题.【分析】(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.由△ABE∽△MPB,得=,求出PM,根据△BPQ的面积y=?BQ?PM计算即可问题.(2)观察图象(1)(2),即可解决问题.(3)分三种情形讨论①P在BE上,②P在DE上,③P在CD上,分别求解即可.(4)由∠BIH=∠BCG=90°,推出B、I、C、G四点共圆,推出∠BGH=∠BCI,由△GBH∽△CBI,可得=,由此只要求出GH即可解决问题.【解答】解:(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.∵△ABE∽△MPB,∴=,∴=,∴PM=t,当0<t≤5时,△BPQ的面积y=?BQ?PM=?2t?t=t2.(2)由(1)可知BC=BE=10,ED=4.(3)①当P在BE上时,点C在C处时,∵BE=BC=10,∴当AE=AP=6时,△PQB与△ABE相似,∴t=6.②当点P在ED上时,观察图象可知,不存在△.③当点P在DC上时,设PC=a,当=时,∴=,∴a=,此时t=10+4+(8﹣)=14.5,∴t=14.5s时,△PQB与△ABE相似.(4)如图3中,设EG=m,GH=n,∵DE∥BC,∴=,∴=,∴m=,在Rt△BIG中,∵BG2=BI2+GI2,∴()2=62+(8+n)2,∴n=﹣8+或﹣8﹣(舍弃),∵∠BIH=∠BCG=90°,∴B、I、C、G四点共圆,∴∠BGH=∠BCI,∵∠GBF=∠HBI,∴∠GBH=∠CBI,∴△GBH∽△CBI,(也可以先证明△BFI∽△GFC,想办法推出△GFB∽△CFI,推出∠BGH=∠BCI)。
2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题专题等腰三角形存在性问题题型一:几何图形1、在△ABC中,AB=AC,∠A=36°.求∠ABC的度数。
解析:由AB=AC,可得∠B=∠C,设∠B=∠C=x,则∠A=180°-2x,又已知∠A=36°,所以180°-2x=36°,解得x=72°,所以∠B=∠C=72°,∠ABC=180°-∠A-∠B=72°。
2、如图(2),BD是△ABC中∠ABC的平分线.①找出图中所有等腰三角形(等腰三角形ABC除外),并选其中一个写出推理过程;②在直线BC上是否存在点P,使△CDP是以CD为一腰的等腰三角形?如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠CPD的度数;如果不存在,请说明理由.解析:①等腰三角形有△ABD、△CBD、△ACD,以△ABD为例,由AB=AD,∠BDA=∠BAD=x,∠ABD=180°-2x,所以∠ABD=∠CBD=∠ACD=72°。
②存在点P,满足△CDP是以CD为一腰的等腰三角形。
如图(3),连接DP,由对称性可知∠BDP=∠ADP,又∠BDP=∠ABC/2,∠ADP=∠ACB/2,所以∠ABC=∠ACB,即△ABC是等腰三角形,所以CD=BC,所以∠CPD=∠CDP=90°-x。
变式一:如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm 每秒的速度运动,设运动时间为t秒.1)当t=1时,求△ACP的面积.2)t为何值时,线段AP是∠CAB的平分线?3)当t为何值时,△ACP是以AC为腰的等腰三角形?解析:(1)由勾股定理可得AB=10cm,所以△ABC的面积为24cm²,又由正弦定理可得sinA=3/5,所以AC=3cm,AP=2t,所以△ACP的面积为1/2×3×2t=3t。
中考数学压轴题专题一《直角三角形的存在性问题》【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。
这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查。
【解题攻略】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).【解题类型及其思路】当直角三角形存在时可从三个角度进行分析研究:(1)当动点在直线上运动时,常用的方法是①121k k⋅=-,②三角形相似,③勾股定理;(2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法①121k k⋅=-,②三角形相似,③勾股定理;第二是当动点处作直角的方法:寻找特殊角【典例指引】类型一【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c 与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.类型三【确定动点运动的时间】典例指引3.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F5AC方向运动.当点E停止运动时,点F 随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y 轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【新题训练】1.如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.2.如图,抛物线y =mx 2+nx ﹣3(m≠0)与x 轴交于A(﹣3,0),B(1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点D ,使得△BCD 是以CD 为直角边的直角三角形?若存在,直接写出D 点坐标;若不存在,请说明理由.3.(2019·四川)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON .(1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题:①连接OP ,当12OP MN =时,请判断NOB ∆的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.4.(2018·贵州中考)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.5.(2018·四川中考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.6.(2019·云南中考模拟)已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使P A+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.7.(2019·黑龙江中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A (﹣1,0)B(3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式:;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.8.(2019·广西中考模拟)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)设点P 为抛物线的对称轴x=﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.9.(2019·山东中考模拟)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan ∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x 2+bx+c 经过A 、B 两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE . ①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.10.(2019·山东中考模拟)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.11.(2019·陕西中考模拟)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.12.(2019·山东中考模拟)如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2 .(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?13.(2019·河北中考模拟)已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.14.(2019·河南中考模拟)如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c 经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).(1)求抛物线解析式;(2)线段BD上有一动点E,过点E作y轴的平行线,交BC于点F,若S△BOD=4S△EBF,求点E的坐标;(3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.15.(2019·临沭县青云镇青云初级中学中考模拟)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PC 的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求∆PAC 为直角三角形时点P 的坐标.16.(2019·江西中考模拟)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值; ②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.【典例指引】类型一 【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ=2,∴QF=1. ①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213(03)22{13 (03)22t t t t t t t 或-+<<-.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣3, y=﹣x﹣3;(2)y=2x2﹣4x+1;(3)存在,P为(1172+,﹣2)117-,﹣2)或(9,﹣2)或(﹣8,﹣2).【解析】分析:(1)衍生抛物线顶点为原抛物线与y轴的交点,则可根据顶点设顶点式方程,由衍生抛物线过原抛物线的顶点则解析式易得,MN解析式易得.(2)已知衍生抛物线和衍生直线求原抛物线思路正好与(1)相反,根据衍生抛物线与衍生直线的两交点分别为衍生抛物线与原抛物线的交点,则可推得原抛物线顶点式,再代入经过点,即得解析式.(3)由N(0,﹣3),衍生直线MN绕点N旋转到与x轴平行得到y=﹣3,再向上平移1个单位即得直线y=﹣2,所以P点可设(x,﹣2).在坐标系中使得△POM为直角三角形一般考虑勾股定理,对于坐标系中的两点,分别过点作平行于x轴、y轴的直线,则可构成以两点间距离为斜边的直角三角形,且直角边长都为两点横纵坐标差的绝对值.进而我们可以先算出三点所成三条线的平方,然后组合构成满足勾股定理的三种情况,易得P 点坐标.本题解析:(1)∵抛物线y=x2﹣2x﹣3过(0,﹣3),∴设其衍生抛物线为y=ax2﹣3,∵y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴衍生抛物线为y=ax2﹣3过抛物线y=x2﹣2x﹣3的顶点(1,﹣4),∴﹣4=a•1﹣3,解得a=﹣1,∴衍生抛物线为y=﹣x2﹣3.设衍生直线为y=kx+b,∵y=kx+b过(0,﹣3),(1,﹣4),∴304bk b -=+⎧⎨-=+⎩,∴13 kb=-⎧⎨=-⎩,∴衍生直线为y=﹣x﹣3.(2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点,∴将y=﹣2x2+1和y=﹣2x+1联立,得22121y xy x⎧=-+⎨=-+⎩,解得1xy=⎧⎨=⎩或11xy=⎧⎨=-⎩,∵衍生抛物线y=﹣2x2+1的顶点为(0,1),∴原抛物线的顶点为(1,﹣1).设原抛物线为y=a(x﹣1)2﹣1,∵y=a(x﹣1)2﹣1过(0,1),∴1=a(0﹣1)2﹣1,解得a=2,∴原抛物线为y=2x2﹣4x+1.(3)∵N(0,﹣3),∴MN绕点N旋转到与x轴平行后,解析式为y=﹣3,∴再沿y轴向上平移1个单位得的直线n解析式为y=﹣2.设点P坐标为(x,﹣2),∵O(0,0),M(1,﹣4),∴OM2=(x M﹣x O)2+(y O﹣y M)2=1+16=17,OP2=(|x P﹣x O|)2+(y O﹣y P)2=x2+4,MP2=(|x P﹣x M|)2+(y P﹣y M)2=(x﹣1)2+4=x2﹣2x+5.①当OM2=OP2+MP2时,有17=x2+4+x2﹣2x+5,解得,即P,﹣2)或P,﹣2).②当OP2=OM2+MP2时,有x2+4=17+x2﹣2x+5,解得x=9,即P(9,﹣2).③当MP2=OP2+OM2时,有x2﹣2x+5=x2+4+17,解得x=﹣8,即P(﹣8,﹣2).综上所述,当P为(1172+,﹣2)或(1172-,﹣2)或(9,﹣2)或(﹣8,﹣2)时,△POM为直角三角形.【名师点睛】本题考查了一次函数、二次函数图象及性质,勾股定理及利用其表示坐标系中两点距离的基础知识,特别注意的是:利用其表示坐标系中两点距离,是近几年中考的热点,需学生熟练运用.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣4x+5.(2)372;(3)P坐标为(﹣2,7)或(﹣2,﹣3)或(﹣2,6)或(﹣2,﹣1).【解析】试题分析:(1)利用待定系数法即可解决问题; (2)构建二次函数利用二次函数的性质即可解决问题;(3)分三种情形分别求解①当90,ACP ∠=o由222AC PC PA +=,列出方程即可解决.②当90CAP ∠=︒时,由222AC PA PC +=, 列出方程即可解决.③当90APC ∠=︒ 时,由222PA PC AC +=,列出方程即可; 试题解析:(1)把A (−5,0),B (1,0)两点坐标代入2y x bx c =-++,得到255010b c b c --+=⎧⎨-++=⎩,解得45b c =-⎧⎨=⎩,∴抛物线的函数表达式为24 5.y x x =--+ (2)如图1中,∵抛物线的对称轴x =−2,2(,45)E x x x ,--+ ∴2452EH x x EF x =--+=--,,∴矩形EFDH 的周长225372()2(53)2().22EH EF x x x =+=--+=-++ ∵−2<0, ∴52x =-时,矩形EHDF 的周长最大,最大值为37.2 (3)如图2中,设P (−2,m )①当90,ACP ∠=o ∵222AC PC PA +=, ∴22222(52)2(5)3m m ++-=+, 解得m =7, ∴P 1(−2,7).②当90CAP ∠=o 时,∵222AC PA PC +=, ∴22222(52)32(5)m m ++=+-, 解得m =−3, ∴P 2(−2,−3).③当90APC ∠=o 时,∵222PA PC AC +=, ∴2222232(5)(52)m m ,+++-= 解得m =6或−1, ∴P 3(−2,6),P 4(−2,−1),综上所述,满足条件的点P 坐标为(−2,7)或(−2,−3)或(−2,6)或(−2,−1).类型三 【确定动点运动的时间】典例指引3.已知二次函数y =ax 2+bx -2的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当x =-2和x =5时二次函数的函数值y 相等.(1)求实数a ,b 的值;(2)如图①,动点E ,F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F AC 方向运动.当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF.①是否存在某一时刻t ,使得△DCF 为直角三角形?若存在,求出t 的值;若不存在,请说明理由;②设△DEF 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式.【解析】试题分析:(1)根据抛物线图象经过点A 以及“当x =﹣2和x =5时二次函数的函数值y 相等”两个条件,列出方程组求出待定系数的值.(2)①首先由抛物线解析式能得到点A 、B 、C 三点的坐标,则线段OA 、OB 、OC 的长可求,进一步能得出AB 、BC 、AC 的长;首先用t 表示出线段AD 、AE 、AF (即DF )的长,则根据AE 、EF 、OA 、OC 的长以及公共角∠OAC 能判定△AEF 、△AOC 相似,那么△AEF 也是一个直角三角形,及∠AEF 是直角;若△DCF 是直角,可分成三种情况讨论:i )点C 为直角顶点,由于△ABC 恰好是直角三角形,且以点C 为直角顶点,所以此时点B 、D 重合,由此得到AD 的长,进而求出t 的值;ii )点D 为直角顶点,此时∠CDB 与∠CBD 恰好是等角的余角,由此可证得OB =OD ,再得到AD 的长后可求出t 的值;iii )点F 为直角顶点,当点F 在线段AC 上时,∠DFC 是锐角,而点F 在射线AC 的延长线上时,∠DFC 又是钝角,所以这种情况不符合题意. ②此题需要分三种情况讨论:i )当点E 在点A 与线段AB 中点之间时,两个三角形的重叠部分是整个△DEF ;ii )当点E 在线段AB 中点与点O 之间时,重叠部分是个不规则四边形,那么其面积可由大直角三角形与小钝角三角形的面积差求得;iii )当点E 在线段OB 上时,重叠部分是个小直角三角形.试题解析:解:(1)由题意得: 16420{4222552a b a b a b +-=--=+-,解得:a =12,b =32-.(2)①由(1)知二次函数为213222y x x =--.∵A (4,0),∴B (﹣1,0),C (0,﹣2),∴OA =4,OB =1,OC =2,∴AB =5,AC =BC AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形,且∠ACB =90°.∵AE=2t,AF,∴2AF ABAE AC==.又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF=12AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE=12AB=52t=52÷2=54;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE=32,∴t=34;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t=34或t=54.②ⅰ)当0<t≤54时,重叠部分为△DEF,如图1、图2,∴S=12×2t×t=t2;ⅱ)当54<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= 12m,DH=2m,∴DB=32m.∵DB=AD﹣AB=4t﹣5,∴32m=4t﹣5,∴m=23(4t﹣5),∴S=S△DEF﹣S△DBG=12×2t×t﹣12(4t﹣5)×23(4t﹣5)=2134025333t t-+-;ⅲ)当2<t≤52时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S=12×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:2225(0)41340255{(2)3334542025(2)2t tS t t tt t t<≤=-+-<≤-+<≤.【名师点睛】此题主要考查的是动点函数问题,涉及了函数解析式的确定、直角三角形以及相似三角形的判定和性质、等腰三角形的性质以及图形面积的解法等综合知识;第二题的两个小题涉及的情况较多,一定要根据动点的不同位置来分类讨论,抓住动点的关键位置来确定未知数的取值范围是解题的关键所在. 【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值. 【答案】(1)A (,0)、B (3,0);(2)存在.S △PBC 最大值为2716;(3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】 【分析】(1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值. 【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=. ∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--.设P (p ,213p p 22--),∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+().∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716.(3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -), ∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+, 解得:12m =-,22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+, 解得:1m 1=-,2m 1=(舍去) . 综上所述,2m 2=-或1m =-时,△BDM 为直角三角形. 【新题训练】1.(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【详解】解:(1)令y=0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧。
相似三角形的存在性问题解题策略中考数学压轴题解题策略专题攻略相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6.应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组). 例题解析例❶如图1-1,抛物线213482y x x =-+与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C .动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由.图1-1【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠B 的两条边.△ABC 是确定的.由213482y x x =-+,可得A (4, 0)、B (8, 0)、C (0, 4). 于是得到BA =4,BC =45.还可得到12CE CO EF OB ==. △BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了.在Rt △EFC 中,CE =t ,EF =2t ,所以5CF t =. 因此4555(4)BF t t =-=-.于是根据两边对应成比例,分两种情况列方程: ①当BA BP BC BF =时,42455(4)t t =-.解得43t =(如图1-2). ②当BA BF BC BP =时,45(4)245t t -=.解得207t =(如图1-3).图1-2 图1-3例❷如图2-1,在平面直角坐标系中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的解析式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图2-1【解析】△ABC 与△AOM 中相等的一组角在哪里呢?本题由简到难,层层深入.第(1)题求出抛物线的解析式,得到顶点M 的坐标,为第(2)题求∠AOM 的大小作铺垫;求得了∠AOM 的大小,第(3)题暗示了要在△ABC 中寻找与∠AOM 相等的角.(1)如图2-2,过点A 作AH ⊥y 轴,垂足为H .容易得到A (1,3)-.再由A (1,3)-、B (2,0)两点,可求得抛物线的解析式为232333y x x =-. (2)由2232333(1)3333y x x x =-=--,得顶点M 3(1,)3-. 所以3tan 3BOM ∠=.所以∠BOM =30°.所以∠AOM =150°.图2-2(3)由A (1,3)-、B (2,0),可得∠ABO =30°.因此当点C 在点B 右侧时,∠ABC =∠AOM =150°.所以△ABC 与△AOM 相似,存在两种情况: ①当3BA OA BC OM ==时,23233BA BC ===.此时C (4,0)(如图2-3). ②当3BC OA BA OM==时,33236BC BA ==⨯=.此时C (8,0)(如图2-4).图2-3 图2-4例❸如图3-1,抛物线y =ax 2+bx -3与x 轴交于A (1, 0)、B (3, 0)两点,与y 轴交于点D ,顶点为C .(1)求此抛物线的解析式;(2)在x 轴下方的抛物线上是否存在点M ,过M 作MN ⊥x 轴于点N ,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,求出点M 的坐标;若不存在,请说明理由.图3-1【解析】△AMN 是直角三角形,因此必须先证明△BCD 是直角三角形.一般情况下,根据直角边对应成比例分两种情况列方程.(1)抛物线的解析式为y =-x 2+4x -3.(2)由y =-x 2+4x -3=-(x -2)2+1,得D (0,-3),C (2, 1).如图3-2,由B (3, 0)、D (0,-3)、C (2, 1),可知∠CBO =45°,∠DBO =45°. 所以∠CBD =90°,且21332BC BD ==.图3-2 图3-3 图3-4设点M 、N 的横坐标为x ,那么NM =-y M ,而NA 的长要分N 在A 的右边或左边两种情况,因此列方程要“两次分类”:当N 在A 右侧时,NA =x -1,分两种情况列方程:①当3NA BD NM BC ==时,13(1)(3)x x x -=--.解得103x =.此时M 107(,)39-(如图3-3). ②当13NA BC NM BD ==时,11(1)(3)3x x x -=--.解得x =6.此时M (6,-15)(如图3-5). 当N 在A 左侧时,NA =1-x ,也要分两种情况列方程: ①当3NA BD NM BC ==时,13(1)(3)x x x -=--.解得83x =>1,不符合题意(如图3-4). ②当13NA BC NM BD ==时,11(1)(3)3x x x -=--.解得x =0,此时M (0,-3)(如图3-6).图3-5 图3-6例❹如图4-1,在平面直角坐标系中,A (8,0),B (0,6),点C 在x 轴上,BC 平分∠OBA .点P 在直线AB 上,直线CP 与y 轴交于点F ,如果△ACP 与△BPF 相似,求直线CP 的解析式.图4-1【解析】首先求得点C (3,0).△ACP 与△BPF 中,相等的角在哪里啊?①如图4-2,当点P 在线段AB 上时,△ACP 与△BPF 中,∠APC 与∠BPF 是邻补角,如果这两个邻补角一个是锐角,一个是钝角,两个三角形怎么可能相似呢?因此CP 与AB 是垂直的.可以求得F (0,-4),于是直线CF (CP )为443y x =-.②如图4-3,当点P 在AB 的延长线上时,△ACP 与△BPF 有公共角∠P .于是∠OFC =∠PFB =∠A ,可以求得F (0, 4),因此直线CF (CP )为443y x =-+. ③如图4-4,当点P 在BA 的延长线上时,∠B 与∠PCA 不可能相等.在△AOB 中,根据大边对大角,∠B >∠BAO ;∠BAO 又是△PCA 的一个外角,∠BAO >∠PCA .图4-2 图4-3 图4-4例❺如图5-1,二次函数y =x 2+3x 的图象经过点A (1,a ),线段AD 平行于x 轴,交抛物线于点D .在y 轴上取一点C (0, 2),直线AC 交抛物线于点B ,连结OA 、OB 、OD 、BD .求坐标平面内使△EOD ∽△AOB 的点E 的坐标;图5-1【解法一】点A 、D 、B 都是确定的,可以求得A (1, 4),D (-4, 4),B (-2,-2). 所以17AO =,22BO =,35AB =,42DO =.△EOD ∽△AOB ,对应边已经确定,因此我们可以根据判定定理3列方程. 由EO OD DE AO OB BA ==,得42172235EO DE ==.所以217EO =,65DE =. 设点E 的坐标为(x , y ),根据EO 2=68,DE 2=180,列方程组222268,(4)(4)180.x y x y ⎧+=⎪⎨++-=⎪⎩解得118, 2,x y =⎧⎨=-⎩222,8, xy=⎧⎨=-⎩所以点E的坐标为(8,-2)或(-2, 8).上面的解题过程是“盲解”,我们并不明白两个三角形的位置关系.【解法二】如图5-2,△AOB是确定的,△AOB与△EOD有公共点O,OB∶OD=1∶2,∠BOD=90°.如果△EOD∽△AOB,我们可以把△AOB绕着点O顺时针旋转,使得点B′落在OD 上,此时旋转角为90°,点B′恰好落在OD的中点.按照这个运动规则,点A(1, 4)绕着点O顺时针旋转90°,得到点A′(4,-1),点A′是线段OE的中点,因此点E的坐标为(8,-2).如图5-3,点E(8,-2)关于直线OD(即直线y=-x)对称的点为E′(2,-8).图5-2 图5-3例❻如图6-1,在△ABC中,AB=AC=42,BC=8.⊙A的半径为2,动点P从点B出发沿BC方向以每秒1个单位的速度向点C运动.延长BA交⊙A于点D,连结AP 交⊙A于点E,连结DE并延长交BC于点F.设点P运动的时间为t秒,当△ABP与△FBD相似时,求t的值.图6-1【解析】△ABC 是等腰直角三角形,⊙A 是确定的,先按照题意把图形补充完整. 如图6-2,容易发现△ABP 与△FBD 有公共角∠B ,如果根据对应边成比例列方程BA BD BP BF =或BA BF BP BD=,其中BA =42,BP =t ,BD =42+2,但是用含t 的式子表示BF 困难重重啊!图6-2 图6-3 图6-4我们另起炉灶,按照判定定理1来解决.△ABP 与△FBD 有公共角∠B ,我们以∠D 为分类标准,分两种情况讨论它们相似: 第一种情况,如图6-3,∠BAP =∠D 是不可能的,这是因为∠BAP 是等腰三角形ADE 的外角,∠BAP =2∠D .第二种情况,如图6-4,当∠BPA =∠D 时,在△ABP 中,由于∠BAP =2∠D =2∠BPA ,因此45°+3∠BPA =180°.解得∠BPA =45°.此时△ABP 是等腰直角三角形,P 与C 重合,所以t =8.解答这道题目,如果选取点P 的3个不同位置,按照题意画图,可以帮助我们探究.在讨论第二种情况∠BPA =∠D 时,我们容易被已知图6-1给定的点P 的位置所误导,以为图6-2中“锐角∠D”与“钝角∠BPA”不可能相等.。