振幅调制电路实验报告
- 格式:docx
- 大小:37.86 KB
- 文档页数:4
信号与系统实验报告3、AM 振幅调制与解调实验模块一块。
【实验原理】1、常规双边带调幅所谓调制,就是在传送信号的一方(发送端)将所要传送的信号(它的频率一般是较低的)“附加”在高频振荡信号上。
所谓将信号“附加”在高频振荡上,就是利用信号来控制高频振荡的某一参数,使这个参数随信号而变化,这里,高频振荡波就是携带信号的“运载工具”,所以也叫载波。
在接收信号的一方(接收端)经过解调(反调制)的过程,把载波所携带的信号取出来,得到原有的信息,解调过程也叫检波。
调制与解调都是频谱变换的过程,必须用非线性元件才能完成。
调制的方式可分为连续波调制与脉冲波调制两大类,连续波调制是用信号来控制载波的振幅、频率或相位,因而分为调幅、调频和调相三种方式;脉冲波调制是先用信号来控制脉冲波的振幅、宽度、位置等,然后再用这已调脉冲对载波进行调制,脉冲调制有脉冲振幅、脉宽、脉位、脉冲编码调制等多种形式。
本实验模块所要进行的实验是连续波的振幅调制与解调,即常规双边带调幅与解调。
我们已经知道,调幅波的特点是载波的振幅受调制信号的控制作周期性的变化,这变化的周期与调制信号的周期相同,振幅变化与调制信号的振幅成正比。
为简化分析,假定调制信号是简谐振荡,即为单频信号,其表达式为:图1 常规调幅波形如果用它来对载波进行调幅,那么,在理想情况下,常规调幅信号为:其中调幅指数,k为比例系数。
图1给出了UΩ(t),U c(t)和的波形图。
从图中并结合式(1)可以看出,常规调幅信号的振幅由直流分量U cm和交流分量kUΩm cosΩt迭加而成,其中交流分量与调制信号成正比,或者说,常规调幅信号的包络(信号振幅各峰值点的连线)完全反映了调制信号的变化。
另外还可得到调幅指数M a 的表达式:显然,当Ma>1 时,常规调幅波的包络变化与调制信号不再相同,产生了失真,称为过调制,如图2 所示。
所以,常规调幅要求Ma 必须不大于1。
图 2 过调制波形式(1)又可以写成可见,U AM (t) 的频谱包括了三个频率分量:ωc(载波)、ωc +Ω(上边频)和ωc -Ω(下边频)。
一、实验目的1. 理解高频调制的基本原理和过程。
2. 掌握振幅调制(AM)和解调(AM-D)的基本方法。
3. 学习使用实验仪器进行高频信号的调制和解调。
4. 分析调制信号的频谱特性,验证调制和解调效果。
二、实验原理高频调制是将低频信号(信息信号)与高频载波信号进行混合,使信息信号以某种方式影响载波信号的幅度、频率或相位,从而实现信号的传输。
本实验主要研究振幅调制(AM)。
1. 振幅调制(AM)振幅调制是指载波信号的振幅随信息信号的变化而变化。
AM信号可以表示为:\[ s(t) = c(t) \cdot [1 + m \cdot x(t)] \]其中,\( c(t) \) 是载波信号,\( x(t) \) 是信息信号,\( m \) 是调制指数。
2. 振幅解调(AM-D)振幅解调是指从调幅信号中恢复出原始信息信号。
常见的解调方法有包络检波法和同步检波法。
三、实验仪器1. 双踪示波器2. 高频信号发生器3. 低频信号发生器4. 调制器5. 解调器6. 万用表四、实验步骤1. 调制过程(1)设置高频信号发生器,产生一个频率为 \( f_c \) 的正弦波作为载波信号。
(2)设置低频信号发生器,产生一个频率为 \( f_m \) 的正弦波作为信息信号。
(3)将载波信号和信息信号输入调制器,进行振幅调制。
(4)观察调制器的输出波形,验证调制效果。
2. 解调过程(1)将调制信号输入解调器,进行振幅解调。
(2)观察解调器的输出波形,验证解调效果。
3. 频谱分析(1)使用频谱分析仪对调制信号进行频谱分析。
(2)观察调制信号的频谱特性,验证调制效果。
4. 性能测试(1)测试调制信号的调制指数 \( m \)。
(2)测试解调信号的解调指数 \( D \)。
五、实验结果与分析1. 调制过程通过实验,成功实现了振幅调制。
调制信号的波形如图1所示。
图1 振幅调制信号波形2. 解调过程通过实验,成功实现了振幅解调。
解调信号的波形如图2所示。
实验四 振幅调制实验一、实验原理1、 振幅调制的一般概念调制,就是用调制信号(如声音、图像等低频或视频信号)去控制载波(其频率远高于调制信号频率,通常又称“射频”)某个参数的过程。
载波受调制后成为已调波。
振幅调制,就是用调制信号去控制载波信号的振幅,使载波的振幅按调制信号的规律变化。
设调制信号为()cos f fm f v t V t ω=载波信号为()cos c cm c v t V t ω=且c f ωω则根据振幅调制的定义,可以得到普通调幅波的表达为:()()1cos cos AM cm f c v t V m t t ωω=+ (5—1) 式中a fm cm cm cmK V V m V V ∆== (5—2) 称为调幅度(调制度),a K 为调制灵敏度。
为使已调波不失真,调制度m 应小于或等于1,当1m >时,称为过调制,此时产生严重失真,这是应该避免的。
不同调制度时的已调波波形如图5—1所示。
将式(5—1)用三角公式展开,可得到:()()()cos cos cos 22AM cm c cm c f cm c f m m v t V t V t V t ωωωωω=+++- (5—3) 由式(5—3)看出,单频调制的普通调幅波由三个高频正弦波叠加而成:载波分量,上边频分量,下边频分量。
在多频调制的情况下,各边频分量就组成了上下边带。
普通调幅波可用AM 表示。
在调制过程中,将载波抑制就形成了抑制载波双边带信号,简称双边带信号,用DSB 表示;如果DSB 信号经边带滤波器滤除一个边带或在调制过程中直接将一个边带抵消,就形成单边带信号,用SSB 表示。
单频调制时DSB 、SSB 信号波形如图5—2所示。
由以上讨论可以看出,若先将调制信号和一个直流电压相加,然后再与载波一起作用到乘法器上,则乘法器的输出将是一个普通调幅波;若调制信号直接与载波相乘,或在AM 调制的基础上抑制载波,即可实现DSB 调制;将DSB 信号滤掉一个边带,即可实现SSB 调制。
高频电子线路实验报告(实验4 振幅调制器)班级:姓名:学号:实验四振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
二、实验内容:1.观察模拟乘法器MC1496正常工作时的输出波形图。
2.实现全载波调幅,改变调幅度,观察波形变化并画出波形图。
3.实现抑止载波的双边带调幅波。
三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
本实验中载波是由晶体振荡产生的10MHZ高频信号。
1KHZ的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图4-1为MC1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对,由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5与V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
图4-1 MC1496内部电路图用MC1496集成电路构成的调幅器电路图如图4-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。
器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
图4-2 MC1496构成的振幅调制电路四、硬件说明:1.本实验要用到“振荡器与频率调制”、“低频调制信号”、“振幅调制”三个实验模块,它们都在试验箱的左上角,分别找到这三个实验模块的位置。
振幅调制解调实验报告1. 实验目的本实验旨在通过振幅调制与解调实验,了解振幅调制与解调的原理,掌握振幅调制与解调的基本方法和技巧,以及了解其在通信领域中的应用。
2. 实验器材- 信号发生器- 振幅调制解调实验箱- 示波器- 直流稳压电源- 多用电表- 连接线等实验仪器设备3. 实验原理3.1 振幅调制振幅调制(Amplitude Modulation,AM)是将音频等低频信号通过调制器幅度调制到载波上的一种调制方式。
振幅调制可以分为线性调制与非线性调制两种情况。
3.1.1 线性调制线性调制是指调制器的输出与调制信号的幅度成正比变化。
此时,调制信号的幅度越大,产生的调制波的振幅也越大。
3.1.2 非线性调制非线性调制是指调制器的输出与调制信号的幅度非线性变化。
当调制信号的幅度较小时,调制波的振幅较小;当调制信号的幅度较大时,调制波的振幅反而会变小。
3.2 振幅解调振幅解调是将调幅信号中的信息信号从载波中还原出来的过程。
常用的解调电路有简单的包络检波电路和同步检波电路。
4. 实验步骤4.1 振幅调制1. 按照实验电路图连接电路,将信号发生器的输出接入调制器的调制端,设置合适的频率和幅度。
2. 连接示波器,将示波器的一路接入调制器的调制端,另一路接入调制器的输出端。
3. 打开电源,调节调制幅度、偏置电压、调制频率等参数,观察得到的调制波形。
4.2 振幅解调1. 在调制器输出端使用衰减器将载波的强度减小。
2. 将衰减后的载波接入解调器的输入端,使用示波器观察解调器输出的波形。
3. 根据需求调节解调电路的参数,最终得到解调后的信号。
5. 实验结果与分析在振幅调制实验中,通过调节调制器的参数,我们成功地将信号发生器产生的低频信号调制到载波上,并观察到了所得到的调制波形。
调制幅度、偏置电压和调制频率的调节对于调制波形的形态有一定的影响,通过调节这些参数,我们可以得到不同形态的调制波形。
同时,在振幅解调实验中,我们通过调节解调电路的参数,成功将调幅信号中的信息信号从载波中还原出来。
王晟尧 学号: 6102215054专业班级:通信152班乘法器振幅调制电路一、实验目的了解并研究各个模拟乘法器调幅电路特性和波形变化的特点以及频谱分析。
二、实验原理调制、解调和混频电路是通信设备中重要的组成成分。
用代传输的低频信号控制高频载波参数的电路,称为调制电路。
振幅调制有基本的普通调幅( AM )和在此基础上演变出来的抑制载波的双边带调幅( DSB )、单边带调幅(SSB 。
、实验步骤(1)普通调幅(AM )实验类型:□验证□综合□设计□创新实验日期:______ 实验成绩: ______学生姓名:V2为载波信号V1为调制信号傅里叶频谱分析:由以上数据可以得知:①仿真检测的调制信号频率与输出调幅波的包络信号频率基本相同;载波信号的振幅按照调制信号的变化规律变化而形成的调幅波,携带着调制信号的信息,调幅波的包络线与相应的调制信号相同;②调制过程实际上是一种频率搬移的过程,即经过调幅后,调制信号的频谱被对称地搬移到载频的两侧。
同时,在调幅波中,载频不含任何有用信息,需传输的信息只包含与边频分量中,边频的振幅反映了调制信号幅度的大小,边频的频率反映调制信号频率的高低傅里叶频谱分析:(2)双边带调幅(DSB )T1 @[+吋间3.000 s loot) S 0.000 V O.OOD V 迪道二 253,011mV 2S3-RI1 iitV迪道 c迪:1 DJ .259 mV I ? 59 iriV l_反冋 [保存T2 T10.000 sO.UUO VO.UO0 \O..UCJU VGMD时基、融弱标凰SO UEjOiw別扈:1 V/tKV ExtX 驸位移(格):¥轴包移㈱‘10* D w B 水平:[iII图示唧雌□丈件 嗚诟 观濁 曲适 光迹 俪 捋号说距 丄目 萸壯 睜口|哼>< 能到醴目加些 丛几八迤◎盘刼劉曾i 也A R 爪許山竹 「偉里叶井听14悄谊示遍琴XSCI ]暉里吋分忻启里叶分折| 单频调制双边带电路-50m 任可知:①为了节省发射功率,可采用抑制载波信号的双边带调幅电路;② 双边带调幅波波形仍随调制信号变化,但其包络线已不再反映原调制信号的形状,当调制信号进入负半周时,载波信号产生 180度相位突变;③ 双边带调幅波同样是实现频谱搬移,但频谱图上没有出现载波分量,只 有两个边带分量。
一、实验目的1. 理解振幅调制的基本原理和过程。
2. 掌握使用示波器等仪器测量调幅系数的方法。
3. 通过实验验证振幅调制和解调的基本性能。
4. 增强对高频电子线路实验系统的熟悉程度。
二、实验原理振幅调制(AM)是一种将低频信号(调制信号)加载到高频载波上的技术。
其基本原理是利用调制信号控制高频载波的振幅,使载波的振幅随调制信号的规律变化。
振幅调制分为普通调幅(AM)、抑制载波双边带调幅(DSB-SC)和抑制载波单边带调幅(SSB-SC)三种。
本实验主要研究普通调幅(AM)调制和解调过程。
调制过程包括:1. 调制信号的产生:通过信号发生器产生所需频率和幅度的调制信号。
2. 载波信号的产生:通过信号发生器产生所需频率和幅度的载波信号。
3. 振幅调制:将调制信号与载波信号相乘,得到调幅信号。
解调过程包括:1. 检波:将调幅信号通过二极管检波,得到与调制信号幅度成正比的检波信号。
2. 低通滤波:将检波信号通过低通滤波器,滤除高频分量,得到还原后的调制信号。
三、实验设备1. 信号发生器2. 示波器3. 信号发生器4. 二极管检波器5. 低通滤波器6. 连接线7. 实验模块四、实验步骤1. 调制信号和载波信号的产生:分别设置调制信号和载波信号的频率、幅度等参数。
2. 振幅调制:将调制信号与载波信号相乘,得到调幅信号。
3. 观察调幅信号:使用示波器观察调幅信号的波形,分析调幅系数。
4. 检波:将调幅信号通过二极管检波,得到检波信号。
5. 低通滤波:将检波信号通过低通滤波器,得到还原后的调制信号。
6. 观察还原后的调制信号:使用示波器观察还原后的调制信号,分析调制效果。
五、实验结果与分析1. 调幅系数测量:通过示波器观察调幅信号的波形,可以计算出调幅系数。
调幅系数定义为调制信号幅度与载波信号幅度之比。
2. 调制效果分析:通过观察还原后的调制信号,可以分析调制效果。
如果还原后的调制信号与原始调制信号相似,则说明调制效果良好。
振幅调制实验报告体会引言振幅调制是一种常见的调制技术,广泛应用于无线通信、广播电视等领域。
通过改变载波信号的振幅来携带信息信号,实现信息的传输。
在本次实验中,我们对振幅调制技术进行了深入学习,并通过实验验证了相关理论。
实验目的本次实验主要目的是理解振幅调制的原理和实现过程,掌握信号的调制和解调方法,以及对实际调制电路进行设计和调试。
实验步骤1. 准备实验所需的器材和设备:信号发生器、调制电路、示波器等。
2. 搭建振幅调制电路,并连接相应的信号源和示波器。
3. 调节信号发生器产生不同频率和振幅的信号,观察在不同调制指数下的调制效果。
4. 通过示波器观测调制信号的波形和频谱特征,并记录相关数据。
5. 进行解调实验,验证振幅调制的可逆性和解调效果。
实验结果在实验过程中,我们得到了一系列关于振幅调制的实验结果。
通过调节信号发生器的频率和振幅,我们成功实现了不同调制指数下的振幅调制效果,并观察到了所得到的调制波形和频谱变化。
实验结果表明,在调制指数较小的情况下,调制信号所携带的信息相对较少,振幅调制后的波形呈现出与原始信号类似的形状,且频谱主要集中在两侧的边带区域。
而在调制指数增大的情况下,调制信号所携带的信息更丰富,振幅调制后的波形波动更明显,并且频谱分布范围更广。
通过解调实验,我们进一步验证了振幅调制的可逆性,即通过解调电路可以将调制信号还原为原始信号。
在解调过程中,我们观察到解调后的波形与原始信号波形高度一致,仅存在细微的失真。
实验总结通过本次实验,我们对振幅调制技术有了更深入的理解。
在实验过程中,我们不仅搭建了振幅调制电路,还观察了不同调制指数下的调制波形和频谱特征,以及进行了解调实验。
实验结果充分证明了振幅调制的原理和实际应用性能。
在实验中,我们还深刻体会到了实验设计和装置调试的重要性。
通过不断调整参数和观察数据,我们逐步得到了准确的实验结果,并验证了相关理论。
实验过程中的挑战和困难促使我们进一步提高了实验操作能力和解决问题的能力。
<>通信原理实验报告通信硬件实验一实验2 振幅调制(Amplitude modulation)与解调一、实验目的:(1)掌握振幅调制器的基本工作原理;(2)掌握调幅波调制系数的意义和求法。
(3)掌握包络检波器的基本构成和原理。
二、实验原理1、AM调制原理AM信号产生如图2-1所示图2-1 AM信号时域波形方法一:原理框图如图2-2所示图2-2 AM信号调制原理框图(方法一)其中m(t)为一均值为零的模拟基带信号(低频);c(t)为一正弦载波信号(高频);DC为一直流分量。
方法二:图2-3 AM信号调制原理框图(方法二)2、AM信号解调原理(包络检波)更多文章 / mxdwk图2-4 AM信号解调原理框图三、实验内容1、AM信号调制(1)采用AM信号调制原理框图方法一或方法二实现AM信号的调制。
采用原理框图方法一(2)请实现调制系数分别为:1,0.5和1.5三种情况的调制。
1.&#; 采用上面原理框图实现AM的调制将音频振荡器产生的正弦信号sin(wt)的频率调节至1KHz将可变直流电压的旋钮V调至最小2.&#; 实现调制系数分别为:1,0.5和1.5三种情况的调制通过调节加法器中的g即可实现不同的调制系数调制系数为1时调制系数为0.5时调制系数为1.5时(不够标准,接近2了)可参考的模块如下:音频振荡器(Audio Oscillator),可变直流电压(Variable DC),主振荡器(Master Signals),加法器(Adder)和乘法器(Multiplier),移相器(Phase Shifer)。
2、AM信号解调采用包络检波的方式实现AM信号的解调。
(2)请实现调制系数分别为:1,0.5和1.5三种情况的解调。
调制系数为1时调制系数为0.5时调制系数为1.5时采用的模块如下:共享模块(Utilities Module)和音频放大器(Headphone Amplifier)四、思考题:(1)若用同步检波,如何完成实验?比较同步检波和包络检波的有缺点。
振幅调制电路实验报告 Prepared on 22 November 2020
南昌大学实验报告
学生姓名:王晟尧学号:专业班级:通信152班
实验类型:□验证□综合□设计□创新实验日期:实验成绩:
乘法器振幅调制电路
一、实验目的
了解并研究各个模拟乘法器调幅电路特性和波形变化的特点以及频谱分析。
二、实验原理
调制、解调和混频电路是通信设备中重要的组成成分。
用代传输的低频信号控制高频载波参数的电路,称为调制电路。
振幅调制有基本的普通调幅(AM)和在此基础上演变出来的抑制载波的双边带调幅(DSB)、单边带调幅(SSB)。
三、实验步骤
(1)普通调幅(AM)
V2为载波信号
V1为调制信号
傅里叶频谱分析:
由以上数据可以得知:
①仿真检测的调制信号频率与输出调幅波的包络信号频率基本相同;载波信号的振幅按照调制信号的变化规律变化而形成的调幅波,携带着调制信号的信息,调幅波的包络线与相应的调制信号相同;
②调制过程实际上是一种频率搬移的过程,即经过调幅后,调制信号的频谱被对称地搬移到载频的两侧。
同时,在调幅波中,载频不含任何有用信息,需传输的信息只包含与边频分量中,边频的振幅反映了调制信号幅度的大小,边频的频率反映调制信号频率的高低。
(2)双边带调幅(DSB)
傅里叶频谱分析:
可知:①为了节省发射功率,可采用抑制载波信号的双边带调幅电路;
②双边带调幅波波形仍随调制信号变化,但其包络线已不再反映原调制信号的形状,当调制信号进入负半周时,载波信号产生180度相位突变;
③双边带调幅波同样是实现频谱搬移,但频谱图上没有出现载波分量,只有两个边带分量。
(3)单边带调幅(SSB)
傅里叶频谱分析:
由以上数据可以知:①单边带调制方式将已调波的频谱宽度基本压缩了一半,提高了频带的利用率;
②通过只发射一个边带信号,可以减小调幅波的频谱宽度,提高频带的利用率,节省发射功率;
③单边带调幅电路一般是先产生双边带调幅信号,然后通过带通滤波器滤除一个边带,从而获得信息。
四、实验总结
通过此次波形仿真实验,我更加清楚的看到了三种常用的振幅调制信号方法之间的变化与差异,而通过之间的对比,对于调制电路了一个更深刻的理解。
实验中,一开始
不会使用傅里叶频谱分析,导致只看波形有一些不具体,之后请教同学之后,便能做出三个电路的频谱分析。