2015年高新区第一次中考数学诊断试题
- 格式:doc
- 大小:990.40 KB
- 文档页数:4
2.2015年西安高新一中初中毕业升学考试模拟(二)试题(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1. -2是2的( )A. 倒数B. 相反数C. 绝对值D. 平方根2. 图①是边长为1的六个小正方形组成的图形,它可以围成图②的正方体,则图①中正方形顶点A 、B 在围成的正方体上的距离是( ) A. 0 B. 1 C. 2 D.3第2题图 第4题图3. 下列计算正确的是( )A. a2=aB. a2-b2=a -bC. a2·a 3=a6D. (-a3)2=a64. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,则∠2的度数是( )A. 32°B. 48°C. 58°D. 68°5. 不等式组⎩⎪⎨⎪⎧x +3≥52x -1<5的解集在数轴上表示为( )6. △ABC 的三边AB 、BC 、CA 的长分别为6 cm 、4 cm 、4 cm ,P 为三条角平分线的交点,则△ABP 、△BCP 、△ACP 的面积比等于( )A. 1∶1∶1B. 2∶2∶3C. 2∶3∶2D. 3∶2∶27. 点A(m2+1,n)在正比例函数y =-2x 的图象上,则( )A. n >0B. n <0C. n ≤-2D. n ≥-28. 如图,四边形ABCD 、AEFG 是正方形,点E ,G 分别在AB ,AD 上,连接BD ,若AB =4,AE =1,则点F 到BD 的距离为( ) A. 2 B. 2 C. 3 D. 322第8题图 第9题图9. 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则cosB 的值为( ) A. 32 B. 23 C. 255 D. 5310. 对于二次函数y =x2-2mx -3,有下列说法:①它的图象与x 轴有两个公共点;②若当x ≤1,时y 随x 的增大而减小,则m =1;③若将它的图象向左平移3个单位后过原点,则m =-1;④若当x =4时的函数值与x =2时的函数值相等,则当x =6时的函数值为-3.其中正确的说法有( )个A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11. 分解因式:(a2+4)2-16a2=________.12. 已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若1x2=1x1+2,且y2=y1-12,则这个反比例函数的表达式为________.13. 请从以下两个小题中选一题作答,若多选,则按第一题计分.A. 如图,边长为a的正六边形内有两个三角形(数据如图),则S阴影S空白=______.B. 如图,∠BAD=43°,∠BAC=40°,AB=50 m,求得避雷针CD的长约________m.(结果精确到0.1 m)(可用下列参考数据求:sin43°≈0.68,sin40°≈0.64,cos43°≈0.73,cos40°≈0.76,tan43°≈0.93,tan40°≈0.84)第13A题图第13B题图第14题图14. 如图,∠BAC=60°,半径长为2的⊙O 与∠BAC的两边相切,P 为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E 两点,连接DE,则△ADE面积的最大值为________.三、解答题(共11小题,计78分.解答应写出过程)15. (本题满分5分)计算:-12+(-2)2-(-12)-2-|1-tan60° |.16. (本题满分5分)解方程:xx-2-24-x2=1.17. (本题满分5分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC(不写作法,保留作图痕迹).第17题图18. (本题满分7分)在我市开展的”美丽西安,创文我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们的劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘成不完整的统计图表,如下图所示:劳动时间(时)频数(人数)频率0.5120.121300.31.5x0.4218y合计m1第18题图(1)统计表中的x=________,y=________;(2)被调查同学劳动时间的中位数是________时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.19. (本题满分5分)如图,在平行四边形ABCD中,点E,F分别是AD,BC的中点.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.第19题图20. (本题满分7分)小明想利用所学知识去测量他家所在小区路灯的高度.他用一个自制的直角三角板AOB与皮尺对路灯开始测量,首先,小明手拿自制三角板移动位置并观察,使三角板的顶点A与路灯M在一条直线上,顶点B与路灯正下方地面上一点N在一条直线上,并记录下此时他所在的位置C,再用皮尺测量出N到C的距离为2 m,小明知道自己的身高(OC)为1.6 m(眼睛到头顶的距离可忽略不计),请根据以上数据计算路灯MN的长.第20题图21. (本题满分7分)A、B两城间的公路长为450千米,甲、乙两车同时从A城出发并沿着这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是他们离A 城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x的函数解析式;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.第21题图22. (本题满分7分)某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个大小、形状完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,且第一次摸出后不放回),商场根据两个小球所标金额之和返还相应价格的购物券,可以凭购物券重新在本商场消费,某顾客消费刚好满300元,则在本次消费中:(1)该顾客至少可得________元购物券,至多可得________元购物券;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.23. (本题满分8分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.第23题图24. (本题满分10分)如图,在平面直角坐标系中,△ABC是直角三角形,且∠ABC=90°,∠ACB=30°,点B的坐标为(0,3).(1)求点A和点C的坐标;(2)求经过A、B、C三点的抛物线表达式;(3)设点M是(2)中抛物线的顶点,P、Q是抛物线上的两个点,要使△MPQ 为等边三角形,求P、Q两点的坐标.第24题图25. (本题满分12分)如图①,已知AB=8,点P为线段AB上的一个动点,分别以AP、BP 为边在同侧作正方形APDC、BPEF.(1)当AP=______时,这两个正方形面积之和的值最小,最小值为________.(2)如图②,若点M,N是线段AB上的两点,且AM=BN=1,点G、H 分别是边CD、EF的中点,点P从M到N的运动过程中,①计算GH的最小值和最大值;②如图③,若点O是线段GH的中点,求点O所经过的路径的长及OM +OB的最小值.第25题图2. 2015年西安高新一中初中毕业升学考试模拟(二)试题一、选择题1. B 【解析】如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,所以-2是2的相反数.故选B.2. B 【解析】根据展开图折叠成几何体,可得正方体.如解图,将图形折叠成正方体时,上下两个正方形是相对的面,BD和CD一定重合,点B与点C重合,故A,B之间的距离为1,故选择B.第2题解图易错警示:此类问题容易出错的地方是不能正确确定正方体中A,B 的相对位置.可以通过动手操作的方法确定其位置.注意折叠后重合的点和线段,对应好后观察两点间的位置关系,还原到平面图中进行计算.3. D 【解析】根据二次根式的性质、同底数幂的乘法法则、积的乘方以及幂的乘方的法则计算可得:选项正误逐项分析A a2=|a|≠aB a2-b2已经是最简二次根式,不能再开方C a2·a3=a2+3=a5≠a6D√(-a3)2=(-1)2·(a3)2=a3×2=a64.C 【解析】根据互余两角的性质及直尺两边互相平行解答. 如解图,设∠1的余角为∠3 ,∵直尺的对边互相平行,∴∠2=∠3=90°-∠1=90°-32°=58°.故选择C.第4题解图指点迷津:解直尺与三角板的组合图形时,要注意图形中的隐含条件:直尺的两边互相平行,三角板中的特殊角.再根据平行线的性质,可以得到角之间的关系.5. C 【解析】解不等式x+3≥5,得x≥2,解不等式2x-1<5,得x<3,在数轴上表示x≥2,应在表示2的点处用实心圆点,并在表示2的点处向右画,在数轴上表示x<3,应在表示3的点处用空心圆圈,并在表示3的点处向左画.故选C.易错警示:此类问题容易出错的地方是在表示解集时没有注意到“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示.6. D 【解析】∵P为三条角平分线的交点,∴点P到△ABC三边的距离相等,∵△ABC的三边AB,BC,CA的长分别为6 cm,4 cm,4 cm,∴△ABP,△BCP,△CAP的面积比=6∶4∶4=3∶2∶2.故选D.破题关键点:此题的突破口在“P为三条角平分线的交点”,可知所求的三个三角形的高相等,再结合三角形的三边分别为所求三个三角形的底边,利用“在高相等的情况下,三角形的面积比等于底边边长的比”进行解答即可.7. C 【解析】∵点A(m2+1,n)在正比例函数y=-2x的图象上,∴n=-2(m2+1)=-2m2-2,∵-2m2≤0,∴-2m2-2≤-2,即n≤-2.故选C.8. A 【解析】如解图,连接AC交BD于点O,连接AF,∵四边形ABCD是正方形,∴AC⊥BD,AO=12AC,∠BAC=45°,∵四边形AEFG是正方形,∴∠BAF=45°,∴点F在AC上,∵AB=4,AE=1,∴AC=AB2+BC2=42,∴AO=12AC=12×42=22,AF=14AC=2,∴FO=AO-AF=22-2=2,即点F到BD的距离为2 .故选A.第8题解图9. D 【解析】连接CD,∵AD是直径,∴∠ACD=90°,∵⊙O的半径为32,∴AD=3,∵AC=2,∴CD=32-22=5,∴cosD=CDAD=53,∵∠B=∠D,∴cosB=53.故选D.10. B 【解析】①∵b2-4ac=4m2 -4×(-3)=4m2+12>0,∴它的图象与x轴有两个交点,故①说法正确;②∵当x≤1,y随x的增大而减小,∴函数的对称轴x=--2m2在直线x=1的右侧(包括与x=1重合),即--2m2≥1,∴m≥1,故②说法错误;③将m=-1代入解析式,得y=x2+2x-3,当y=0时,得x2+2x-3=0,解得x=-3或x=1,将图象向左平移3个单位后图象不过原点,故③说法错误;④∵当x=4时的函数值与x=2的函数值相等,∴对称轴x=4+22=3,则--2m2=3,解得m=3,原函数可化为y=x2-6x-3,∴当x=6时,y=62-6×6-3=-3,故④说法正确.综上所述,正确的说法有2个.故选B.二、填空题11. (a+2)2(a-2)2 【解析】先用平方差公式,再用完全平方公式分解因式.(a2+4)2-16a2=(a2+4+4a)(a2+4-4a)=(a+2)2(a-2)2.易错警示:此类题容易出错的地方是分解因式不彻底,出现错解.12. y=-14x【解析】设这个反比例函数表达式为y=kx,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两个点,∴x1y1=k,x2y2=k,∴1x1=y1k,1x2=y2k,∵1x2=1x1+2,∴y2k=y1k+2,∴2k=y2-y1,∵y2=y1-12,∴y2-y1=-12,∴2k=-12,∴k=-14,∴这个反比例函数表达式为y=-1 4x.13. A.5 【解析】先求出两个三角形的面积,再求出正六边形的面积,求比值即可.∵三角形的斜边长为a,∴两条直角边分别为12a,32a,∴S空白=2×12×12a×32a=34a2,∵正六边形的边长为a,∴S正六边形=6×34a2=332a2,∴S阴影=332a2-34a2=534a2,∴S阴影S空白=534a234a2=5.第13A题解图一题多解:如解图,因为是正六边形,所以△OAB是边长为a的等边三角形,由图可知两个空白的面积等于△OAB的面积,所以S阴影S空白=5. (最优解)B. 4.5 【解析】在Rt△ABC和Rt△ABD中,根据三角函数可以用AB 表示出BC、BD的长,从而求出CD.在Rt△ABC中,∵tan∠CAB=BCAB,∴BC =AB·tan40°=50·tan40°,同理BD=AB·tan43°=50·tan43°,∴CD=BD-BC=50×(0.93-0.84)≈4.5(m).14. 【思路分析】连接AO并延长,交⊙O于点P,此时所得△EDA的面积最大.设⊙O与AB相切于点M,连接OM、PD、PE,由对称性得到AP 为角平分线,得到∠FAP=30°,根据切线的性质得到OM⊥AD,在Rt△AOM 中,求出AO的长,由AO+OP求出AP的长,即为⊙P的半径,易证△PAE≌△PAD,得到AD=AE,于是△EDA为等边三角形,过点P作PF⊥AD,垂足为F,利用解直角三角形和垂径定理求出等边△EDA的边长,然后用等边三角形的面积公式求解即可.273【解析】如解图,连接AO并延长,交⊙O于点P,此时所得△EDA 的面积最大. 设⊙O与AB相切于点M,连接OM、PD、PE,则OM⊥AD,由对称性可知AP为∠EAD的角平分线,∵∠BAC=60°,∴∠PAE=∠PAD=1 2∠BAC=30°,在Rt△AOM中,OM=2,∠OAM=30°,∴OA=4,∴ PA=AO+OP=6,∵PA=PA,PE=PD,∠PAE=∠PAB,∴△PAE≌△PAD,∴AD =AE,∴△EDA为等边三角形,过点P作PF⊥AD,垂足为F,则AD=2FA,在Rt△PFA中,∠PAF=30°,PA=6,∴FA=PA·cos30°=6×32=33,则AD=2FA=63,∴S△EDA=34AD2=34×(63)2=273 .第14题解图难点突破:确定出点P的位置是解决本题的关键.连接AO并延长交⊙O于点P,此时⊙P交射线AC、AB于D、E两点,得到的△ADE是等边三角形,面积最大.三、解答题15. 【思路分析】根据乘方的意义、二次根式的性质、负指数幂的性质、特殊角三角函数值、绝对值的性质将原式中的各个部分分别化简,再根据实数混合运算的法则进行解答即可.解:原式=-1+2-4-3+1,(4分)=-3-2.(5分)16. 【思路分析】先确定最简公分母,然后通过去分母,将分式方程转化为整式方程求解,最后进行验根.解:原方程可化为xx-2+2x2-4=1,去分母,得x(x +2)+2 =x2-4,(2分) 整理,得2x +2 =-4, 解得 x =-3,(4分) 经检验 x =-3是原方程的根, ∴原方程的根是x =-3.(5分)17. 【思路分析】作AB 的垂直平分线,与BC 的交点即为P.第17题解图解:如解图所示,解法提示:作法:(1)分别以A 、B 为圆心,大于12AB 的长为半径画弧,两弧交于点E 、F ,(2)作直线EF ,交BC 于点P ,则点P 就是所求的点.18. (1)【思路分析】根据劳动时间是0.5小时的频数是12,所占的频率是0.12,可求得总人数m ,然后根据频率公式即可求出x 、y 的值;解: 40;0.18.(2分)解法提示∶总人数m =12÷0.12=100, ∵频率=频数总数,∴x =100×0.4=40,y =18100=0.18.(2)【思路分析】根据中位数的定义即可求解; 解:1.5.(3分)解法提示:共有100人,∴中位数是将这组数据按从小到大顺序排列,第50和第51个数的平均数,又∵劳动时间不超过1.5小时的共有82人,而劳动时间为0.5和1小时的共有42人,∴按照从小到大的顺序排列,第50和51个同学的劳动时间都是1.5小时,∴中位数为1.5小时.(3)【思路分析】根据(1)的计算结果即可补全频数分布直方图;解:补图如解图:第18题解图(5分)(4)【思路分析】利用加权平均数公式可求解.解:被调查同学的平均劳动时间是:12×0.5+30×1+40×1.5+18×2100=1.32(小时).(7分)易错警示:关于频数、频率的问题,在利用“频率=频数总数”这个公式的过程中,弄错了分子和分母.19. (1)【思路分析】根据平行四边形的性质和中点性质,可证AE=CF,∠BAE=∠DCF,AB=CD,故根据SAS可证△ABE≌△CDF;证明:在ABCD中,AB=CD,AD=BC,又∵点E、F分别是AD、BC的中点,∴ AE=CF,(2分)∵∠BAE=∠DCF,∴△ABE≌△CDF.(3分)(2)【思路分析】由(1)可证BE=DF,由已知得DE=BF,利用“两组对边分别对应相等的四边形是平行四边形”即可证明四边形BFDE是平行四边形.证明:∵△ABE≌△CDF,∴BE=DF,又∵点E、F分别是AD、BC的中点,∴DE=BF,(4分)∴四边形BFDE是平行四边形.(5分)备考指导:平行四边形的判定方法:(1)(定义法)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.20. 【思路分析】利用勾股定理求出ON2,再求出△MON∽△NCO,然后根据相似三角形对应边成比例,列式求解即可.解:由勾股定理得ON2=OC2+CN2=1.62+22=6.56,(1分)∵OC⊥CN,MN⊥CN,∴OC∥MN,∴∠MNO=∠NOC,(3分)∵∠MON=∠OCN=90°,∴△MON∽△NCO,(4分)∴OCON=ONMN,(5分)∴MN=ON2OC=6.561.6=4.1(m).(6分)答:路灯高度MN为4.1 m.(7分)21. (1)【题图分析】设出一次函数解析式,代入图象上的两个点的坐标,即可解答;解:设甲车返回过程中y与x之间的函数关系式为y=kx+b,∵图象过(5,450),(10,0),∴⎩⎪⎨⎪⎧5k +b =45010k +b =0, 解得⎩⎪⎨⎪⎧k =-90b =900,(3分)∴y =-90x +900;(4分)(2)【题图分析】把x =6代入(1)中的函数解析式,求得路程,进一步求得速度即可解答.解:当x =6时,y =-90×6+900=360, 乙车的速度为:360÷6=60(千米/时).(6分) 答:乙车的速度为60千米/时.(7分)22. (1)【思路分析】如果摸到0元和10元的时候,得到的购物券最少,一共是10元;如果摸到30元和50元的时候,得到的购物券最多,一共是80元;解:10;80.(2分)(2)【思路分析】通过列表或画树状图列出所有等可能的结果,并得出购物券金额不低于50元的的结果数,然后根据概率公式即可求得.解:画出树状图:第22题解图(4分) 或列表:第一次第二次 0 10 30 50 0—103050—1010——4060303040——8050506080——(4分)可以看出,共有12种可能结果,其中不低于50元的情况共有6种可能结果,因此P(不低于50元)=612=12.(7分)备考指导∶我们解决摸球问题时,一定要分清是放回取样还是不放回取样的.对于放回取样每次摸球互不影响,所以等可能的结果不受影响;而不放回取样,每次摸球对下一次都有影响,所以等可能结果也受影响.这是放回取样和不放回取样的最大区别.23. (1)【思路分析】连接OC,利用切线的性质得到OC垂直于CM,可得∠ACM+∠ACO=90°.再利用直径所对的圆周角为直角可得∠ACB=90°,可得∠ABC+∠BAC=90°.再根据半径相等得到∠BAC=∠ACO,进而得到∠ACM=∠ABC;第23题解图证明:连接OC,如解图,∵ AB为⊙O的直径,∴∠ACB = 90°,∴∠ABC +∠BAC = 90°,又∵ CM是⊙O的切线,∴ OC⊥CM,∴∠ACM +∠ACO = 90°,(2分)∵ CO = AO,∴∠BAC =∠ACO,∴∠ACM =∠ABC,(4分)(2)【思路分析】由条件可得OC=12AD,故可求得AD的长,进而可得AE的长,利用△AEC和△ACD相似求得AC的值,从而解出△ACE的外接圆半径.解:∵ BC=12BD,OB=12AB,∠OBC=∠ABD,∴△OBC∽△ABD,∴∠OCB=∠ADB且OC=12AD,∴ OC∥AD,又∵ OC⊥CE,∴ AD⊥CE,∴△AEC是直角三角形,∴△AEC的外接圆的直径为AC,又∵∠ABC +∠BAC = 90°,∠ACM +∠ECD = 90°,而∠ABC =∠ACM ,∴∠BAC =∠ECD,(6分)又∵∠CED =∠ACB = 90°,∴△ABC∽△CDE,∴ABCD=BCED,又∵⊙O的半径为3,∴ AB = 6,∴6CD=BC2∴BC2 = 12,∴ BC=23 ,在Rt△ABC中,∴ AC =36-12=26,∴△AEC的外接圆的半径为6.(8分)24. (1)【思路分析】根据点B的坐标求出OB的长,再解Rt△BCO和Rt△ABC,求出OA、OC的长,即得点A和点C的坐标;解:∵点B的坐标为(0,3),∴OB=3,∵∠ABC=90°,∠ACB=30°,∴BC=6,∠BAC=60°,∴OC=62-32=33,OA=OBtan60°=33=3,∴点A(-3,0),点C(33,0);(3分)(2)【思路分析】根据点A、C是抛物线与x轴的交点,可设抛物线的解析式为交点式,代入点B的坐标可求出未知系数,即得抛物线的解析式;解:设经过A、B、C三点的抛物线的解析式为y=a(x+3)(x-33),把点B(0,3)代入,得a(0+3)(0-33)=3,解得a =-13, ∴y =-13(x +3)(x -33),即y =-13x2+233x +3.(6分) (3)【思路分析】连接PQ ,交y 轴于点D ,过点M 作MN ⊥PQ ,垂足为N ,根据抛物线的解析式,易求点M 的坐标,设PD =n ,可得点P 的坐标为(-n ,1-3n ),把点P 的坐标代入抛物线的解析式,即可得到点P 的坐标,根据对称性可得点Q 的坐标.第24题解图解:如解图,PQ 交y 轴于点D ,过点M 作MN ⊥PQ ,垂足为N , 由(2)可得点M 的坐标为(3,4),设PD =n ,则PN =n +3,∵△MPQ 是等边三角形,∴∠MPQ =60°,∴MN =3n +3,∴点N 的坐标为(3,1- 3n),∴点P 的坐标为(-n ,1-3n ),(8分)代入抛物线的解析式,得1-3n =-13(-n)2-233n +3, 整理得n2-3n -6=0,解得n =23或n =-3 (舍去),∴点P 的坐标为(-23,-5),又∵点P 与点Q 关于MN 对称,∴点Q的坐标为(43,-5),∴P(-23,-5),Q(43,-5)或P(43,-5),Q(-23,-5).(10分)破题关键点:表示出点P(或Q)的坐标是解答本题的关键.本题中点P(或Q)是等边三角形的一个顶点,结合抛物线的顶点坐标,可以把点P(或Q)的坐标表示出来,进而求解.因此解答二次函数与几何图形相结合的试题时,一定要抓住二次函数图象一些特殊点的坐标,以及它们与几何图形之间的关系.25. (1)【思路分析】设AP=x,则PB=8-x,根据正方形的面积公式得到两个正方形的面积之和S=x2+(8-x)2,然后根据二次函数的最值求解.解:4;32.(2分)解法提示:设AP=x,则PB=8-x,则S=x2+(8-x)2=2(x-4)2+32,所以,当x=4时,两个面积之和的最小值为32.(2)①【思路分析】过点H作HR⊥AB于R,延长CD交HR于点Q,设AP=x,则可得GQ=4,HQ=8-2x,利用勾股定理可得GH2=(8-2x)2+16,根据二次函数的最值求解.第25题解图①解:如解图①,过点H作HR⊥AB于R,延长CD交HR于点Q,设AP=x,∴GQ=8-12AP-12BP=8-12(AP+BP)=4,HQ=HR-QR=8-x-x=8-2x,∵∠GQH=90°,∴GH2=GQ2+HQ2=42+(8-2x)2=4x2-32x+80=4(x-4)2+16,∴GH2的最小值为16,即GH的最小值为4,(4分)∵AM=BN=1,∴1≤x≤7,∵二次函数GH2=4(x-4)2+16 的对称轴为x=4,∴GH2的最大值52,即GH的最大值为213.故GH的最大值为213,最小值为4.(6分)(2)②【思路分析】由于GH的中点移动的距离正好是一条线段,抓住始末位置利用三角形中位线的性质得到点O所经过的路径长,应用对称知识求得OM+OB的最小值.第25题解图②解:如解图②,作GG′⊥AB,HH′⊥AB,OO′⊥AB,垂足分别为G′,H′,O′;则OO′=12( GG′+ HH′)=12(AP+ PB)=12AB=4,∴点P从M到N的运动过程中,GH的中点O到AB的距离总等于4,∴点O运动的路径是一条线段.(8分)如解图③,点O、G、H的开始位置分别记为O1、G1、H1,结束位置记为O2、G2、H2.连接H2 O1并延长交G1 G2于点I.图③图④第25题解图∵∠G1 O1 I=∠H1 O1 H2,O1 H1 = O1G1 ,∠H2 H1 O1 =∠I G1 O1,∴△H1 H2 O1 ≌△G1IO1,∴G1 I= H1 H2,∴移动的距离为O1O2=12(G1G2-G1 I)=12(G1G2-H1H2)=12×(7-1)=3,∴GH的中点O所经过的路径长为3;(10分)过点O作OQ∥EF,则OQ为点O的运动路径所在线段,作点B关于OQ 的对称点B′,连接OM、OB、OB′、MB′,如解图④.则OM+OB=OM+OB′≥MB′=MB2+BB′2=72+82=113.即OM+OB的最小值为113.(12分)易错警示:在(2)①中,求GH的最大值和最小值时,设AP=x,要注意x的取值范围,只有在自变量的取值范围内,GH才能取得最大值.备考指导:在求线段的最短问题是要注意最短的几种情况;垂线段最短;两点之间线段最短;以及运用对称解决两线段之和的最短这几种模式.求线段和的最小值问题常常用到轴对称的知识,把两条线段的和转化为两点之间的距离来解决.具有鲜明相互关联变量关系的几何最值问题,一般构造出变量间的二次函数,用二次函数求出最值.。
第5题图第2题图 第8题图九年级数学试题一、选择题 (本题共12小题,共36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列计算中,正确的是( ).A .2a +3b =5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 22.已知实数a b 、在数轴上对应的点如图所示,则下列式子正确的是( ).A .0ab >B .a b >C .0a b ->D .0a b +>3.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大, 多么大的经济总量,除以13亿,都会变得很小.”如果每人每天浪费0.01 千克粮食,我国13亿人每天就浪费粮食( ).A .1.3×105 千克 B. 1.3×106千克 C. 1.3×107千克 D. 1.3×108千克4.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子 长为1.1m ,那么小刚举起的手臂超出头顶( ). A .0.5m B .0.55m C .0.6m D .2.2m5.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角 形ABC 的边长为( ).ABC.D.6.某种品牌的同一种洗衣粉有A B C 、、三种袋装包装,每袋分别装有400克、300克、200克洗衣粉,售价分别为3.5元、2.8元、1.9元.A B C 、、三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A B C 、、三种包装的洗衣粉各1200千克,获得利润最大的是( ).A .A 种包装的洗衣粉B .B 种包装的洗衣粉C .C 种包装的洗衣粉D .三种包装的都相同7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( ). A .15 B .29 C .14 D .5188.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2. A..6第12题图第10题图第9题图C..129.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相 应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是( ).A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩ C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 10.古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳 节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人, 每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8 人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长) 相等.设每人向后挪动的距离为x ,根据题意,可列方程( ).A .2π(6010)2π(6010)68x +++= B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯ 11.下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不等实数根;④ 若240b ac ->,则二次函数的图象与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④. 12.能分别是( ).A .y = k x ,y =kx 2-xB .y = kx,y =kx 2+x C .y = - k x ,y=kx 2+x D .y = - kx,y =-kx 2-x 二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.函数y =x 的取值范围是 .14.如图,∠1的正切值等于__________.15.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在第14题图第15题图第16题图x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A′ 的 位置.若OBtan ∠BOC =12,则点A′ 的坐标为_________. 16.如图,从P 点引⊙O 的两切线PA 、PB ,A 、B 为切点,已知⊙O 的半径 为2,∠P =60°,则图中阴影部分的面积为 .17.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).三、解答题(本大题共7题,共69分.解答应写出文说明、证明过程或推演步骤.) 18.(8分)网瘾低龄化问题已引起社 会各界的高度关注,有关部门在 全国范围内对12~35岁的网瘾人 群进行了抽样调查.下图是用来 表示在调查的样本中不同年龄段 的网瘾人数的,其中30~35岁的 网瘾人数占样本总人数的20%. (1)被抽样调查的样本总人数为_________人;(2)请把统计图中缺失的数据、图形补充完整;(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~ 17岁的网瘾人数约为多少人?19.(8分)如图,梯形ABCD 内接于⊙O ,BC ∥AD ,AC 与BD 相交 于点E ,在不添加任何辅助线的情况下:(1)图中共有几对全等三角形,请把它们一一写出来,并选择其中一 对全等三角形进行证明.(2)若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形.第1个图第2个图第3个图… 第17题图20.(10分)在数学学习中,及时对知识进行归纳和整理是改善学习的重要 方法.善于学习的小明在学习了一次方程(组)、 一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;②;③ ;④ ;(2)如果点C的坐标为(13),,那么不等式11kx b k x b ++≥的解集是 . 21.(10分)在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000 m 2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30 m 2或乙种板材20 m 2.问:应分别安排多少人生产甲种板材和乙 种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间 问:这400间板房最多能安置多少灾民?一次函数与方程的关系 一次函数与不等式的关系1 第20题图第22题图22.(10分)如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对 角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交 BC AD ,于点E F ,. (1)证明:当旋转角为90时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.23.(11分)随着风筝城潍坊近几年城市建设的快速发展,对花木的需求量 逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预 测,种植树木的利润1y 与投资量x 成正比例关系,如图①所示;种植花 卉的利润2y 与投资量x 成二次函数关系,如图②所示(注:利润与投资 量的单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?24.(12分)如图,在Rt △ABC 中,∠A =90º,AB =6,AC =8,D ,E 分 别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 图① 图②九年级数学试题答案一、选择题1.D 2. C 3. C 4. A 5. C 6. B 7. B 8. A 9. D 10. A 11. B 12. B 二、填空题 13.2x ≥ 14. 13 15. 34(,)55- 16.-43π 17 . 3n +1 三、解答题19.解:(1)图中共有三对全等三角形:①△ADB ≌△DAC ②△ABE ≌△DCE ③△ABC ≌△DCB ······················ 3分选择①△ADB ≌△DAC 证明在⊙O 中,∠ABD =∠DCA ,∠BCA =∠BDA∵BC ∥AD ∴∠BCA =∠CAD ∴∠CAD =∠BDA 又∵AD AD =∴△ADB ≌△DAC ······ 5分 (2)图中与△ABE 相似的三角形有: △DCE ,△DBA , △ACD . · 8分20.解:(1)①0kx b +=;②11y kx by k x b =+⎧⎨=+⎩;③0kx b +>;④0kx b +<.(2)1x ≤.21.解:(1)设安排x 人生产甲种板材,则生产乙种板材的人数为(140)x -人.由题意,得24000120003020(140)x x =-, ····························································· (2分) 解得:80x =.经检验,80x =是方程的根,且符合题意. ····························· (3分)答:应安排80人生产甲种板材,60人生产乙种板材. ····································· (4分) (2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.···················································· (6分)解得300m ≥. ······················································································· (7分) 又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ························ (8分)∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名. ················································ (10分) 22.(本题满分10分)(1)证明:当90AOF ∠=时,AB EF ∥,又AF BE ∥,∴四边形ABEF 为平行四边形. ······································································· 3分 (2)证明:四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△.AF EC ∴= ·································································································· 5分 (3)四边形BEDF 可以是菱形. ······································································ 6分 理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =, EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形. ·················· 7分 在Rt ABC △中,2AC ==,1OA AB ∴==,又AB AC ⊥,45AOB ∴∠=,-------8分,45AOF ∴∠=,AC ∴绕点O 顺时针旋转45时,四边形BEDF 为菱形. ···································· 10分 23.(1)设1y =kx ,由图12-①所示,函数1y =kx 的图像过(1,2),所以2=1⋅k ,2=k 故利润1y 关于投资量x 的函数关系式是1y =x 2;因为该抛物线的顶点是原点,所以设2y =2ax ,由图12-②所示,函数2y =2ax 的图像过 (2,2),所以222⋅=a ,21=a ABCD OF E故利润2y 关于投资量x 的函数关系式是221x y =…………………………4分 (2)设这位专业户投入种植花卉x 万元(80≤≤x ),则投入种植树木(x -8)万元,他获得的利润是z 万元,根据题意,得z =)8(2x -+221x =162212+-x x =14)2(212+-x …………………6分当2=x 时,z 的最小值是14 ……………………………………………8分 因为80≤≤x ,所以622≤-≤-x所以36)2(2≤-x ,所以18)2(212≤-x所以32141814)2(212=+≤+-x ,即32≤z ,此时8=x当8=x 时,z 的最大值是32; ………………………………………11分 24. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.…………………3分(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.…………………………6分(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=, 1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA==,AB CD ER PM 2 1 A HQA BCD E R PHQ366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.…………………12分。
九年级数学试卷 第1页(共 10 页)2015年中考第一次模拟考试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算231⎪⎭⎫⎝⎛-•a a 的结果是( ▲ )A .aB .5aC .6aD .4a 2.下列无理数中,在-1与2之间的是( ▲ )A .3-B .2-C .2D .53.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ▲ )A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶95.一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .326.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ▲ ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) ab(第3题) B九年级数学试卷 第2页(共 10 页)7.3-的倒数是 ▲ ;3-的相反数是▲.8.分解因式:29x y y -= ▲ ;计算:=-+⎪⎭⎫⎝⎛--12313312▲ .9.2015年3月1日傅家边梅花节在南京溧水区举办,截止4月1日约有53000名游客前来欣赏梅花.将53000用科学计数法表示为 ▲ . 10.使式子1+x +1有意义的x 的取值范围是 ▲ .11.2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 12.反比例函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 ▲ . 13.圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度.14.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o∠,则BAD ∠的度数为 ▲ °.15.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和为 ▲ cm .16.现有一张边长大于4cm 的正方形纸片,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间一块阴影部分的面积为 ▲ cm 2. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)化简232224a a a a a a ⎛⎫-÷⎪+--⎝⎭ 19.(8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .(第15题)(第14题)(第16题)九年级数学试卷 第3页(共 10 页)(1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.20.(8分)某鞋店有A 、B 、C 、D 四款运动鞋,元旦期间搞“买一送一”促销活动,求下列事件的概率:(1)小明确定购买A 款运动鞋,再从其余三款鞋中随机选取一款,恰好选中C 款; (2)随机选取两款不同的运动鞋,恰好选中A 、C 两款.21.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段 (小时/周)小丽抽样 人数小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.(8分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .ABC ADEF(第19题)九年级数学试卷 第4页(共 10 页)(1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)如图所示,某工人师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m .求裁剪后剩下的阴影部分的面积.24.(8分)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1). (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q 22,4(y a +)在抛物线上,试判断y 1与y 2的大小.(写出判断的理由)25.(8分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲汽车从B 地乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙ABO(第22题)18º九年级数学试卷 第5页(共 10 页)两车到A 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:(1)请在图①中标出 A 地的位置,并作简要的文字说明; (2)求图②中M 点的坐标,并解释该点的实际意义. (3)在图②中补全甲车的函数图象,求y 1与x 的函数关系式.26.(9分)已知,Rt △ABC 中,∠C =90°,AC =4, BC =3.以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D .(1)如图1,若⊙O 与AB 相切于点E ,求⊙O 的半径; (2)如图2,若⊙O 与AB 相交,且在AB 边上截得的弦FG=5,求⊙O 的半径.27.(11分)问题提出y (千米)x (时)乙甲图②图①B图1图2九年级数学试卷 第6页(共 10 页)把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢? 初步认识如图(1),四边形ABCD 中,延长BC 到M ,则边AB 、CD 分别在直线BM 的两旁,所以四边形ABCD 就是一个凹四边形.请你画一个凹五边形.(不要说明)性质探究请你完成凹四边形一个性质的证明:如图(2),在凹四边形ABCD 中,求证:∠BCD =∠A +∠B +∠D . 类比学习我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 是平行四边形.当四边形ABCD 满足一定条件时,四边形EFGH 还可能是矩形、菱形或正方形.如图(4),在凹四边形ABCD 中,AB =AD ,CB =CD ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请判断四边形EFGH 的形状,并证明你的结论. 拓展延伸如图(5),在凹四边形ABCD 的边上求作一点P ,使得∠BPD =∠A +∠B +∠D .(不写作法、证明,保留作图痕迹)A BCMD(图1)A BCD(图2)A BCDEFG H(图3)(图4)EABC DFGH ABCD(图5)九年级数学试卷 第7页(共 10 页)2014~2015学年度第一次调研测试数学答案一、选择题(本大题共有6小题,每小题2分,共计12分.)1.A 2. C 3.C 4.B 5.D 6.A 二、填空题(本大题共10小题,每小题2分,共计20分.)7.31-,3 8.()()33-+x x y ,39- ; 9.5.3×104 ; 10.x ≥-1 ; 11.2,2; 12.k >1 ; 13.216; 14.65; 15.18 ; 16.8.三、解答题(本大题共11小题,共计88分.)17.解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6. …………………………………6分 18.解法1:原式=()()()()22222223-+÷⎪⎭⎫⎝⎛-+-+-a a a a a a a a a ………………2分 =()()()()aa a a a aa 22222822-+⨯-+-……………………………4分 = 4-a ………………………………………………………6分解法2:原式=()()222223-+÷⎪⎭⎫⎝⎛--+a a a a a a a ………………1分 =()()a a a a a a a222223-+⨯⎪⎭⎫⎝⎛--+………………2分 =()()221223+--a a …………………………4分 = 4-a ……………………………………………6分19.证明:(1)在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF . ………………………………………4分 (2)解法1:∵□ABCD 中,∴AD ∥BC ,AD =BC∵△ABE ≌△CDF . ∴AE =CF九年级数学试卷 第8页(共 10 页)∴DE =BF ,DE ∥BF∴四边形DFBE 是平行四边形…………………………………………6分 ∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°.………7分 ∴四边形DFBE 是矩形. …………………………………………8分解法2:∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°. ………5分∵AB =DB ,AB =CD ,∴DB =CD .∵DF 平分∠CDB ,∴DF ⊥BC ,即∠BFD =90°.……………………6分 在□ABCD 中,∵AD ∥BC ,∴∠EDF +∠DEB =180°.∴∠EDF =90°. ………………………………………………………7分 ∴四边形DFBE 是矩形. …………………………………………8分20. (1)因为选种B 、C 、D 三款运动鞋是等可能,所以选中C 款的概率是31…3分 (2)画树状图或列表正确……………………………………………………………6分 (只有部分正确给4分)因为选中(A B )、(A C )、(A D )、(B C )、(B D )、(C D )是等可能所以选中是(A C )的概率是61…………………………………………8分 21. (1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.……3分(2)直方图正确. …………………………………………………………………5分 (4)该校全体初二学生中有80名同学应适当减少上网的时间 …………………8分 22.解:(1)过点A 作地面的垂线,垂足为C .…………………………1分在Rt △ABC 中,∠ABC =18°,∴AC =AB ·sin ∠ABC …………………………2分=6·sin18°≈6×0.31≈1.9. ………………………3分答:另一端A 离地面的距离约为1.9 m . …………4分 (2)画图正确;画法各1分…………………………6分画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则⌒AD 就是端点A 运动的路线.端点A 运动路线的长为2×18×π×3180=3π5(m ).(公式正确1分)答:端点A 运动路线的长为3π5m .……………8分 23.解:设大正方形的边长x m ,则小正方形的边长为(x -1)m .……1分 根据题意得:x (2x -1)=15………………………………………………4分 解得:x 1=3,x 2=25(不合题意舍去) ……………………6分 小正方形的边长为(x -1)=3-1=2 ……………………7分裁剪后剩下的阴影部分的面积=15-22-32=2(m 2)答:裁剪后剩下的阴影部分的面积2m 2…………………………………8分 24.解:(1)根据题意,得8+2b +c =1且c =1,解得b =-4,所以该二次函数的表达式是y =2x 2-4x +1. …………2分AB O 18º C九年级数学试卷 第9页(共 10 页)将y =2x 2-4x +1配方得y =2(x -1)2 -1, ………………………3分 所以该二次函数图象的顶点坐标为(1,-1), ………………4分 对称轴为过点(1,-1)平行于y 轴的直线; ………………………5分 (或:对称轴为直线x=1)(2)∵4+a 2>3+a 2>1,……………………………………………………………6分∴P 、Q 都在对称轴的右边,………………………………………………7分 又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2(如直接代入计算出y 1与y 2,并比较大小正确参照给分)……8分 25.解: ⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………… 2分(图大致正确1分,文字说明1分) ⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) …………………3分 所以点 M 表示乙车 1.2 小时到达 A 地.… 4分 ⑶甲车的函数图象如图所示. ………… 6分当01x ≤≤时,16060y x =-+;…………7分当1 2.5x <≤时,16060y x =-. …………8分26.解:(1)连接OE ,因为⊙O 与AB 相切于点E ,所以OE ⊥AB设OE =x ,则CO =x ,AO =4-x 由Rt △AO E ∽Rt △ABC ,得ABAOBC OE =∴543x x -=,解得:x =23 ∴⊙O 的半径为23………………………………4分(2)过点O 作OH ⊥AB ,垂足为点H ,……………5分则H 为FG 的中点,FH=21FG =531……6分连接OF ,设OF =x ,则OA =4-x 由Rt △AOH ∽Rt △ABC 可得OH =5312x- 在Rt △OHF 中,据勾股定理得:OF 2=FH ∴x 2=(531)2+(5312x -)2……………8解得 x 1=74, x 2=254- (舍去) 图2 图1E九年级数学试卷 第10页(共 10 页)∴⊙O 的半径为74.…………………9分 27.答:初步认识:如图(图形正确即可…………………1分 性质探究:延长BC 交AD 于点E ∵∠BCD 是△CDE 的外角∴∠BCD =∠CED +∠D ……………………………………2分 同理,∠CED 是△ABE 的外角∴∠CED =∠A +∠B ………………………………………3分 ∴∠BCD =∠A +∠B +∠D …………………………………4分 (说明:连接AC ,利用外角来说明也可) 类比学习:证明:四边形EFGH 是矩形………………………………5分 连接AC ,BD ,交EH 于点M∵E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点 ∴EF =HG =AC 21,E F ∥HG ∥AC ∴四边形EFGH 是平行四边形,…………………………6分 ∵AB=AD ,BC=DC ,∴A 、C 在BD 的垂直平分线上,∴AM ⊥EH ,………………………………………………7分 已证E F ∥AC ,同理可证FG ∥BD ,∴∠EFG =90°∴□EFGH 是矩形 ………………………………………8分证明二:∵AB =AD ,CB =CD ,∴∠ABD =∠ADB ,∠CBD =∠∴∠ABC =∠ADC ,∴△ABC ≌△ADC 。
九年级数学试题 A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题 (每小题3分,共30分) 1、4的算术平方根是( )A .4B .2C .2±D .4± 2、下面四个几何体中,俯视图为四边形的是( )3、钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为( ) A .44×105 B .0.44×105 C .4.4×106 D .4.4×1054、下列运算中正确的是( )A .3a -a =3B .a 2 + a 3 = a 5C .(—2a )3 = —6a 3D .ab 2÷a = b 2 5、等腰三角形的一条边长为6,另一边长为13,则它的周长为( ) A .25 B .25或32 C .32 D .19 6、函数1-=x y 自变量x 取值范围是( )A. 1>xB.1x ≥C.1-≥xD.1≤x 7、如图,已知OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是( )A .2B .2C .3D .328、如图,菱形ABCD 的两条对角线相交于O ,若AC=6,BD=4,则菱形ABCD 的周长是( ) A .24 B .16 C .134 D .329、已知二次函数1)3(2+-=x y .下列说法:①其图象的开口向下;②其图象的对称轴为直线3=x ;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A.1个B.2个C.3个D.4个AB CD第7题图 第8题图第10题图10、如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y=x 的图象被⊙P 截得的弦AB 的长为24,则a 的值是( )A .4B .23+C .23D .33+第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共16分) 11、不等式423>-x 的解集是__________.12、如图,直线l 1∥l 2∥l 3,点A 、B 、C 分别在直线l 1、l 2、l 3上.若∠1=70°,∠2=50°,则∠ABC = 度13、如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sinB 的值为________14、如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于_______ 三、解答题:(本大题共6个小题,共54分) 15、(本小题满分12分,每小题6分) (1)计算:1845sin 6)2(2022-+--- (2)解不等式组⎩⎨⎧+<+>-②① .,7)2(2513x x x16、(本小题满分6分) 先化简,再求值:2)441(2-÷-+a aa ,其中5=a17、(本小题满分8分)如图,山顶有一铁塔AB 的高度为20米,为测量山的高度BC ,在山脚点D 处测得塔顶A 和塔基B 的仰角分别为60º和45º,求山的高度BC.(结果保留根号)第12题图第14题图C B A 图2第13题图yxODCBA18、(本小题满分8分)我市某中学艺术节期间,向学校学生征集书画作品。
2015年辽宁省大连市高新区中考数学一模试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)2的倒数是()A.2B.﹣2C.D.﹣2.(3分)如图,直线a∥b,直线a、b被直线c所截,∠1=40°,则∠2的度数为()A.40°B.80°C.140°D.160°3.(3分)为促进义务教育办学条件均衡,某市投入260万元资金为部分学校添置实验仪器,260万用科学记数法表示为()A.260×103B.26×105C.2.6×105D.2.6×106 4.(3分)下列计算正确的是()A.a2+a2=a4B.(2a2)3=6a6C.a8÷a2=a4D.a3•a4=a7 5.(3分)在平面直角坐标系中,点A(﹣2,3)关于x轴对称的对称点B的坐标为()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)6.(3分)不等式组的解集为()A.x≥2B.x<3C.2≤x<3D.x>37.(3分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.8.(3分)一个圆锥的主视图为等边三角形,将这个圆锥沿着一条母线剪开,所得侧面展开图的圆心角度数为()A.60°B.90°C.120°D.180°二、填空题(共8小题,每小题3分,满分24分)9.(3分)分解因式:m2﹣9=.10.(3分)函数y=﹣(x+1)2+5的最大值为.11.(3分)如图,A、B、C三点在圆O上,且OB⊥OC,则∠A的度数是.12.(3分)如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=cm.13.(3分)如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD于点E,则△CDE的周长为.14.(3分)某校数学兴趣小组同学的年龄情况如表:则这个小组同学的平均年龄为岁.15.(3分)小明在距电势塔塔底水平距离58米处,看塔顶的仰角为20°(不考虑小明的身高因素),则此塔高约为米(精确到1米).(参考数据:sin20°≈0.3,sin70°≈0.9,tan20°≈0.4,tan70°≈2.7)16.(3分)反比例反数y=(x>0)的图象如图所示,点B在图象上,连接OB并延长到点A,使AB=OB,过点A作AC∥y轴交y=(x>0)的图象=3,则k=.于点C,连接BC、OC,S△BOC三、解答题(本题共9小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算:(2﹣)2+﹣()﹣1.18.(9分)解分式方程:.19.(9分)如图,在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,BE∥DF,AD∥BC.求证:AD=BC.20.(12分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(9分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?22.(9分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止,两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为km/h,t=;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.23.(10分)如图,D为圆O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)图中∠ADB=°,理由是;(2)判断直线CD与圆O的位置关系,并证明;(3)过点B作圆O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求线段BE的长.24.(11分)如图,在矩形ABCD中,AB=2,BC=6,将该矩形沿对角线BD 翻折,C的对应点为G,使△DBG与△DBC在同一平面内,BG交AD于点E,在DA延长线上取点F,使AE=AF,连接BF.(1)△BEF的形状为;(直接写出答案)(2)求线段EG的长;(3)将△BAF沿射线BD方向以每秒2个单位的速度平移,当点B到达点D时停止平移.设平移的时间为t秒,在平移过程中,△BAF与△BDG重叠部分的面积为S,求S与t的函数关系式并直接写出t的取值范围.25.(12分)已知:抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D,抛物线的对称轴交x轴于点E.(1)顶点D的坐标为(用含a的式子表示);(2)连接AC、CD、AD、BC,求△ACD与△ABC的面积之比;(3)若点C(0,﹣3),点M为抛物线上的点,过M作直线CD的垂线,垂足为N,且使得∠CMN=∠BDE,求点M的坐标.2015年辽宁省大连市高新区中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)2的倒数是()A.2B.﹣2C.D.﹣【解答】解:∵2×=1,∴2的倒数是.故选:C.2.(3分)如图,直线a∥b,直线a、b被直线c所截,∠1=40°,则∠2的度数为()A.40°B.80°C.140°D.160°【解答】解:∵a∥b,∴∠3=∠1=40°,∴∠1=∠3=40°.故选:A.3.(3分)为促进义务教育办学条件均衡,某市投入260万元资金为部分学校添置实验仪器,260万用科学记数法表示为()A.260×103B.26×105C.2.6×105D.2.6×106【解答】解:将260万用科学记数法表示为2.6×106.故选:D.4.(3分)下列计算正确的是()A.a2+a2=a4B.(2a2)3=6a6C.a8÷a2=a4D.a3•a4=a7【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、积的乘方等于乘方的积,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.5.(3分)在平面直角坐标系中,点A(﹣2,3)关于x轴对称的对称点B的坐标为()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)【解答】解:∵点A(﹣2,3),∴关于x轴对称的对称点B的坐标为:(﹣2,﹣3).故选:B.6.(3分)不等式组的解集为()A.x≥2B.x<3C.2≤x<3D.x>3【解答】解:∵解不等式①得:x≥2,解不等式②得:x<3,∴不等式组的解集为2≤x<3,故选:C.7.(3分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.【解答】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选:B.8.(3分)一个圆锥的主视图为等边三角形,将这个圆锥沿着一条母线剪开,所得侧面展开图的圆心角度数为()A.60°B.90°C.120°D.180°【解答】解:设侧面展开图的圆心角度数为n°,等边三角形的边长为x,则母线长为x,底面圆的半径为x,根据题意得2π•x=,解得n=180,即侧面展开图的圆心角度数为180°.故选:D.二、填空题(共8小题,每小题3分,满分24分)9.(3分)分解因式:m2﹣9=(m+3)(m﹣3).【解答】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).10.(3分)函数y=﹣(x+1)2+5的最大值为5.【解答】解:∵﹣1<0,∴函数y=﹣(x+1)2+5的最大值为5.故答案为:5.11.(3分)如图,A、B、C三点在圆O上,且OB⊥OC,则∠A的度数是45°.【解答】解:∵OB⊥OC,∴∠BOC=90°,∴∠A=∠BOC=45°.故答案为:45°.12.(3分)如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=4cm.【解答】解:∵∠ACB=90°,D是AB的中点,∴AB=2CD=2×2=4cm.故答案为:4.13.(3分)如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD于点E,则△CDE的周长为6.【解答】解:∵四边形ABCD是平行四边形,AB=2,BC=4,∴AD=BC=4,CD=AB=2,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长为DE+CE+DC=DE+AE+CD=AD+CD=4+2=6,故答案为:6.14.(3分)某校数学兴趣小组同学的年龄情况如表:则这个小组同学的平均年龄为14岁.【解答】解:平均年龄为:=14岁,故答案为:14.15.(3分)小明在距电势塔塔底水平距离58米处,看塔顶的仰角为20°(不考虑小明的身高因素),则此塔高约为23米(精确到1米).(参考数据:sin20°≈0.3,sin70°≈0.9,tan20°≈0.4,tan70°≈2.7)【解答】解:在Rt△ABC中,AB=58米,∠BAC=20°,∵=tan20°,∴BC =AB tan20°=58×0.4≈23(米).故答案为:23.16.(3分)反比例反数y =(x >0)的图象如图所示,点B 在图象上,连接OB 并延长到点A ,使AB =OB ,过点A 作AC ∥y 轴交y =(x >0)的图象于点C ,连接BC 、OC ,S △BOC =3,则k = 4 .【解答】解:如图:延长AC 交x 轴于D 点,设B 点坐标为(a ,),由AB =OB ,得A (2a ,),D (2a ,0).由AB =OB ,得S △ABC =S △BOC =3,S △COD =OD •CD =k .由三角形面积的和差,得S △AOD ﹣S △COD =S △AOC , 即×2a ×﹣k =6. 解得k =4.故答案为:4.三、解答题(本题共9小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算:(2﹣)2+﹣()﹣1.【解答】解:原式=4﹣4+2+3﹣3=3﹣.18.(9分)解分式方程:.【解答】解:去分母,得3﹣2x=x﹣2,整理,得3x=5,解得x=.经检验,x=是原方程式的解.所以原方程式的解是x=.19.(9分)如图,在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,BE∥DF,AD∥BC.求证:AD=BC.【解答】证明:∵BE∥DF,AD∥BC,∴∠BEC=∠DF A,∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),∴AD=BC.20.(12分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.21.(9分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.22.(9分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止,两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为120km/h,t=;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.【解答】解:(1)轿车从甲地到乙地的速度是:=80(千米/小时),则轿车从乙地返回甲地的速度为80×1.5=120(千米/小时),则t=+=(小时).故答案是:120,;(2)设y与x的函数解析式是y=kx+b,则,解得:,则函数解析式是y=﹣120x+300;(3)设货车的解析式是y=mx,则2m=120,解得:m=60,则函数解析式是y=60x.根据题意得:,解得:,则轿车从甲地返回乙地的途中与货车相遇时,相遇处到甲地的距离是100千米.23.(10分)如图,D为圆O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)图中∠ADB=90°,理由是直径所对的圆周角是直角;(2)判断直线CD与圆O的位置关系,并证明;(3)过点B作圆O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求线段BE的长.【解答】(1)解:∵AB是⊙O的直径,∴∠ADB=90°;(2)证明:如图,连OD,OE,∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;(2)解:∵EB为⊙O的切线,∴ED=EB,OE⊥DB,∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,∴∠ABD=∠OEB,∴∠CDA=∠OEB.∵tan∠CDA=,∴tan∠OEB==,∵Rt△CDO∽Rt△CBE,∴===,∴CD=×6=4,在Rt△CBE中,设BE=x,∴(x+4)2=x2+62,解得x=.即BE的长为.24.(11分)如图,在矩形ABCD中,AB=2,BC=6,将该矩形沿对角线BD翻折,C的对应点为G,使△DBG与△DBC在同一平面内,BG交AD于点E,在DA延长线上取点F,使AE=AF,连接BF.(1)△BEF的形状为等腰三角形;(直接写出答案)(2)求线段EG的长;(3)将△BAF沿射线BD方向以每秒2个单位的速度平移,当点B到达点D时停止平移.设平移的时间为t秒,在平移过程中,△BAF与△BDG重叠部分的面积为S,求S与t的函数关系式并直接写出t的取值范围.【解答】解:(1)在△F AB和△EAB中,,∴△F AB≌△EAB(SAS),∴BE=BF,∴△BEF是等腰三角形,故答案为:等腰三角形;(2)∵矩形沿对角线BD翻折,∴△BDC≌△BDG,∴DG=DC=AB,在△EBA和△EDG中,,∴△DGE≌△EAB(AAS),∴BE=DE,AE=EG,在Rt△GED中,EG2+DG2=DE2,即,解得:EG=2;(3)①当时,△BAF沿射线BD方向的平移图如图1,∴HQ=HP=BP tan30°=,∴,②当时,△BAF沿射线BD方向的平移图如图2,∴,,,∴,③当时,△BAF沿射线BD方向的平移图如图3,∴,∴,综上所述:S与t的函数关系式为:.25.(12分)已知:抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D,抛物线的对称轴交x轴于点E.(1)顶点D的坐标为(1,﹣4a)(用含a的式子表示);(2)连接AC、CD、AD、BC,求△ACD与△ABC的面积之比;(3)若点C(0,﹣3),点M为抛物线上的点,过M作直线CD的垂线,垂足为N,且使得∠CMN=∠BDE,求点M的坐标.【解答】解:(1)∵y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴该抛物线的解析式可设为y=a(x﹣3)(x+1)=a(x﹣1)2﹣4a,∴顶点D的坐标为(1,﹣4a).故答案是:(1,﹣4a);(2)设直线AD交y轴于点H.由(1)知,该抛物线的解析式为y=a(x﹣1)2﹣4a,则C(0,﹣3a).由A(﹣1,0),D(1,﹣4a)易得直线AD的解析式为:y=﹣2ax﹣2a.则H(0,﹣2a).所以HC=a.又∵A(﹣1,0),B(3,0),∴AB=4,∴===6,即△ACD与△ABC的面积之比是1:6.(3)(i)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y 轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=b,则MN=2b.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=b,∴MF=MN+NF=3b,∴MG=FG=b,∴CG=FG﹣FC=b,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=b,∴MG=FG=b,∴CG=FG+FC=b,∴M(b,﹣3+b).代入抛物线y=(x﹣3)(x+1),解得b=5,∴M(5,12);(ii)当点M在对称轴左侧时.∵∠CMN=∠BDE<45°,∴∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,∴点M不存在.综上可知,点M坐标为(,﹣)或(5,12).第21页(共21页)。
2015年山东省威海市开发区中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)我区深入实施环境污染整治,去年排放的污水减少了256000吨,将256000用科学记数法表示为()A.2.56×104B.25.6×104C.2.56×105D.2.56×1083.(3分)下面的计算正确的是()A.3x2•4x2=12x2B.x3•x5=x15C.x4÷x=x3 D.(x5)2=x74.(3分)若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有()A.7桶 B.8桶 C.9桶 D.10桶5.(3分)如果0<m<10,并且m≤x≤10,那么,代数式|x﹣m|+|x﹣10|+|x ﹣m﹣10|化简的结果是()A.x﹣2m+20 B.x﹣2m C.x﹣20 D.20﹣x6.(3分)已知﹣=3,则分式的值为()A.B.﹣3 C.9 D.﹣7.(3分)已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为()A.2 B.﹣2 C.±2 D.±8.(3分)如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF 的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米 C.7.2米D.8米9.(3分)下列说法错误的是()A.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D.一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出的下列结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④3b=2c;其中正确的个数是()A.1个 B.2个 C.3个 D.4个11.(3分)如图,在函数y1=(x<0)和y2=(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则线段AB的长度是()A.8 B.9 C.10 D.1112.(3分)某物流公司的快递车和货车每天往返于甲、乙两地,快递车比货车多往返一趟,如图表示快递车距离甲地的路程y(km)与货车出发所用时间x(h)之间的函数关系图象.已知货车比快递车早1小时出发,到达乙地后用1小时装卸货物,然后按原路以原速返回,结果与第二趟返回的快递车同时到达甲地,则下列说法正确的个数是()①货车的速度是50km/h;②两车在中途相遇3次;③货车从乙地返回甲地时,距离甲地的路程y(km)与所用时间x(h)的函数关系为y=﹣50x+450;④快递车第2次从甲出发到与返程的货车相遇所用时间为小时.A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:﹣x+2x2﹣x3=.14.(3分)计算:()﹣1+(﹣1)2﹣=.15.(3分)已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图所示),则sinθ的值为.16.(3分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是.17.(3分)如图,点D、E在△ABC的边BC、AB上,过A、C、D三点的圆的圆心为E,过B、F、E三点的圆的圆心为D,如果∠A=57°,那么∠B=度.18.(3分)如图,在平面直角坐标系中,已知直线l:y=﹣x﹣1,双曲线y=,在直线l上取点A1,过点A1作x轴的垂线交双曲线于点B1,过点B1作y轴的垂线交直线l于点A2,过点A2作x轴的垂线交双曲线于点B2,过点B2作y轴的垂线交直线l于点A3…,这样依次得到直线l上的点A1,A2,A3,A4,…,A n,…若点A1的横坐标为2,则点A2015的坐标为.三、解答题(共7小题,满分66分)19.(7分)解不等式组,并把解集在数轴上表示出来.20.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC和△DEF的顶点均在网格的格点上,按要求画出△A1B1C1和△D1E1F1(1)以图1中的点O为位似中心,在网格内画出△A1B1C1,使它与△ABC位似,且相似比为2;(2)以图2中的点O为位似中心,在网格内画出△D1E1F1,使它与△DEF位似,且相似比为2.21.(9分)如图,轮船从港口A出发,沿着南偏西15°的方向航行了100海里到达B处,沿着北偏东75°的方向航行200海里到达了C处.(1)求证:AC⊥AB;(2)轮船沿着BC方向继续航行去往港口D处,已知港口D位于港口A的正东方向,求轮船还需航行多少海里.22.(9分)某商场只销售A,B两个品牌的电视机,在四个月中共售出400台,具体的销售情况如图1、图2.(1)第四个月,A,B两个品牌的电视机共售出了台;(2)请在图2中补全表示B品牌电视机月销售的折线图;(3)已知该商场第三个月A,B两个品牌电视机的销售额共为27.5万元,第四个月的销售额共为34万元,请求出A,B两个品牌电视机每台的售价分别是多少?23.(10分)如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点E,点E为弧CF的中点,连接BE交AC于点M,AD为△ABC的角平分线交BC于点D,且AD⊥BE,垂足为点H(1)求证:AB是⊙O的切线;(2)若AB=3,BC=4,求BE的长.24.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q与B不重合),过P作PE⊥AB于E,连接PQ交AB于D(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由;(3)在整个运动过程中,设AP为x,BD为y,求y关于x的函数关系式,并写出自变量x的取值范围.25.(12分)如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y 轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.2015年山东省威海市开发区中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、是轴对称图形,也是中心对称图形.故本选项正确.故选:D.2.(3分)我区深入实施环境污染整治,去年排放的污水减少了256000吨,将256000用科学记数法表示为()A.2.56×104B.25.6×104C.2.56×105D.2.56×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:256000=2.56×105,故选:C.3.(3分)下面的计算正确的是()A.3x2•4x2=12x2B.x3•x5=x15C.x4÷x=x3 D.(x5)2=x7【分析】根据单项式的乘法、同底数幂的乘法和除法、幂的乘方等知识点进行判断.【解答】解:A、3x2•4x2=12x4,故本选项错误;B、x3•x5=x8,故本选项错误;C、正确;D、(x5)2=x10,故本选项错误.故选:C.4.(3分)若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有()A.7桶 B.8桶 C.9桶 D.10桶【分析】根据三视图的知识,底层应有5桶方便面,第二层应有3桶,第三层有1桶,即可得出答案.【解答】解:综合三视图,这堆方便面底层应该有5桶,第二层应该有3桶,第三层应该有1桶,因此共有5+3+1=9桶.故选:C.5.(3分)如果0<m<10,并且m≤x≤10,那么,代数式|x﹣m|+|x﹣10|+|x ﹣m﹣10|化简的结果是()A.x﹣2m+20 B.x﹣2m C.x﹣20 D.20﹣x【分析】根据题意判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵0<m<10,且m≤x≤10,∴x﹣m≥0,x﹣10≤0,x﹣m﹣10<0,则原式=x﹣m﹣x+10﹣x+m+10=20﹣x,故选:D.6.(3分)已知﹣=3,则分式的值为()A.B.﹣3 C.9 D.﹣【分析】先根据题意得出x﹣y=﹣3xy,再代入原式进行计算即可.【解答】解:∵﹣=3,∴x﹣y=﹣3xy,∴原式====.故选:A.7.(3分)已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为()A.2 B.﹣2 C.±2 D.±【分析】先根据根与系数的关系得到=1,解得m=2或m=﹣2,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,∴=1,解得m=2或m=﹣2,当m=2时,方程变形为4x2+7x+4=0,△=49﹣4×4×4<0,方程没有实数解,所以m的值为﹣2.故选:B.8.(3分)如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF 的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米 C.7.2米D.8米【分析】由MC∥AB可判断△DCM∽△DAB,根据相似三角形的性质得=,同理可得=,然后解关于AB和BC的方程组即可得到AB 的长.【解答】解:∵MC∥AB,∴△DCM∽△DAB,∴=,即=①,∵NE∥AB,∴△FNE∽△FAB,∴=,即=②,∴=,解得BC=3,∴=,解得AB=6,即路灯A的高度AB为6m.故选:B.9.(3分)下列说法错误的是()A.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D.一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是【分析】根据概率的意义,可判断A;根据众数的定义、中位数的定义,可判断B;根据方差的性质,可判断C;根据频率表示概率,可判断D.【解答】解:A、李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是=,故A正确;B、一组数据6,8,7,8,8,9,10的众数和中位数都是8,故B正确;C、对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定,故C正确;D、一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是,故D错误.故选:D.10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出的下列结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④3b=2c;其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】①根据二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,据此判断即可.②根据对称轴是x=1,可得﹣=1,所以2a+b=0,据此判断即可.③根据函数的图象,可得x=﹣2时,y<0,所以4a﹣2b+c<0,据此判断即可.④首先根据x=﹣1时,y=0,可得a﹣b+c=0;然后根据2a+b=0,即可推得3b=2c.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,∴结论①正确.∵﹣=1,∴2a+b=0,∴结论②不正确.∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴结论③不正确.∵x=﹣1时,y=0,∴a﹣b+c=0,又∵2a+b=0,∴﹣+c=0,∴3b=2c,∴结论④正确.综上,可得正确的结论个数是2个:①④.故选:B.11.(3分)如图,在函数y1=(x<0)和y2=(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则线段AB的长度是()A.8 B.9 C.10 D.11【分析】根据反比例函数k的几何意义得到|k1|=,|k2|=,解得k1=﹣3,k 2=27,设C点坐标为(0,t),则A点坐标为(﹣,t),B点坐标为(,t),再证明Rt△AOC∽Rt△OBC,利用相似比得到t:=:t,解得t=3,然后计算AB=+即可.【解答】解:∵AB∥x轴,交y轴于点C,=|k1|=,S△BOC=|k2|=,∴S△AOC∴k1=﹣3,k2=27,设C点坐标为(0,t),则A点坐标为(﹣,t),B点坐标为(,t),∵OA⊥OB,∴∠AOC+∠BOC=90°,而∠AOC+∠OAC=90°,∴∠OAC=∠BOC,∴Rt△AOC∽Rt△OBC,∴OC:BC=AC:OC,即t:=:t,解得t=3,∴AB=+===10.故选:C.12.(3分)某物流公司的快递车和货车每天往返于甲、乙两地,快递车比货车多往返一趟,如图表示快递车距离甲地的路程y(km)与货车出发所用时间x(h)之间的函数关系图象.已知货车比快递车早1小时出发,到达乙地后用1小时装卸货物,然后按原路以原速返回,结果与第二趟返回的快递车同时到达甲地,则下列说法正确的个数是()①货车的速度是50km/h;②两车在中途相遇3次;③货车从乙地返回甲地时,距离甲地的路程y(km)与所用时间x(h)的函数关系为y=﹣50x+450;④快递车第2次从甲出发到与返程的货车相遇所用时间为小时.A.1个 B.2个 C.3个 D.4个【分析】求出货车从甲地开往乙地的时间,然后计算速度即可,作出函数图象,再根据图象判断出相遇的次数即可;设y=kx+b(k≠0),然后利用待定系数法求一次函数解析式解答;求出快递车第二次从甲地出发的函数解析式,在与货车的解析式联立求解得到距离乙地的距离,然后求解即可.【解答】解:①由题意得,货车从甲地到达乙地的时间为×(9﹣1)=4小时,货车的速度是200÷4=50km/h,故正确;从4小时到5小时y=200km,9小时时y=0km,作函数图象如图所示,②两车在中途相遇3次,正确;③设y=kx+b(k≠0),∵函数图象经过点(5,200),(9,0),∴,解得,∴y=﹣50x+450,正确;④设快递车第二次从甲地出发的函数解析式为y=mx+n(m≠0),则,解得,∴y=100x﹣500,联立,解得,∴﹣5=小时,快递车第二次从甲地出发到与返程货车相遇所用时间为小时,错误;故选:C.二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:﹣x+2x2﹣x3=﹣x(x﹣1)2.【分析】原式提取﹣x,再利用完全平方公式分解即可.【解答】解:原式=﹣x(x2﹣2x+1)=﹣x(x﹣1)2,故答案为:﹣x(x﹣1)214.(3分)计算:()﹣1+(﹣1)2﹣=6﹣4.【分析】根据负整式指数幂的意义和完全平方公式得到原式=2+3﹣2+1﹣2,然后合并即可.【解答】解:原式=2+3﹣2+1﹣2=6﹣4.故答案为6﹣4.15.(3分)已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图所示),则sinθ的值为.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求得圆锥的母线长.根据正弦函数定义求解.【解答】解:设圆锥的母线长为R,由题意得65π=π×5×R,解得R=13.∴sinθ=.16.(3分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是1.【分析】先利用配方法得到抛物线y=x2﹣2x的顶点坐标为(1,﹣1),则抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,然后利用阴影部分的面积等于三角形面积进行计算.【解答】解:y=x2﹣2x=(x﹣1)2﹣1,即平移后抛物线的顶点坐标为(1,﹣1),所以抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,所以对称轴与两抛物线所围成的阴影部分的面积=×1×2=1.故答案为1.17.(3分)如图,点D、E在△ABC的边BC、AB上,过A、C、D三点的圆的圆心为E,过B、F、E三点的圆的圆心为D,如果∠A=57°,那么∠B=22度.【分析】连接EC、ED,如图,设∠B=x,根据等腰三角形的性质由EA=EC得∠A=∠ACE,再根据三角形内角和定理得到∠4=180°﹣2∠A=66°,而DB=DE,则∠1=∠B=x,利用三角形外角性质得∠2=∠1+∠B=2x,再利用EC=ED得到∠3=∠2=2x,然后根据三角形外角性质得到2x+x=66°,即得x=22°.【解答】解:连接EC、ED,如图,设∠B=x,∵EA=EC,∴∠A=∠ACE,∴∠4=180°﹣2∠A=180°﹣2×57°=66°,∵DB=DE,∴∠1=∠B=x,∴∠2=∠1+∠B=2x,而EC=ED,∴∠3=∠2=2x,∵∠4=∠3+∠B,∴2x+x=66°,即得x=22°,即∠B=22°.故答案为22.18.(3分)如图,在平面直角坐标系中,已知直线l:y=﹣x﹣1,双曲线y=,在直线l上取点A1,过点A1作x轴的垂线交双曲线于点B1,过点B1作y轴的垂线交直线l于点A2,过点A2作x轴的垂线交双曲线于点B2,过点B2作y轴的垂线交直线l于点A3…,这样依次得到直线l上的点A1,A2,A3,A4,…,A n,…若点A1的横坐标为2,则点A2015的坐标为(﹣,).【分析】先利用一次函数图象上点的坐标特征得到A1(2,﹣3),由A1B1⊥x轴得到B1点的横坐标为2,则利用反比例函数图象上点的坐标特征得到B1(2,),同理依次得到A2(﹣,),B2(﹣,﹣),A3(﹣,﹣),B3(﹣,﹣3),A4(2,﹣3),则可发现点A1与点A4的坐标相同,而2015=3×671+2,于是利用规律得到点A2015的坐标为与点A2的坐标相同,即A2015(﹣,).【解答】解:当x=2时,y=﹣x﹣1=﹣3,则A1(2,﹣3),∵A1B1⊥x轴,∴B1点的横坐标为2,当x=2时,y==,则B1(2,),同理,当y=时,﹣x﹣1=,解得x=﹣,则A2(﹣,),当x=﹣时,y==﹣,则B2(﹣,﹣),当y=﹣时,﹣x﹣1=﹣,解得x=﹣则A3(﹣,﹣),当x=﹣时,y==﹣3,则B3(﹣,﹣3),当y=﹣3时,﹣x﹣1=﹣3,解得x=2,则A4(2,﹣3),而2015=3×671+2,∴点A2015的坐标为与点A2的坐标相同,即A2015(﹣,).故答案为(﹣,).三、解答题(共7小题,满分66分)19.(7分)解不等式组,并把解集在数轴上表示出来.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:,由①得:x<4,由②得:x≥3,不等式组的解集为:3≤x<4,在数轴上表示为:.20.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC和△DEF的顶点均在网格的格点上,按要求画出△A1B1C1和△D1E1F1(1)以图1中的点O为位似中心,在网格内画出△A1B1C1,使它与△ABC位似,且相似比为2;(2)以图2中的点O为位似中心,在网格内画出△D1E1F1,使它与△DEF位似,且相似比为2.【分析】(1)连结OA且延长OA到A1,使OA1=2OA,连结OB且延长OB到B1,使OB1=2OB,连结OC且延长OC到C1,使OC1=2OC,然后连结A1、B1、C1即可;(2)连结OD且反向延长OD到D1,使OD1=2OD,连结OE且反向延长OE到E1,使OE1=2OE,连结OF且反向延长OF到F1,使OF1=2OF,然后连结D1、E1、F1即可.【解答】解:(1)如图1,△1B1C1为所求;(2)如图2,△D1E1F1为所求.21.(9分)如图,轮船从港口A出发,沿着南偏西15°的方向航行了100海里到达B处,沿着北偏东75°的方向航行200海里到达了C处.(1)求证:AC⊥AB;(2)轮船沿着BC方向继续航行去往港口D处,已知港口D位于港口A的正东方向,求轮船还需航行多少海里.【分析】(1)利用方向角结合锐角三角函数关系得出AN的长,进而求出∠ACB 的度数,进而得出答案;(2)根据题意得出AC=DC,进而求出答案.【解答】(1)证明:过点A作AN⊥BC于点N,由题意可得:∠EBA=∠BAM=15°,∠EBC=75°,则∠ABC=60°,∵AB=100海里,∴BN=50海里,AN=50海里,故NC=200﹣50=150(海里),则tan∠ACN==,故∠ACF=30°,故∠BAC=90°,则AC⊥AB;(2)解:如图所示:延长BC交于一点D,∵∠BAC=90°,∠BAM=15°,∴∠DAC=15°,∵∠DAB=90°+15°=105°,∠ABC=60°,∴∠ADC=15°,∴AC=DC,∵AC==100(海里),答:轮船还需航行100海里.22.(9分)某商场只销售A,B两个品牌的电视机,在四个月中共售出400台,具体的销售情况如图1、图2.(1)第四个月,A,B两个品牌的电视机共售出了120台;(2)请在图2中补全表示B品牌电视机月销售的折线图;(3)已知该商场第三个月A,B两个品牌电视机的销售额共为27.5万元,第四个月的销售额共为34万元,请求出A,B两个品牌电视机每台的售价分别是多少?【分析】(1)先求得第四个月所占的百分比,然后400×第四个月所占的百分比即可求得第四个月的销售量;(2)先求的第三个月的销售量,然后三、四月份的销售量减去A品牌的销售量,求得B品牌的销售量,最后不全统计图即可;(3)设A品牌的单价为x万元,B品牌的单价为y元,根据销售额列出二元一次方程组求解即可.【解答】解:(1)400×(100%﹣15%﹣30%﹣25%)=400×30%=120;故答案为:120.(2)400×25%=100,100﹣50=50,120﹣40=80.不全统计图如图所示:(3)设A品牌的单价为x万元,B品牌的单价为y元.根据题意得:,解得;.答:A品牌的单价为0.25万元,B品牌的单价为0.3元.23.(10分)如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点E,点E为弧CF的中点,连接BE交AC于点M,AD为△ABC的角平分线交BC于点D,且AD⊥BE,垂足为点H(1)求证:AB是⊙O的切线;(2)若AB=3,BC=4,求BE的长.【分析】(1)连接EC,AD为△ABC的角平分线,得∠1=∠2,又AD⊥BE,可证∠3=∠4,由对顶角相等得∠4=∠5,即∠3=∠5,由E为的中点,得∠6=∠7,由BC为直径得∠E=90°,即∠5+∠6=90°,由AD∥CE可证∠2=∠6,从而有∠3+∠7=90°,得出即可;(2)在Rt△ABC中,由勾股定理可求AC=5,由∠3=∠4得AM=AB=3,则CM=AC ﹣AM=2,证得△CME∽△BCE,利用相似比可得EB=2EC,进而根据勾股定理即可求得.【解答】(1)证明:连接EC,∵AD⊥BE于H,∠1=∠2,∴∠3=∠4∵∠4=∠5,∴∠4=∠5=∠3,又∵E为的中点,∴∠6=∠7,∵BC是直径,∴∠E=90°,∴∠5+∠6=90°,又∵∠AHM=∠E=90°,∴AD∥CE,∴∠2=∠6=∠1,∴∠3+∠7=90°,又∵BC是直径,∴AB是半圆O的切线;(2)解:∵AB=3,BC=4,由(1)知,∠ABC=90°,∴AC=5在△ABM中,AD⊥BM于H,AD平分∠BAC,∴AM=AB=3,∴CM=2∵∠6=∠7,∠E为公共角,∴△CME∽△BCE,得===,∴EB=2EC.在RT△BCE中,根据勾股定理得,BE=.24.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q与B不重合),过P作PE⊥AB于E,连接PQ交AB于D(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由;(3)在整个运动过程中,设AP为x,BD为y,求y关于x的函数关系式,并写出自变量x的取值范围.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.(3)根据AP=x,BD=y,得出AE=x,得出关系式即可.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,在△APE与△BQF中,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变;(3)△APE中,∠APE=30°,AE=x,可得:,y=;自变量的取值范围为:0<x<6.25.(12分)如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y 轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.【分析】(1)利用待定系数法代入求出二次函数解析式即可;(2)利用配方法求出二次函数顶点坐标,再利用GH是△BEA的中位线.得出EA=3GH=.进而得出CF=FM+CM得出答案;(3)根据要使四边形BCPQ的周长最小,可将点C向上平移一个单位,再做关于对称轴对称的对称点C1,求出直线BC1的解析式,以及P、Q两点的坐标.【解答】解:(1)由题意得A(0,2)、B(2,2)、C(3,0).设经过A,B,C三点的抛物线的解析式为y=ax2+bx+2.则,解得,∴.(2)由=.∴顶点坐标为G(1,).过G作GH⊥AB,垂足为H.则AH=BH=1,GH=﹣2=.∵EA⊥AB,GH⊥AB,∴EA∥GH.∴GH是△BEA的中位线.∴EA=2GH=.过B作BM⊥OC,垂足为M.则MB=OA=AB.∵∠EBF=∠ABM=90°,∴∠EBA=∠FBM=90°﹣∠ABF.∴Rt△EBA≌Rt△FBM.∴FM=EA=.∵CM=OC﹣OM=3﹣2=1,∴CF=FM+CM=.(3)要使四边形BCPQ的周长最小,将B向下平移一个单位至K,取C关于对称轴对称点M.连接KM交对称轴于P,将P向上平移1个单位至Q,可使KP+PM最短.则QPKB为平行四边形,QB=PK,连接CP,轴对称求出CP=MP,则CP+BQ最小,因为CB,QP定值,则四边形BCPQ周长最短,∵将点C向上平移一个单位,坐标为(3,1),再做关于对称轴对称的对称点C1,∴得点C 1的坐标为(﹣1,1).可求出直线BC1的解析式为.直线与对称轴x=1的交点即为点Q,坐标为Q(1,).∴点P的坐标为(1,).赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-a a-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
2015年吉林省长春市中考数学一模试卷一、选择题1.(3分)﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.(3分)下列计算正确的是()A.a2+a2=a4 B.a6÷a2=a3C.a•a2=a3D.(a2)3=a53.(3分)下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥4.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1075.(3分)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件6.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°7.(3分)不等式组的解在数轴上表示为()A.B.C.D.8.(3分)下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A.1个 B.2个 C.3个 D.4个二、填空题9.(3分)分解因式:x2﹣9=.10.(3分)今年五.一假期,张老师一家四口开着一辆轿车去长春市净月潭森林公园度假.若门票每人a元,进入园区的轿车每辆收费20元,则张老师一家开车进入净月潭森林公园园区所需费用是元(用含a的代数式表示).11.(3分)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=.12.(3分)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.13.(3分)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.14.(3分)如图,等腰直角三角形ABO的斜边OB在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象恰好经过AB边的中点,若OB=4,则k 的值为.三、解答题15.(6分)先化简,再求值:,其中a=﹣1.16.(6分)五•一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.17.(6分)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.18.(7分)如图,在平行四边形ABCD中,∠C=66°,点E为AD上一点,AB=BE,求∠EBC的度数.19.(7分)如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪(精测得旗杆顶部A的仰角为40°,已知测角仪器的高CD=1.5米,求旗杆AB的高.确到0.1米)(供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)20.(6分)某大学生学生会社团部为了了解该校学生擅长乐器的情况,随机选取了n名学生进行问卷调查(要求每位学生只能填写一种自己最擅长的乐器),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面问题.(1)这次参加调查的学生人数n为;在扇形统计图中,表示“其他乐器”的扇形的圆心角为度.(2)将条形统计图补充完整.(3)若该校有2000名学生,则估计擅长“小提琴”的学生共有多少人.21.(10分)探究:如图①,△ABC是等边三角形,以点B为顶点作∠PBQ=60°,BQ交边AC于点D,过点A作AE∥BC,AE交BP于点E.求证:AD+AE=AB;应用:在图①的基础上,将∠PBQ绕着点B顺时针旋转,如图②,使BQ交AC 的延长线于点D,BP交边AC于点G.若AB=8,AE=2,则GD的长为.22.(10分)图①是小明家、学校和游泳馆之间的位置关系示意图,某天放学后,小亮和小明同时从学校出发,小亮匀速步行前往游泳馆,小明先匀速步行回家取游泳用品,然后骑自行车原路返回,沿与小亮相同的路线前往游泳馆,小明骑自行车的速度始终不变,小亮和小明各自与学校的距离s(米)与所用时间t(分)之间的函数图象的如图②所示.(1)小亮的速度为米/分,a=;(2)求小明骑自行车时s与t之间的函数关系式;(3)直接写出小明和小亮相距900米时t的值.23.(10分)如图,在平面直角坐标系中,点A时抛物线与x轴正半轴交点,点B在抛物线上,其横坐标为1,直线AB与y轴交于点C.点M、P 在线段AC上,点Q在抛物线上,且MQ平行于x轴,PQ平行于y轴.设点P 横坐标为m.(1)求直线AB所对应的函数表达式;(2)用含m的代数式表示线段PQ的长;(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.24.(10分)如图,在Rt△ABC中,∠C=90°,D为BC中点,AC=2,CD=2,若点P从点B出发,在BA上以每秒个单位的速度向点A运动(点P不与点B重合).在点P的运动过程中,过点P作PE⊥BC于点E,以PE为边向右作正方形PEFM,设点P的运动时间为t(秒).正方形PEFM与△ADB重叠部分面积为S(平方单位).(1)AB的长为;(2)当正方形PEFM有顶点落在AD上时t的值;(3)求S与t之间的函数关系式;(4)直接写出△PBE与△MFD全等时t的值.2015年吉林省长春市中考数学一模试卷参考答案与试题解析一、选择题1.(3分)﹣2的倒数是()A.2 B.﹣2 C.D.﹣【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选:D.2.(3分)下列计算正确的是()A.a2+a2=a4 B.a6÷a2=a3C.a•a2=a3D.(a2)3=a5【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、a2+a2=2a2,故本选项错误;B、a6÷a2=a4,故本选项错误;C、a•a2=a3,故本选项正确;D、(a2)3=a6,故本选项错误.故选:C.3.(3分)下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥【分析】俯视图是分别从物体上面看,所得到的图形.【解答】解:A、圆柱俯视图是圆,故此选项错误;B、长方体俯视图是矩形,故此选项正确;C、三棱柱俯视图是三角形,故此选项错误;D、圆锥俯视图是圆,故此选项错误;故选:B.4.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.5.(3分)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件【分析】随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.【解答】解:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,从中任意摸出2个球,有红黄、红白、黄白、白白4种可能,从中任意摸出2个球,它们的颜色相同可能发生,也可能不发生,所以这一事件是随机事件.故选:C.6.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.7.(3分)不等式组的解在数轴上表示为()A.B.C.D.【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【解答】解:由不等式①,得2x>2,解得x>1,由不等式②,得﹣2x≤﹣4,解得x≥2,∴数轴表示的正确是C选项,故选:C.8.(3分)下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A.1个 B.2个 C.3个 D.4个【分析】本题综合运用了一次函数,反比例函数,二次函数的增减性,需要根据这些函数的性质及自变量的取值范围,逐一判断.【解答】解:根据函数的性质可知当x<0时,y随x的增大而减小的函数有:①y=﹣x;④y=x2(x<0).故选:B.二、填空题9.(3分)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).10.(3分)今年五.一假期,张老师一家四口开着一辆轿车去长春市净月潭森林公园度假.若门票每人a元,进入园区的轿车每辆收费20元,则张老师一家开车进入净月潭森林公园园区所需费用是(4a+20)元(用含a的代数式表示).【分析】所需的费用包括两个部分:门票每人a元,4人4a元;每辆车收费20元;由此合并得出答案即可.【解答】解:张老师一家开车进入净月潭森林公园园区所需费用是(4a+20)元.故答案为:4a+20.11.(3分)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=60°.【分析】首先利用直径所对的圆周角是直角得到直角三角形,然后求得另一锐角的度数,从而求得所求的角.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=30°,∴∠B=60°,∴∠D=60°,故答案为:60°.12.(3分)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为65°.【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答】解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.13.(3分)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.【分析】设宽为xm,从图(2)可看出剩下的耕田面积可平移成长方形,且能表示出长和宽,从而根据面积可列出方程.【解答】解:设宽为xm,(32﹣2x)(20﹣x)=570.故答案为:(32﹣2x)(20﹣x)=570.14.(3分)如图,等腰直角三角形ABO的斜边OB在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象恰好经过AB边的中点,若OB=4,则k 的值为3.【分析】根据等腰直角三角形的性质求得点A的坐标,再根据三角形的中位线定理求得点C的坐标,从而求得反比例函数的解析式.【解答】解:分别作AE、CF垂直于x轴于点E、F.∵△AOB是等腰直角三角形,OB=4,∴AE=OE=BE=2,又∵点C是AB的中点,∴C(3,1).设反比例函数的解析式是y=,则k=xy=3,故答案为:3.三、解答题15.(6分)先化简,再求值:,其中a=﹣1.【分析】先根据分式混合运算的法则把原分式化为最简形式,再把a=﹣1代入进行计算即可.【解答】解:原式=•,=a+1,把a=﹣1代入得,原式=﹣1+1=.16.(6分)五•一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与顾客抽中一等奖的情况,再利用概率公式即可求得答案.【解答】解:列表得:∵共有12种等可能的结果,顾客抽中一等奖的有2种情况,∴P(顾客抽中一等奖)=.17.(6分)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【分析】根据题意设出该文具厂原计划每天加工x套这种画图工具,再根据已知条件列出方程即可求出答案.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.18.(7分)如图,在平行四边形ABCD中,∠C=66°,点E为AD上一点,AB=BE,求∠EBC的度数.【分析】由于在平行四边形中对角相等,邻角互补,所以∠A=∠C=66°,再根据已知条件BE=AB得出∠AEB=66°,利用AD∥BC可求出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=66°,∵AB=AE,∵∠ABE=∠AEB=66°,∵AD∥BC,∴∠EBC=∠AEB=66°.19.(7分)如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪(精测得旗杆顶部A的仰角为40°,已知测角仪器的高CD=1.5米,求旗杆AB的高.确到0.1米)(供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【分析】由题可知,在直角三角形中,知道已知角和邻边,直接根据正切求出对边即可解决.【解答】解:∵CD⊥BC,AB⊥BC,DE⊥AB,∴四边形DCBE是矩形,∴DE=BC=10米,在Rt△ADE中,∵DE=10米,∠ADE=40°,∴AE=DE•tan40°≈10×0.84=8.4(米),∴AB=AE+BE=8.4+1.5=9.9(米).答:旗杆AB的高是9.9米.20.(6分)某大学生学生会社团部为了了解该校学生擅长乐器的情况,随机选取了n名学生进行问卷调查(要求每位学生只能填写一种自己最擅长的乐器),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面问题.(1)这次参加调查的学生人数n为200;在扇形统计图中,表示“其他乐器”的扇形的圆心角为54度.(2)将条形统计图补充完整.(3)若该校有2000名学生,则估计擅长“小提琴”的学生共有多少人.【分析】(1)根据参加小提琴的人数除以参加小提琴所占的比重等于参加的总人数,可得答案;根据圆周角乘以其他乐器所占的比重,可得答案;(2)根据总人数减去小提琴的人数,钢琴的人数,其他乐器的人数,可得答案;(3)根据总人数乘以小提琴人数所占的比重,可得答案.【解答】解:(1)这次参加调查的学生人数n为70÷35%=200人,表示“其他乐器”的扇形的圆心角为360°×=54°.故答案为:200,54;(2)参加古筝的人数为200﹣70﹣60﹣30=40.;(3)擅长“小提琴”的学生2000×35%=700人.答:若该校有2000名学生,则估计擅长“小提琴”的学生共有700人.21.(10分)探究:如图①,△ABC是等边三角形,以点B为顶点作∠PBQ=60°,BQ交边AC于点D,过点A作AE∥BC,AE交BP于点E.求证:AD+AE=AB;应用:在图①的基础上,将∠PBQ绕着点B顺时针旋转,如图②,使BQ交AC 的延长线于点D,BP交边AC于点G.若AB=8,AE=2,则GD的长为8.4.【分析】探究:证△ABE≌△CBD,然后根据等边三角形三边相等即可求得.应用:由探究可知AE=CD,然后平行线分线段成比例定理即可求得.【解答】解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=∠C=60°,∵AE∥BC,∴∠EAB=∠ABC,∴∠EAB=∠C,∵∠EBD=60°,∴∠ABE=∠DBC,在△ABE与△CBD中,,∴△ABE≌△CBD,∴AE=CD,∵AC=AD+CD=AD+AE,∴AB=AD+AE;(2)由(1)证得:CD=AE=2,∵AE∥BC,∴===,∵AC=AB=8,∴AG=,CG=,∴DG=+2=8.4.故答案为:8.4.22.(10分)图①是小明家、学校和游泳馆之间的位置关系示意图,某天放学后,小亮和小明同时从学校出发,小亮匀速步行前往游泳馆,小明先匀速步行回家取游泳用品,然后骑自行车原路返回,沿与小亮相同的路线前往游泳馆,小明骑自行车的速度始终不变,小亮和小明各自与学校的距离s(米)与所用时间t(分)之间的函数图象的如图②所示.(1)小亮的速度为120米/分,a=3000;(2)求小明骑自行车时s与t之间的函数关系式;(3)直接写出小明和小亮相距900米时t的值.【分析】(1)根据时间、路程和速度关系得出小亮的速度,进而得出全路程即可;(2)根据路程和时间的关系得出小明骑自行车时s与t之间的函数关系式即可;(3)根据几种情况得出小明和小亮相距900米时t的值即可.【解答】解:(1)由图象可得:小亮的速度为:600÷5=120米/分钟;可得a的值为:25×120=3000米;故答案为:120;3000;(2)因为小明骑自行车的速度始终不变,所以可得其速度为:(600+3000)÷(17﹣5)=300米/分钟;所以可得小明骑自行车时s与t之间的函数关系式为:s=300t;(3)当小明回家的途中与小亮相距900米,可得:900=(120+120)t,解得:t=分;当小明从家回来时,小亮比小明多900米,可得:120t+600﹣300(t﹣5)=900,解得:t=分;当从家回来时,小明比小亮多900米,可得:120t+900+600=300(t﹣5),解得:t=分;小明到达游泳馆后,小亮与小明相距900米时,时间为17.5分;综上所述小明和小亮相距900米时t的值为,,,17.5分.23.(10分)如图,在平面直角坐标系中,点A时抛物线与x轴正半轴交点,点B在抛物线上,其横坐标为1,直线AB与y轴交于点C.点M、P 在线段AC上,点Q在抛物线上,且MQ平行于x轴,PQ平行于y轴.设点P 横坐标为m.(1)求直线AB所对应的函数表达式;(2)用含m的代数式表示线段PQ的长;(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.【分析】(1)由点A时抛物线与x轴正半轴交点,点B在抛物线上,其横坐标为1,即可求得点A与B的坐标,再利用待定系数法求得函数的解析式;(2)分别从当0≤m≤1时与当1<m≤4时,去分析求解即可求得答案;(3)首先可求得tan∠QMP==,即可得矩形PQMN的周长=6PQ,又由矩形PQMN的周长为9,即可得到方程,解此方程即可求得答案.【解答】解:(1)∵点A时抛物线与x轴正半轴交点,∴﹣x2+2x=﹣x(x﹣4)=0,解得:x1=0,x2=4,∴A(4,0),∵点B在抛物线上,其横坐标为1,∴y=﹣+2=,∴点B(1,),设直线y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+2;(2)根据题意得:P(m,﹣m2+2m),Q(m,﹣m+2),∴当0≤m≤1时,PQ=(﹣m+2)﹣(﹣m2+2m)=m2﹣m+2;当1<m≤4时,PQ=(﹣m2+2m)﹣(﹣m+2)=﹣m2+m﹣2;(3)∵MQ平行于x轴,PQ平行于y轴,∴∠QMP=∠OAC,∵点C(0,2),A(4,0),∴tan∠OAC==,∴tan∠QMP==,∴MQ=2PQ,∵矩形PQMN的周长为9,∴当0<m≤1时,2(MQ+PQ)=6PQ=6(m2﹣m+2)=9,解得:m1=(舍去),∴m2=;∴2(MQ+PQ)=6PQ=6(﹣m2+m﹣2)=9,此时无解;综上,矩形PQMN的周长为9时,m=.24.(10分)如图,在Rt△ABC中,∠C=90°,D为BC中点,AC=2,CD=2,若点P从点B出发,在BA上以每秒个单位的速度向点A运动(点P不与点B重合).在点P的运动过程中,过点P作PE⊥BC于点E,以PE为边向右作正方形PEFM,设点P的运动时间为t(秒).正方形PEFM与△ADB重叠部分面积为S(平方单位).(1)AB的长为2;(2)当正方形PEFM有顶点落在AD上时t的值;(3)求S与t之间的函数关系式;(4)直接写出△PBE与△MFD全等时t的值.【分析】(1)求得BC,利用勾股定理求得AB;(2)分当点F与点D重合,点E与点D重合两种情况探讨得出答案即可;(3)分三种情况:①当0<t≤时,②当<t≤1时,③当1<t≤2,利用正方形和三角形的面积探讨得出答案即可;(4)当EB=DF时,△PBE与△MFD全等,由BE+FD+EF=BD求得t的数值即可.【解答】解:(1)∵D为BC中点,∴BC=2CD=4,∴AB==2;(2)①当点F与点D重合时,如图:∵PE⊥BC,AC⊥BC,∴PE∥AC,∴△PBE∽△ABC,∴==,即==,BE=2t,PE=t,∵四边形PEFM是正方形,∴EF=PE,即2﹣2t=t,解得:t=;②当点E与点D重合时,如图,PE是恰好是△ABC的中位线,则BP=,t=1;③当点P与点A重合时,如图,由(1)可知:AB==2;∴t==2;综上所知:当t=或1或2时,正方形PEFM有顶点落在AD上;(3)当0<t≤时,S=t2;当<t≤1时,∵DF=3t﹣2∴S=t2﹣(3t﹣2)2=﹣t2+6t﹣2当1<t≤2时∵BE=2t,BD=2∴DE=2t﹣2∴GE=2t﹣2∴PM=t﹣(2t﹣2)=2﹣t∴S=(2﹣t)2=t2﹣2t+2(4)当t<2时,∵EB=FD,∠PEB=∠MFD,PE=MF,∴△PBE≌△MDF,∴当EB=DF时,△PBE与△MFD全等.∴BE+FD+EF=2即t+2t+2t=2,t=.当t=2时,△PBE≌△MDF∴t=或2。
2015年辽宁省大连市高新区中考数学一模试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)2的倒数是()A.2 B.﹣2 C.D.﹣2.(3分)如图,直线a∥b,直线a、b被直线c所截,∠1=40°,则∠2的度数为()A.40°B.80°C.140° D.160°3.(3分)为促进义务教育办学条件均衡,某市投入260万元资金为部分学校添置实验仪器,260万用科学记数法表示为()A.260×103B.26×105 C.2.6×105D.2.6×1064.(3分)下列计算正确的是()A.a2+a2=a4 B.(2a2)3=6a6C.a8÷a2=a4D.a3•a4=a75.(3分)在平面直角坐标系中,点A(﹣2,3)关于x轴对称的对称点B的坐标为()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)6.(3分)不等式组的解集为()A.x≥2 B.x<3 C.2≤x<3 D.x>37.(3分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.8.(3分)一个圆锥的主视图为等边三角形,将这个圆锥沿着一条母线剪开,所得侧面展开图的圆心角度数为()A.60°B.90°C.120° D.180°二、填空题(共8小题,每小题3分,满分24分)9.(3分)分解因式:m2﹣9=.10.(3分)函数y=﹣(x+1)2+5的最大值为.11.(3分)如图,A、B、C三点在圆O上,且OB⊥OC,则∠A的度数是.12.(3分)如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=cm.13.(3分)如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD 于点E,则△CDE的周长为.14.(3分)某校数学兴趣小组同学的年龄情况如表:则这个小组同学的平均年龄为岁.15.(3分)小明在距电势塔塔底水平距离58米处,看塔顶的仰角为20°(不考虑小明的身高因素),则此塔高约为米(精确到1米).(参考数据:sin20°≈0.3,sin70°≈0.9,tan20°≈0.4,tan70°≈2.7)16.(3分)反比例反数y=(x>0)的图象如图所示,点B在图象上,连接OB 并延长到点A,使AB=OB,过点A作AC∥y轴交y=(x>0)的图象于点C,连=3,则k=.接BC、OC,S△BOC三、解答题(本题共9小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算:(2﹣)2+﹣()﹣1.18.(9分)解分式方程:.19.(9分)如图,在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,BE∥DF,AD∥BC.求证:AD=BC.20.(12分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(9分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?22.(9分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止,两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为km/h,t=;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.23.(10分)如图,D为圆O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)图中∠ADB=°,理由是;(2)判断直线CD与圆O的位置关系,并证明;(3)过点B作圆O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求线段BE的长.24.(11分)如图,在矩形ABCD中,AB=2,BC=6,将该矩形沿对角线BD翻折,C的对应点为G,使△DBG与△DBC在同一平面内,BG交AD于点E,在DA 延长线上取点F,使AE=AF,连接BF.(1)△BEF的形状为;(直接写出答案)(2)求线段EG的长;(3)将△BAF沿射线BD方向以每秒2个单位的速度平移,当点B到达点D时停止平移.设平移的时间为t秒,在平移过程中,△BAF与△BDG重叠部分的面积为S,求S与t的函数关系式并直接写出t的取值范围.25.(12分)已知:抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D,抛物线的对称轴交x轴于点E.(1)顶点D的坐标为(用含a的式子表示);(2)连接AC、CD、AD、BC,求△ACD与△ABC的面积之比;(3)若点C(0,﹣3),点M为抛物线上的点,过M作直线CD的垂线,垂足为N,且使得∠CMN=∠BDE,求点M的坐标.2015年辽宁省大连市高新区中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)2的倒数是()A.2 B.﹣2 C.D.﹣【分析】直接根据倒数的定义进行解答即可.【解答】解:∵2×=1,∴2的倒数是.故选C.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.(3分)如图,直线a∥b,直线a、b被直线c所截,∠1=40°,则∠2的度数为()A.40°B.80°C.140° D.160°【分析】先根据平行线的性质得到∠3=∠1=40°,然后根据对顶角的性质求解.【解答】解:∵a∥b,∴∠3=∠1=40°,∴∠1=∠3=40°.故选A.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.(3分)为促进义务教育办学条件均衡,某市投入260万元资金为部分学校添置实验仪器,260万用科学记数法表示为()A.260×103B.26×105 C.2.6×105D.2.6×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将260万用科学记数法表示为2.6×106.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.a2+a2=a4 B.(2a2)3=6a6C.a8÷a2=a4D.a3•a4=a7【分析】根据同底数幂的乘法,可判断A、D;根据积的乘方,可判断B;根据同底数幂的除法,可判断C.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、积的乘方等于乘方的积,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(3分)在平面直角坐标系中,点A(﹣2,3)关于x轴对称的对称点B的坐标为()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)【分析】利用关于x轴对称点的性质得出B点坐标即可.【解答】解:∵点A(﹣2,3),∴关于x轴对称的对称点B的坐标为:(﹣2,﹣3).故选:B.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标关系是解题关键.6.(3分)不等式组的解集为()A.x≥2 B.x<3 C.2≤x<3 D.x>3【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x≥2,解不等式②得:x<3,∴不等式组的解集为2≤x<3,故选C.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.7.(3分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.【分析】让白球的个数除以球的总数即为摸到白球的概率.【解答】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选:B.【点评】本题考查了概率的基本计算,摸到白球的概率是白球数比总的球数.8.(3分)一个圆锥的主视图为等边三角形,将这个圆锥沿着一条母线剪开,所得侧面展开图的圆心角度数为()A.60°B.90°C.120° D.180°【分析】设侧面展开图的圆心角度数为n°,等边三角形的边长为x,则母线长为x,底面圆的半径为x,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•x=,然后解关于n的方程即可.【解答】解:设侧面展开图的圆心角度数为n°,等边三角形的边长为x,则母线长为x,底面圆的半径为x,根据题意得2π•x=,解得n=180,即侧面展开图的圆心角度数为180°.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题(共8小题,每小题3分,满分24分)9.(3分)分解因式:m2﹣9=(m+3)(m﹣3).【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点评】此题主要考查了平方差公式分解因式,掌握平方差公式是解题的关键.10.(3分)函数y=﹣(x+1)2+5的最大值为5.【分析】根据二次函数的性质a=﹣1<0,函数有最大值5.【解答】解:∵﹣1<0,∴函数y=﹣(x+1)2+5的最大值为5.故答案为:5.【点评】本题考查的是二次函数的性质,二次函数y=a(x﹣h)2+k,当a>0时,函数有最小值k,当a<0时,函数有最大值k.11.(3分)如图,A、B、C三点在圆O上,且OB⊥OC,则∠A的度数是45°.【分析】由OB⊥OC,可求得圆心角∠BOC的度数,又由圆周角定理,求得∠A 的度数.【解答】解:∵OB⊥OC,∴∠BOC=90°,∴∠A=∠BOC=45°.故答案为:45°.【点评】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=4cm.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,D是AB的中点,∴AB=2CD=2×2=4cm.故答案为:4.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.13.(3分)如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD 于点E,则△CDE的周长为6.【分析】根据平行四边形的性质求出AD、CD的长,根据线段垂直平分线性质求出E=CE,求出△CDE的周长=AD+CD,代入求出即可.【解答】解:∵四边形ABCD是平行四边形,AB=2,BC=4,∴AD=BC=4,CD=AB=2,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长为DE+CE+DC=DE+AE+CD=AD+CD=4+2=6,故答案为:6.【点评】本题考查了平行四边形的性质,线段垂直平分线性质的应用,解此题的关键是求出AD、CD的长和求出△CDE的周长=AD+CD,注意:平行四边形的对边相等,难度适中.14.(3分)某校数学兴趣小组同学的年龄情况如表:则这个小组同学的平均年龄为14岁.【分析】首先由频数分布直方图求出该班同学的年龄和,然后根据总人数求平均年龄.【解答】解:平均年龄为:=14岁,故答案为:14.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(3分)小明在距电势塔塔底水平距离58米处,看塔顶的仰角为20°(不考虑小明的身高因素),则此塔高约为23米(精确到1米).(参考数据:sin20°≈0.3,sin70°≈0.9,tan20°≈0.4,tan70°≈2.7)【分析】根据题意先作出图形,可得AB=58米,∠A=20°,在Rt△ABC中,利用三角函数即可求得此塔的长度.【解答】解:在Rt△ABC中,AB=58米,∠BAC=20°,∵=tan20°,∴BC=ABtan20°=58×0.4≈23(米).故答案为:23.【点评】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.16.(3分)反比例反数y=(x>0)的图象如图所示,点B在图象上,连接OB 并延长到点A,使AB=OB,过点A作AC∥y轴交y=(x>0)的图象于点C,连=3,则k=4.接BC、OC,S△BOC【分析】根据线段中点的性质,可得A点坐标,根据三角形的中线分三角形所得两个三角形的面积相等,可得S=S△BOC=3,根据反比例函数的定义,可得△COD△ABC的面积,根据三角形面积的和差,可得关于k的方程,根据解方程,可得答案.【解答】解:如图:延长AC交x轴于D点,设B点坐标为(a,),由AB=OB,得A(2a,),D(2a,0).=S△BOC=3,S△COD=OD•CD=k.由AB=OB,得S△ABC由三角形面积的和差,得S△AOD﹣S△COD=S△AOC,即×2a×﹣k=6.解得k=4.故答案为:4.【点评】本题考查了反比例函数k的几何意义,利用了三角形的中线分三角形所得两个三角形的面积相等,利用三角形面积的和差得出关于k的方程是解题关键.三、解答题(本题共9小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算:(2﹣)2+﹣()﹣1.【分析】根据完全平方公式和负整数指数幂的意义得到原式=4﹣4+2+3﹣3,然后合并即可.【解答】解:原式=4﹣4+2+3﹣3=3﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.18.(9分)解分式方程:.【分析】观察方程可得最简公分母是:2(x﹣2),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:去分母,得3﹣2x=x﹣2,整理,得3x=5,解得x=.经检验,x=是原方程式的解.所以原方程式的解是x=.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(9分)如图,在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,BE∥DF,AD∥BC.求证:AD=BC.【分析】根据BE∥DF,AD∥BC,得到∠BEC=∠DFA,∠A=∠C,根据AE=CF,得到AF=CE,根据ASA证出△ADF≌△CBE即可.【解答】证明:∵BE∥DF,AD∥BC,∴∠BEC=∠DFA,∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),∴AD=BC.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.20.(12分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)根据艺术类读物所在扇形的圆心角是:×360°=72°;(3)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.21.(9分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【分析】设原来每天制作x件,根据原来用的时间﹣现在用的时间=10,列出方程,求出x的值,再进行检验即可.【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.【点评】此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,本题的等量关系是原来用的时间﹣现在用的时间=10.22.(9分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止,两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为120km/h,t=;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.【分析】(1)根据图象可得当x=小时时,据甲地的距离是120千米,即可求得轿车从甲地到乙地的速度,进而求得轿车从乙地返回甲地的速度和t的值;(2)利用待定系数法即可求解;(3)利用待定系数法求得轿车从乙地到甲地的函数解析式和货车路程和时间的函数解析式,求交点坐标即可.【解答】解:(1)轿车从甲地到乙地的速度是:=80(千米/小时),则轿车从乙地返回甲地的速度为80×1.5=120(千米/小时),则t=+=(小时).故答案是:120,;(2)设y与x的函数解析式是y=kx+b,则,解得:,则函数解析式是y=﹣120x+300;(3)设货车的解析式是y=mx,则2m=120,解得:m=60,则函数解析式是y=60x.根据题意得:,解得:,则轿车从甲地返回乙地的途中与货车相遇时,相遇处到甲地的距离是100千米.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,正确解函数的解析式是关键.23.(10分)如图,D为圆O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)图中∠ADB=90°,理由是直径所对的圆周角是直角;(2)判断直线CD与圆O的位置关系,并证明;(3)过点B作圆O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求线段BE的长.【分析】(1)由直径所对的圆周角是直角求得;(2)连结OD,OE,根据圆周角定理得到∠ADO+∠1=90°,而∠CDA=∠CBD,∠CBD=∠1,于是∠CDA+∠ADO=90°;(3)根据切线的性质得到ED=EB,OE⊥BD,则∠ABD=∠OEB,得到tan∠CDA=tan∠OEB==,易证Rt△CDO∽Rt△CBE,得到==,求得CD,然后在Rt△CBE中,运用勾股定理可计算出BE的长.【解答】(1)解:∵AB是⊙O的直径,∴∠ADB=90°;(2)证明:如图,连OD,OE,∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;(2)解:∵EB为⊙O的切线,∴ED=EB,OE⊥DB,∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,∴∠ABD=∠OEB,∴∠CDA=∠OEB.∵tan∠CDA=,∴tan∠OEB==,∵Rt△CDO∽Rt△CBE,∴==,∴CD=×6=4,在Rt△CBE中,设BE=x,∴(x+4)2=x2+62,解得x=.即BE的长为.【点评】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;也考查了圆周角定理的推论以及三角形相似的判定与性质.24.(11分)如图,在矩形ABCD中,AB=2,BC=6,将该矩形沿对角线BD翻折,C的对应点为G,使△DBG与△DBC在同一平面内,BG交AD于点E,在DA 延长线上取点F,使AE=AF,连接BF.(1)△BEF的形状为等腰三角形;(直接写出答案)(2)求线段EG的长;(3)将△BAF沿射线BD方向以每秒2个单位的速度平移,当点B到达点D时停止平移.设平移的时间为t秒,在平移过程中,△BAF与△BDG重叠部分的面积为S,求S与t的函数关系式并直接写出t的取值范围.【分析】(1)根据SAS得出△FAB≌△EAB后,得出BF=BE,得出△BEF是等腰三角形;(2)根据全等三角形判定出△DGE≌△EAB,再根据勾股定理得出EG的长度即可;(3)根据△BAF沿射线BD方向的平移分情况进行求解,同时根据三角形的面积公式进行分析解答.【解答】解:(1)在△FAB和△EAB中,,∴△FAB≌△EAB(SAS),∴BE=BF,∴△BEF是等腰三角形,故答案为:等腰三角形;(2)∵矩形沿对角线BD翻折,∴△BDC≌△BDG,∴DG=DC=AB,在△EBA和△EDG中,,∴△DGE≌△EAB(AAS),∴BE=DE,AE=EG,在Rt△GED中,EG2+DG2=DE2,即,解得:EG=2;(3)①当时,△BAF沿射线BD方向的平移图如图1,∴HQ=HP=BPtan30°=,∴,②当时,△BAF沿射线BD方向的平移图如图2,∴,,,∴,③当时,△BAF沿射线BD方向的平移图如图3,∴,∴,综上所述:S与t的函数关系式为:.【点评】此题考查几何变换问题,关键是全等三角形的判定和性质,同时注意平移的性质,综合性强,是一道典型题目.25.(12分)已知:抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D,抛物线的对称轴交x轴于点E.(1)顶点D的坐标为(1,﹣4a)(用含a的式子表示);(2)连接AC、CD、AD、BC,求△ACD与△ABC的面积之比;(3)若点C(0,﹣3),点M为抛物线上的点,过M作直线CD的垂线,垂足为N,且使得∠CMN=∠BDE,求点M的坐标.【分析】(1)将y=a(x﹣3)(x+1)配方,写成顶点式为y=a(x2﹣2x﹣3)=a(x ﹣1)2﹣4a,即可确定顶点D的坐标;(2)根据点A、D的坐标求得直线AD的方程,易求直线AD与y轴的交点H的坐标,然后结合三角形的面积公式进行解答;(3)分两种情况进行讨论:(i)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN ∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(ii)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,所以点M不存在.【解答】解:(1)∵y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴该抛物线的解析式可设为y=a(x﹣3)(x+1)=a(x﹣1)2﹣4a,∴顶点D的坐标为(1,﹣4a).故答案是:(1,﹣4a);(2)设直线AD交y轴于点H.由(1)知,该抛物线的解析式为y=a(x﹣1)2﹣4a,则C(0,﹣3a).由A(﹣1,0),D(1,﹣4a)易得直线AD的解析式为:y=﹣2ax﹣2a.则H(0,﹣2a).所以HC=a.又∵A(﹣1,0),B(3,0),∴AB=4,∴===6,即△ACD与△ABC的面积之比是1:6.(3)(i)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y 轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=b,则MN=2b.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=b,∴MF=MN+NF=3b,∴MG=FG=b,∴CG=FG﹣FC=b,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=b,∴MG=FG=b,∴CG=FG+FC=b,∴M(b,﹣3+b).代入抛物线y=(x﹣3)(x+1),解得b=5,∴M(5,12);(ii)当点M在对称轴左侧时.∵∠CMN=∠BDE<45°,∴∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,∴点M不存在.综上可知,点M坐标为(,﹣)或(5,12).【点评】本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(3)中进行分类讨论及运用数形结合的思想是解题的关键.。
成都市锦江区初2015届“一诊”考试数学试题一、选择题(每小题3分,共30分)1、下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是( )A. 圆柱体B. 球体C. 圆锥体D. 长方体 2、已知23a b =,则a b b+的值为( )A.32 B. 43 C. 53 D. 353、若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围是( )A. 1k <B.0k ¹C.10k k <?且D.1k >4、如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点在格点上,则tanA= A.43 B. 34 C. 45 D. 355、如图点D 、E 分别在线段AB 、AC 上且∠ABC=∠AED,若DE=4,AE=5,BC=8,则AB 的长为( )A.52 B. 10 C. 25 D. 1106、已知反比例函数图象经过点(1,-1),(m ,1),则m 等于( )A. 2B. -2C. 1D. -17、如图,圆O 是△ACD 的外接圆,AB 是圆O 的直径,∠BAD=60°,则∠C 的度数是( )A. 30°B. 40°C. 50°D. 60°8、一个布袋里装有3个红球,2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是( ) A.15 B. 25 C. 35 D. 239、用配方法解方程2250x x --=时,原方程应变形为( ) A. 2(1)6x -= B. 2(1)6x += C. 2(2)9x += D. 2(2)9x -=10、小明将图中两条水平线12L L 、的其中一条当成x 轴,且向右为正方向;两铅直线34L L 、的其中一条当成y 轴,且向上为正方向,并在此坐标平面上画出二次函数221y ax ax =++的图象,他选择x 轴、y 轴的叙述中,下列结论正确的是( )A .L 1为x 轴,L 3为y 轴B .L 1为x 轴,L 4为y 轴C .L 2为x 轴,L 3为y 轴D .L 2为x 轴,L 4为y 轴二、填空题(每小题4分,共16分)11、若22(1)a y a x -=-是反比例函数,则a 的取值为12、已知a 是锐角,且tan (90a ?)a =13、如图,电灯P 在横杆AB 的上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=6m ,点P 到CD 的距离是3m ,则P 到AB 的距离是______m .14、把二次函数2y x =向左平移1个单位,再向下平移2个单位,则平移后二次函数的解析式为三、计算题(15小题每小题6分,16小题6分,共18分)15、(1)计算:101()3tan 30(112---?-+-16、 (2)解方程:(6)16x x +=16、如图,AB 是圆O 的直径,弦CD ⊥AB 于点E ,点P 在圆O 上且∠1=∠C. (1)求证:CB//PD;(2)若BC=3,BE=2,求CD 的长。