高考数学大一轮总复习 第十章 第6讲 双曲线课件 理
- 格式:ppt
- 大小:1.31 MB
- 文档页数:42
高三数学第一轮复习:双曲线的定义、性质及标准方程【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。
(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。
说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。
2. 双曲线的标准方程、图形及几何性质:标准方程)0b,0a(1byax2222>>=-中心在原点,焦点在x轴上yaxba b2222100-=>>(,)中心在原点,焦点在y轴上图形几何性质X围x a≤-或x a≥y a≤-或y a≥对称性关于x轴、y轴、原点对称(原点为中心)顶点()()1200A a A a-,、,()()1200A a A a-,、,轴实轴长122A A a=,虚轴长122B B b=离心率ecae=>()1准线2212:,:a al x l xc c=-=2212:,:a al y l yc c=-=实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。
其渐近线方程为y=±x 。
等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。
5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。
专题9.4 双曲线(知识点讲解)【知识框架】【核心素养】1.考查双曲线的定义,求轨迹方程及焦点三角形,凸显数学运算、直观想象的核心素养.2.考查双曲线几何性质(范围、对称性、顶点、离心率、渐近线),结合几何量的计算,凸显逻辑推理、数学运算的核心素养.3.考查直线与双曲线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)双曲线的定义及标准方程1.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.2.双曲线的标准方程标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形(二)双曲线的几何性质 双曲线的几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) 渐近线y =±b axy =±a bx离心率 e =ca,e ∈(1,+∞),其中c =a 2+b 2 实虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长.a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)(三)常用结论 1.等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线,其标准方程可写作:x 2-y 2=λ(λ≠0). (2)等轴双曲线⇔离心率e =2⇔两条渐近线y =±x 相互垂直. 2.双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a . (3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2·1tan θ2,其中θ为∠F 1PF 2.【常考题型剖析】题型一:双曲线的定义及其应用例1.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -|OP |=( )A .222B 410C 7D 10【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得1333x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+= 故选:D.例2.(2017·上海·高考真题)设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =________ 【答案】11【详解】由双曲线的方程2221(0)9x y b b -=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±,又因为15PF =,所以2||11PF =. 【总结提升】1.双曲线定义的主要应用(1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.2.用定义法求双曲线方程,应依据条件辨清是哪一支,还是全部曲线. 3.与双曲线两焦点有关的问题常利用定义求解.4.如果题设条件涉及动点到两定点的距离,求轨迹方程时可考虑能否应用定义求解. 题型二:双曲线的标准方程例3.(2021·北京高考真题)双曲线2222:1x y C a b -=过点2,3,且离心率为2,则该双曲线的标准方程为( ) A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得3b a =,再将点2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a -=,则双曲线的方程为222213x y a a-=,将点2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =因此,双曲线的方程为2213y x -=.故选:B例4. (2022·全国·高三专题练习)已知双曲线的上、下焦点分别为()10,3F ,()20,3F -,P 是双曲线上一点且124PF PF -=,则双曲线的标准方程为( ) A .22145x y -=B .22154x y -=C .22145y x -=D .22154y x -=【答案】C【分析】设双曲线的标准方程为()222210,0y x a b a b -=>>,由双曲线的定义知3c =,2a =,即可求出双曲线的标准方程.【详解】设双曲线的标准方程为()222210,0y x a b a b -=>>,半焦距为c ,则由题意可知3c =,24a =,即2a =,故222945b c a =-=-=,所以双曲线的标准方程为22145y x -=.故选:C .例5.【多选题】(2020·海南·高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C n C .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD. 【规律方法】1.求双曲线方程的思路(1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解). (2)当焦点位置不确定时,有两种方法来解决:一是分类讨论,注意考虑要全面;二是注意巧设双曲线:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.2.利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求. 3.双曲线方程的几种形式:(1)双曲线的一般方程:当ABC ≠0时,方程Ax 2+By 2=C可以变形为x 2C A +y 2C B=1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A ,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B=1.因此,当A >0时,表示焦点在x 轴上的双曲线;当B >0时,表示焦点在y 轴上的双曲线.(2)共焦点的双曲线系方程:与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为x 2a 2+λ-y 2b 2-λ=1(a >0,b >0);与双曲线y 2a 2-x 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为y 2a 2+λ-x 2b 2-λ=1(a >0,b >0).题型三:双曲线的实际应用例6.(2023·全国·高三专题练习)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x 轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )A .221169x y -=B .2214x y -=C .22189x y -=D .22143x y -=【答案】D【分析】由已知得双曲线的焦点在x 轴上,设该双曲线的方程为()222210,0x y a b a b -=>>,代入建立方程组,求解即可得双曲线的标准方程.【详解】由题意可知该双曲线的焦点在x 轴上,实轴长为4,点()4,3在该双曲线上.设该双曲线的方程为()222210,0x y a b a b-=>>,则222224,431,a a b =⎧⎪⎨-=⎪⎩解得2a =,3b =,故该双曲线的标准方程是22143x y -=.故选:D.例7.(2021·长丰北城衡安学校高二月考(理))如图为陕西博物馆收藏的国宝——唐⋅金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是双曲线2222:x y C a b-=1(a >0,b >0)的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍,则杯身最细之处的周长为( )A .2B .3πC .3D .4π【分析】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m , 代入方程,即可解得23,3a a == 3,从而得解. 【详解】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m 代入双曲线方程可得 22222225134331,1m m a b a b -=-= , 即22222213251312,14m m a b a b-=-=,作差可得2273124a =,解得23,3a a ==,所以杯身最细处的周长为23π . 故选:C 【总结提升】解答实际应用问题时,要注意先将实际问题数学化,条件中有两定点,某点与这两定点的距离存在某种联系,解题时先画出图形,分析其关系,看是否与椭圆、双曲线的定义有关,再确定解题思路、步骤. 题型四 已知双曲线的方程,研究其几何性质例8.(2018·浙江·高考真题)双曲线221 3x y -=的焦点坐标是( )A .()2,0-,)2,0B .()2,0-,()2,0C .(0,2-,(2D .()0,2-,()0,2【分析】根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±,因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.例9.(2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________. 5【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,22543c a b ++,所以双曲线的右焦点为(3,0), 所以右焦点(3,0)到直线280x y +-=225512==+ 5例10.(2020·北京·高考真题)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________. 【答案】 ()3,0 3【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,6a =,3b =,则223c a b =+=,则双曲线C 的右焦点坐标为()3,0, 双曲线C 的渐近线方程为22y x =±,即20x y ±=, 所以,双曲线C 的焦点到其渐近线的距离为23312=+. 故答案为:()3,0;3.例11.(2021·全国·高考真题(理))已知双曲线22:1(0)x C y m m -=>30x my +=,则C 的焦距为_________. 【答案】4【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】由渐近线方程30x my +=化简得3y x m=-,即3b a m =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.例12.(2021·全国·高考真题)若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】3y x =±【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程. 【详解】解:由题可知,离心率2ce a ==,即2c a =, 又22224a b c a +==,即223b a =,则3ba=, 故此双曲线的渐近线方程为3y x =±. 故答案为:3y x =±. 【总结提升】1.已知双曲线方程讨论其几何性质,应先将方程化为标准形式,找出对应的a 、b ,利用c 2=a 2+b 2求出c ,再按定义找出其焦点、焦距、实轴长、虚轴长、离心率、渐近线方程.2.画双曲线图形,要先画双曲线的两条渐近线(即以2a 、2b 为两邻边的矩形对角线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的草图.3.双曲线的标准方程中对a 、b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,b 的要求相同. 若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2.4.注意区分双曲线中的a ,b ,c 大小关系与椭圆a 、b 、c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.5.等轴双曲线的离心率与渐近线关系双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系). 6.双曲线的焦点到渐近线的距离等于虚半轴长b 7.渐近线与离心率()222210,0x y a b a b -=>>的一条渐近线的斜率为2222221b b c a e a a a-===-可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.8.与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系,如借助双曲线上点的坐标范围,方程中Δ≥0等来解决.题型五 由双曲线的性质求双曲线的方程例11. (2022·天津·高考真题)已知抛物线21245,,y x F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c ⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a ,可得2ba=, 所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.例12.(2021·北京·高考真题)若双曲线2222:1x y C a b -=离心率为2,过点2,3,则该双曲线的方程为( )A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B【分析】分析可得3b a =,再将点()2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a =-=,则双曲线的方程为222213x y a a-=,将点()2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =,因此,双曲线的方程为2213y x -=.故选:B例13.(2018·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A 【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:22122bc b bc b d c a b --==+,22222bc b bc b d c a b++==+, 则12226bcd d b c+===,则23,9b b ==, 双曲线的离心率:2229112c b e a a a ==+=+=, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择A 选项. 【规律总结】1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法,同样需要经历“定位→定式→定量”三个步骤.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n 2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).题型六 求双曲线的离心率(或范围)例13.(2019·全国·高考真题(文))设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A 2B 3C .2 D 5【答案】A【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.2e ∴=,故选A .例14.(2021·湖北恩施土家族苗族自治州·高三开学考试)双曲线2222:1x y C a b -=(0a >,0b >)的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足2AF BF >,则双曲线离心率e 的取值范围是( ) A .12e << B .312e <<C .322e << D .331e +<<【答案】B 【分析】设双曲线半焦距c ,再根据给定条件求出|BF |长,列出不等式即可得解. 【详解】设双曲线半焦距为c ,因BF AF ⊥,则由22221x c x ya b =⎧⎪⎨-=⎪⎩得2||||b y B a F ==,而AF a c =+, 于是得22b a c a +>⋅,即222c a a c a-+>⋅,整理得23a c >,从而有32c e a =<,又1e >,所以双曲线离心率e 的取值范围是312e <<. 故选:B例15.(2022·浙江·高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________. 【答案】364【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率36e 4=. 故答案为:364.例16.(2020·全国·高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y 2,则C 的离心率为_________. 【答案】3【分析】根据已知可得2ba=,结合双曲线中,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b -=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =,2213c be a a==+=.故答案为:3 1.在解析几何中,求“范围”问题,一般可从以下几个方面考虑:①与已知范围联系,通过求值域或解不等式来完成;②通过判别式Δ求解;③利用点在双曲线内部形成的不等关系求解;④利用解析式的结构特点,如a ,a ,|a |等非负性求解.2.求双曲线离心率的取值范围,关键是根据题目条件得到不等关系,并想办法转化为关于a ,b ,c 的不等关 系,结合c 2=a 2+b 2和ca =e 得到关于e 的不等式,然后求解.在建立不等式求e 时,经常用到的结论:双曲线上一点到相应焦点距离的最小值为c -a .双曲线的离心率常以双曲线的渐近线为载体进行命题,注意二者参数之间的转化.3.与双曲线离心率、渐近线有关问题的解题策略(1)双曲线的离心率e =c a是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形成关于e 的关系式,并且需注意e >1.(2)双曲线()222210,0x y a b a b -=>>的渐近线是令22220x y a b-=,即得两渐近线方程x a ±y b =0.(3)渐近线的斜率也是一个比值,可类比离心率的求法解答.注意应用21c b e a a ⎛⎫==+ ⎪⎝⎭题型七:与双曲线有关的综合问题例17.(2022·江西·丰城九中高三开学考试(文))已知12,F F 分别为双曲线22:1412x y C -=的左、右焦点,E 为双曲线C 的右顶点.过2F 的直线与双曲线C 的右支交于,A B 两点(其中点A 在第一象限),设,M N 分别为1212,AF F BF F 的内心,则ME NE -的取值范围是( )A .4343,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭ B .4343⎛ ⎝⎭C .3333⎛ ⎝⎭D .55⎛ ⎝⎭【答案】B【分析】由内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,将ME NE -表示为θ的三角函数,结合正切函数的性质可求得范围.【详解】设1212,,AF AF F F 上的切点分别为H 、I 、J , 则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a , ∴122-=HF IF a ,即122-=JF JF a .设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=, 得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合. 同理可得12BF F △的内心在直线JM 上, 设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ, 当2πθ=时,||||0ME NE -=; 当2πθ≠时,由题知,2,4,3===ba c a, 因为A ,B 两点在双曲线的右支上, ∴233ππθ<<,且2πθ≠,所以tan 3θ<-或tan 3θ>, ∴3133tan 3θ-<<且10tan θ≠, ∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ. 故选:B.例18.(2018·全国·高考真题(理))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若OMN 为直角三角形,则|MN |=( ) A .32B .3C .3D .4【答案】B【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得33(3,3),(,)22M N -,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为33±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒, 可以得出直线MN 的方程为3(2)y x =-, 分别与两条渐近线33y x =和33y x =-联立, 求得33(3,3),(,)22M N -,所以2233(3)(3)322MN =-++=,故选B.例19.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______. 【答案】21+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解. 【详解】由题意知: ,2,2pc p c -=-∴= ∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b ∴-=2224224,60c a c a c a b =-∴-+=2322e ∴=±,又()1,e ∈+∞,2 1.e ∴=+故答案为:21+例20.(2020·全国·高考真题(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【分析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立2222222{1x cx y a b c b a =-==+,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223bc a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2.例21. (2022·全国·高考真题(理))若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________. 【答案】33【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离2211m d m==+,解得33m =或33m =-(舍去). 故答案为:33.例22. (2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>43F 且斜率为0k >的直线交C 的两支于,A B 两点.若||3||FA FB =,则k =________________. 【答案】33【分析】由题意设双曲线的方程为22223113x y a a -=,直线为1x y c k =-,即1433x y a k =-,联立方程,设()()1122,,,A x y B x y ,由||3||FA FB =,得123y y =,由根与系数的关系求解即可 【详解】因为22224316,33c a c a b a ==+=, 所以22313b a =,双曲线的方程为22223113x y a a -=,设过左焦点F 且斜率为0k >的直线为1x y c k =-,即1433x y a k =-, 与双曲线222231131433x y a a x y ak ⎧-=⎪⎪⎨⎪=-⎪⎩联立得2221310431693033y ay a k k ⎛⎫--+= ⎪⎝⎭, 设()()1122,,,A x y B x y ,则()()221212221043169,31333133ak a k y y y y k k +=⋅=--,因为||3||FA FB =, 所以123y y =,所以()()222222210431694,331333133ak a k y y k k ==--,消去2y 得()222221696433169163133a k a k k ⨯⨯⨯=-, 化简得2121133k =-,即213k =, 因为0k >, 所以33k =, 故答案为:33例23.(2022·广东·广州市真光中学高三开学考试)设1F ,2F 分别是双曲线2222:1(0,0)x ya b a bΓ-=>>的左、右两焦点,过点2F 的直线:0l x my t --=(,R m t ∈)与Γ的右支交于M ,N 两点,Γ过点(2,3)-,且它的7(1)求双曲线Γ的方程;(2)当121MF F F =时,求实数m 的值;(3)设点M 关于坐标原点O 的对称点为P ,当2212MF F N =时,求PMN 面积S 的值. 【答案】(1)2213y x -=; (2)1515m =±; (3)9354. 【分析】(1)根据点在双曲线上及两点距离列方程组求双曲线参数,即可得方程;(2)由点在直线上求得2t =,根据1F 到直线:20l x my --=与等腰三角形12F MF 底边2MF 上的高相等,列方程求参数m ;(3)设11(,)M x y ,22(,)N x y ,联立双曲线与直线方程,应用韦达定理得1221213m y y m +=-,122913y y m =--,由向量的数量关系可得2135m =,根据对称点、三角形面积公式1222OMN S S y y ==-求PMN 面积. (1)由Γ过点(2,3)-,且它的虚轴的端点与焦点的距离为7,所以()222224917a b b a b ⎧-=⎪⎨⎪++=⎩,即2213a b ⎧=⎨=⎩, 则所求的双曲线Γ的方程为2213y x -=. (2)因为直线:0l x my t --=过点2(2,0)F ,所以2t =,由121MF F F =得:等腰三角形12F MF 底边2MF 上的高的大小为22112()152MF MF --=, 又1F 到直线:20l x my --=的距离等于等腰三角形12F MF 底边上的高,则2202151m ---=+, 即2115m =,则1515m =±. (3)设11(,)M x y ,22(,)N x y ,由221320y x x my ⎧-=⎪⎨⎪--=⎩得:22(31)1290m y my -++=, 则1221213m y y m +=-,122913y y m=--,又2212MF F N =,即212y y =-, 则121213m y m -=-,2129213y m =-,即22122()13m m =-2913m-,则2135m =, 又M 关于坐标原点O 的对称点为P ,则2121212222()4OMN S S y y y y y y ==-=+-222221*********()4()1313134m m m m m +=--==---. 则所求的PMN 面积为9354. 【总结提升】 双曲线的综合问题常常涉及双曲线的离心率、渐近线、范围与性质,与圆、椭圆、抛物线、向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.。
第6讲双曲线最新考纲考向预测1.了解双曲线的定义、几何图形和标准方程,以及它们的简单几何性质.2.通过圆锥曲线与方程的学习,进一步体会数形结合的思想.命题趋势主要侧重双曲线的方程以及以双曲线方程为载体,研究参数a,b,c及与渐近线有关的问题,其中离心率和渐近线是重点.以选择题、填空题为主,难度为中低档.核心素养数学运算、直观想象1.双曲线的定义条件结论1 结论2平面内的动点M与平面内的两个定点F1,F2M点的轨迹为双曲线F1,F2为双曲线的焦点|F1F2|为双曲线的焦距||MF1|-|MF2||=2a2a<|F1F2|2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈R y≤-a或y≥a,x∈R对称性对称轴:坐标轴,对称中心:原点顶点 A 1(-a ,0),A 2(a ,0)A 1(0,-a ),A 2(0,a )渐近线 y =±b a xy =±a b x离心率e =ca ,e ∈(1,+∞)实、虚轴 线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系 c 2=a 2+b 2(c >a >0,c >b >0)3.等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y =±x ,离心率为e =2.常用结论1.双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b2a ,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b2a2.2.巧设双曲线方程(1)与双曲线x2a2-y2b2=1(a >0,b >0)有共同渐近线的方程可表示为x2a2-y2b2=t (t ≠0). (2)过已知两个点的双曲线方程可设为mx 2+ny 2=1(mn <0). 常见误区1.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. (1)当2a <|F 1F 2|时,P 点的轨迹是双曲线. (2)当2a =|F 1F 2|时,P 点的轨迹是两条射线.(3)当2a >|F 1F 2|时,P 点不存在.2.双曲线的标准方程的两种形式的区分要结合x 2,y 2前的系数的正负. 3.关于双曲线离心率的取值范围问题,不要忘记双曲线离心率的取值范围是(1,+∞).1.判断正误(正确的打“√”,错误的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于常数的点的轨迹是双曲线.( )(2)椭圆的离心率e ∈(0,1),双曲线的离心率e ∈(1,+∞).( ) (3)方程x2m -y2n =1(mn >0)表示焦点在x 轴上的双曲线.( ) (4)等轴双曲线的渐近线互相垂直,离心率等于2.( ) 答案:(1)× (2)√ (3)× (4)√2.已知双曲线C :x2a2-y2b2=1(a >0,b >0)的离心率为2,其右焦点为F 2(23,0),则双曲线C 的方程为( )A.x23-y29=1 B.x29-y23=1 C.x24-y212=1D.x212-y24=1解析:选 A.因为双曲线C :x2a2-y2b2=1(a >0,b >0)的离心率为2,其右焦点为F 2(23,0),所以⎩⎨⎧c a =2,c =23,解得a =3.又c 2=a 2+b 2,且b >0,所以b =c2-a2=12-3=3.所以双曲线C 的方程为x23-y29=1.故选A.3.(多选)已知F 1,F 2分别是双曲线C :y 2-x 2=1的上、下焦点,点P 是其中一条渐近线上的一点,且以线段F 1F 2为直径的圆经过点P ,则( )A .双曲线C 的渐近线方程为y =±xB .以F 1F 2为直径的圆的方程为x 2+y 2=1C .点P 的横坐标为±1D .△PF 1F 2的面积为2解析:选ACD.等轴双曲线C :y 2-x 2=1的渐近线方程为y =±x ,故A 正确;由双曲线的方程可知|F 1F 2|=22,所以以F 1F 2为直径的圆的方程为x 2+y 2=2,故B 错误;点P (x 0,y 0)在圆x 2+y 2=2上,不妨设点P (x 0,y 0)在直线y =x 上,所以⎩⎪⎨⎪⎧x20+y 20=2,y 0=x 0,解得|x 0|=1,则点P 的横坐标为±1,故C 正确;由上述分析可得△PF 1F 2的面积为12×22×1=2,故D 正确.故选ACD.4.已知方程x2m +2-y2m +5=1表示双曲线,则m 的取值范围是________. 解析:因为该方程表示双曲线,所以(m +2)(m +5)>0,即m >-2或m <-5,即m 的取值范围为(-∞,-5)∪(-2,+∞).答案:(-∞,-5)∪(-2,+∞)5.(易错题)P 是双曲线x216-y281=1上任意一点,F 1,F 2分别是它的左、右焦点,且|PF 1|=9,则|PF 2|=________.解析:由题意知a =4,b =9,c =a2+b2=97,由于|PF 1|=9<a +c =4+97,故点P 只能在左支上,所以|PF 2|-|PF 1|=2a =8, 所以|PF 2|=|PF 1|+8=17. 答案:17双曲线的定义(1)(2020·河南非凡联盟4月联考)已知双曲线C :x2a2-y29=1(a >0)的左、右焦点分别为F 1,F 2,一条渐近线与直线4x +3y =0垂直,点M 在C 上,且|MF 2|=6,则|MF 1|=( )A .2或14B .2C .14D .2或10(2)(2020·高考全国卷Ⅰ)设F 1,F 2是双曲线C :x 2-y23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△PF 1F 2的面积为( )A.72 B .3 C.52D .2【解析】 (1)由题意知3a =34,故a =4,则c =5.由|MF 2|=6<a +c =9,知点M 在C 的右支上,由双曲线的定义知|MF 1|-|MF 2|=2a =8,所以|MF 1|=14.(2)设F 1,F 2分别为双曲线C 的左、右焦点,则由题意可知F 1(-2,0),F 2(2,0),又|OP |=2,所以|OP |=|OF 1|=|OF 2|,所以△PF 1F 2是直角三角形,所以|PF 1|2+|PF 2|2=|F 1F 2|2=16.不妨令点P 在双曲线C 的右支上,则有|PF 1|-|PF 2|=2,两边平方,得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4,又|PF 1|2+|PF 2|2=16,所以|PF 1|·|PF 2|=6,则S △PF 1F 2=12|PF 1|·|PF 2|=12×6=3,故选B.【答案】 (1)C (2)B双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立|PF 1|与|PF 2|的关系.[提醒] 在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.1.(2020·高考全国卷Ⅲ)设双曲线C :x2a2-y2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A .1B .2C .4D .8解析:选A.通解:设|PF 1|=m ,|PF 2|=n ,P 为双曲线右支上一点,则S △PF 1F 2=12mn =4,m -n =2a ,m 2+n 2=4c 2,又e =ca =5,所以a =1,选A.优解:由题意得,S △PF 1F 2=b2tan 45°=4,得b 2=4,又c2a2=5,c 2=b 2+a 2,所以a =1.2.已知双曲线C :x216-y2b2=1(b >0),F 1,F 2分别为C 的左、右焦点,过F 2的直线l 分别交双曲线C 的左、右支于点A ,B ,且|AF 1|=|BF 1|,则|AB |=( )A .4B .8C .16D .32解析:选 C.由双曲线的定义知|AF 2|-|AF 1|=2a ,|BF 1|-|BF 2|=2a ,由于|AF 1|=|BF 1|,所以两式相加可得|AF 2|-|BF 2|=4a ,而|AB |=|AF 2|-|BF 2|,所以|AB |=4a ,由双曲线方程知a =4,所以|AB |=16,故选C.双曲线的标准方程(1)(2020·合肥调研)已知双曲线的渐近线方程为y =±22x ,实轴长为4,则该双曲线的方程为( )A.x24-y22=1B.x24-y28=1或y24-x28=1C.x24-y28=1D.x24-y22=1或y24-x28=1(2)(多选)(2020·新高考卷Ⅰ)已知曲线C:mx2+ny2=1.() A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为nC.若mn<0,则C是双曲线,其渐近线方程为y=±-m n xD.若m=0,n>0,则C是两条直线【解析】(1)因为双曲线的渐近线方程为y=±22x,a=2,所以当焦点在x轴上时,ba =22,所以b=2,所以双曲线的方程为x24-y22=1;当焦点在y轴上时,ab=22,所以b=22,所以双曲线的方程为y24-x28=1.综上所述,该双曲线的方程为x24-y2 2=1或y24-x28=1,故选D.(2)对于选项A,因为m>n>0,所以0<1m<1n,方程mx2+ny2=1可变形为x21m+y21n=1,所以该方程表示焦点在y轴上的椭圆,正确;对于选项B,因为m=n>0,所以方程mx2+ny2=1可变形为x2+y2=1n,该方程表示半径为1n的圆,错误;对于选项C,因为mn<0,所以该方程表示双曲线,令mx2+ny2=0⇒y=±-mn x,正确;对于选项D,因为m=0,n>0,所以方程mx2+ny2=1变形为ny2=1⇒y=±1n,该方程表示两条直线,正确.综上选ACD.【答案】 (1)D (2)ACD求双曲线标准方程的方法(1)定义法根据双曲线的定义确定a 2,b 2的值,再结合焦点位置,求出双曲线方程,常用的关系有:①c 2=a 2+b 2;②双曲线上任意一点到双曲线两焦点的距离的差的绝对值等于2a . (2)待定系数法 一般步骤1.已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A .x 2-y28=1 B.x28-y 2=1 C .x 2-y28=1(x ≤-1)D .x 2-y28=1(x ≥1)解析:选C.设动圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2相外切,得|MC 1|=1+r ,|MC 2|=3+r ,|MC 2|-|MC 1|=2<6,所以点M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支,且2a =2,a =1,c =3,则b 2=c 2-a 2=8,所以点M 的轨迹方程为x 2-y28=1(x ≤-1).2.经过点P (3,27),Q (-62,7)的双曲线的标准方程为( )A.x225-y275=1 B.y225-x275=1 C.x22-y27=1D.y22-x27=1解析:选B.设双曲线的方程为mx 2+ny 2=1(mn <0),因为所求双曲线经过点P (3,27),Q (-62,7),所以⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎪⎨⎪⎧m =-175,n =125.故所求双曲线标准方程为y225-x275=1.故选B 项.3.若双曲线的渐近线方程为y =±12x ,且经过点(4,3),则双曲线的标准方程为________.解析:方法一:因为双曲线的渐近线方程为y =±12x , 所以可设双曲线的方程为x 2-4y 2=λ(λ≠0). 因为双曲线过点(4,3),所以λ=16-4×(3)2=4, 所以双曲线的标准方程为x24-y 2=1.方法二:因为渐近线y =12x 过点(4,2),而3<2,所以点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图). 所以双曲线的焦点在x 轴上,故可设双曲线方程为x2a2-y2b2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a2-3b2=1,解得⎩⎪⎨⎪⎧a2=4,b2=1,所以双曲线的标准方程为x24-y 2=1. 答案:x24-y 2=1双曲线的几何性质角度一 双曲线的渐近线问题(2020·湖南长沙明德中学月考)已知双曲线x2a2-y2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 为双曲线上一点,若cos ∠F 1MF 2=14,|MF 1|=2|MF 2|,则此双曲线的渐近线方程为( )A .y =±3xB .y =±33x C .y =±xD .y =±2x【解析】 由题意,得|MF 1|-|MF 2|=2a , 又|MF 1|=2|MF 2|,所以|MF 1|=4a ,|MF 2|=2a ,所以cos ∠F 1MF 2=16a2+4a2-4c22×4a×2a =14,化简得c 2=4a 2,即a 2+b 2=4a 2,所以b 2=3a 2,又a >0,b >0,所以ba =3,所以此双曲线的渐近线方程为y =±3x ,故选A. 【答案】 A求双曲线渐近线的方法求双曲线x2a2-y2b2=1(a >0,b >0)或y2a2-x2b2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x2a2-y2b2=0,得y =±b a x 或令y2a2-x2b2=0,得y =±ab x .反之,已知渐近线方程为y =±b a x ,可设双曲线方程为x2a2-y2b2=λ(a >0,b >0,λ≠0).[说明] 两条渐近线的倾斜角互补,斜率互为相反数,且两条渐近线关于x 轴,y 轴对称.角度二 双曲线的离心率问题(1)(多选)已知双曲线M :x2a2-y2b2=1(a >b >0)的焦距为4,两条渐近线的夹角为60°,则下列说法正确的是( )A .M 的离心率为233 B .M 的标准方程为x 2-y23=1 C .M 的渐近线方程为y =±33x D .直线x +y -2=0经过M 的一个焦点(2)(2020·高考全国卷Ⅰ)已知F 为双曲线C :x2a2-y2b2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.【解析】 (1)依题意,a 2+b 2=4,因为两条渐近线的夹角为60°,a >b >0,所以渐近线的倾斜角为30°与150°,所以b a =33,所以⎩⎪⎨⎪⎧a =3,b =1,所以ACD 正确,B 错误.故选ACD.(2)设B (c ,y B ),因为B 为双曲线C :x2a2-y2b2=1上的点,所以c2a2-y2B b 2=1,所以y 2B=b4a2.因为AB 的斜率为3,所以y B =b2a ,b2a c -a=3,所以b 2=3ac -3a 2,所以c 2-a 2=3ac -3a 2,所以c 2-3ac +2a 2=0,解得c =a (舍去)或c =2a ,所以C 的离心率e =ca =2.【答案】 (1)ACD (2)2(1)求双曲线的离心率或其取值范围的方法①求a ,b ,c 的值,由c2a2=a2+b2a2=1+b2a2直接求e .②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.(2)双曲线的渐近线的斜率k 与离心率e 的关系:k =ba =c2-a2a =c2a2-1=e2-1.1.由点(1,2)是双曲线x2a2-y2b2=1(a >0,b >0)上一点,则其离心率的取值范围是( )A .(1,5) B.⎝ ⎛⎭⎪⎫1,52 C .(5,+∞)D.⎝⎛⎭⎪⎫52,+∞解析:选C.由点(1,2)是双曲线x2a2-y2b2=1(a >0,b >0)上一点,得1a2-4b2=1,即b2a2=b 2+4,所以e =ca =1+b2a2=b2+5>5,所以e >5.2.已知椭圆x2a2+y2b2=1(a >b >0)与双曲线x2a2-y2b2=12(a >0,b >0)的焦点相同,则双曲线的渐近线方程为( )A .y =±33x B .y =±22x C .y =±xD .y =±23x解析:选 A.依题意椭圆x2a2+y2b2=1(a >b >0)与双曲线x2a2-y2b2=12(a >0,b >0)即x2a22-y2b22=1(a >0,b >0)的焦点相同,可得a 2-b 2=12a 2+12b 2,即a 2=3b 2,所以b a =33,可得b 2a2=33,所以双曲线的渐近线方程为y =±b 2a 2x =±33x .3.(多选)(2020·山东滨洲期末)已知双曲线C :x2a2-y2b2=1(a >0,b >0)的左、右焦点分别为F 1(-5,0),F 2(5,0),则能使双曲线C 的方程为x216-y29=1的条件是( )A .双曲线的离心率为54B .双曲线过点⎝ ⎛⎭⎪⎫5,94C .双曲线的渐近线方程为3x ±4y =0D .双曲线的实轴长为4解析:选ABC.由题意可得焦点在x 轴上,且c =5,A 选项,若双曲线的离心率为54,则a =4,所以b 2=c 2-a 2=9,此时双曲线的方程为x216-y29=1,故A 正确;B 选项,若双曲线过点⎝ ⎛⎭⎪⎫5,94,则⎩⎪⎨⎪⎧25a2-8116b2=1,a2+b2=25,得⎩⎪⎨⎪⎧a2=16,b2=9,此时双曲线的方程为x216-y29=1,故B 正确;C 选项,若双曲线的渐近线方程为3x ±4y =0,可设双曲线的方程为x216-y29=m (m >0),所以c 2=16m +9m =25,解得m =1,所以此时双曲线的方程为x216-y29=1,故C 正确;D 选项,若双曲线的实轴长为4,则a =2,所以b 2=c 2-a 2=21,此时双曲线的方程为x24-y221=1,故D 错误.故选ABC.高考新声音系列6 高考新成员——多项选择题多项选择题,又称多选题,是一种正确选项数目多于一个的选择题题型.若考生选出了一个或几个正确选项,但没有选出全部的,给3分,选错一个就不得分.在做多选题时,每一个选项都可能是满足题意的,所以需要逐一计算验证,出现拿不准的选项,可以采用保守策略,此项不选,以免造成错选得0分.多项选择题,依据其考查内容有下列几类.类型一 概念辨析型概念辨析型多项选择题就是利用相关概念、定义、性质等逐项进行辨析,解读此类题目的关键如下:(1)明概念,巧借选项所给信息,正确理解概念,明确辨析点;(2)辨问题,结合概念的内含和外延,对题中所述概念再进一步深层次辨析; (3)定选项,利用概念对选项作选择,也可借助反例法、特值法求解.(多选)(2020·新高考卷Ⅰ)已知曲线C :mx 2+ny 2=1.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =± -mn xD .若m =0,n >0,则C 是两条直线【解析】 对于选项A ,因为m >n >0,所以0<1m <1n ,方程mx 2+ny 2=1可变形为x21m+y21n=1,所以该方程表示焦点在y 轴上的椭圆,正确;对于选项B ,因为m =n >0,所以方程mx 2+ny 2=1可变形为x 2+y 2=1n ,该方程表示半径为1n 的圆,错误;对于选项C ,因为mn <0,所以该方程表示双曲线,令mx 2+ny 2=0⇒y =±-mn x ,正确;对于选项D ,因为m =0,n >0,所以方程mx 2+ny 2=1变形为ny 2=1⇒y =±1n ,该方程表示两条直线,正确.综上选ACD.【答案】ACD类型二运算求解型运算求解型问题就是根据题中已知条件,通过运算求得结果,然后进行判断的问题,此类问题实质就是一个定量的分析问题.其解题关键如下:(1)定问题,即根据选项明确所求解的问题,建立相应的求解目标;(2)析条件,即分析题中与所求目标相关的条件,确定计算所需的基本量,如圆锥曲线方程中的参数、数列中的通项公式和项数、三角函数中的角等;(3)求数值,即通过目标建立相关问题的模型,然后利用相应的数学知识求解相关数值;(4)定选项,根据所求解的结果判断选项的正误,从而得到正确的结果.(多选)设椭圆C:x22+y2=1的左、右焦点分别为F1,F2,P是C上的动点,则下列结论正确的是() A.|PF1|+|PF2|=22B.离心率e=6 2C.△PF1F2面积的最大值为2D.以线段F1F2为直径的圆与直线x+y-2=0相切【解析】对于A选项,由椭圆的定义可知|PF1|+|PF2|=2a=22,所以A选项正确.对于B选项,由椭圆C可知a=2,b=1,c=1,所以e=ca =12=22,所以B选项不正确.对于C选项,|F1F2|=2c=2,当P为椭圆短轴端点时,△PF1F2的面积取得最大值为12·2c·b=c·b=1,所以C选项错误.对于D选项,线段F1F2为直径的圆的圆心为(0,0),半径为c=1,圆心到直线x+y-2=0的距离为2=1,也即圆心到直线的距离等于半径,所以以线段F1F2为直2径的圆与直线x+y-2=0相切,所以D选项正确.综上所述,结论正确的为AD.【答案】AD类型三逻辑推理型逻辑推理型多项选择题就是根据已知条件,利用相关的定理、性质等逐项进行推理论证的多项选择.解决此类问题的关键如下:(1)判断类型,即判断选项涉及的数学问题类型,确定数学模块归属;(2)确定依据,即根据选项确定解决此类问题的模块理论依据,如不等式的性质、空间线面关系的判定定理、函数的性质等;(3)逻辑推理,即利用相关的定理、推理、性质等对选项进行逐项判断,然后选出正确选项.(多选)已知m,n为两条不重合的直线,α,β为两个不重合的平面,则下列说法正确的是()A.若m∥α,n∥β且α∥β,则m∥nB.若m∥n,m⊥α,n⊥β,则α∥βC.若m∥n,n⊂α,α∥β,m⊄β,则m∥βD.若m∥n,n⊥α,α⊥β,则m∥β【解析】对于A,若m∥α,n∥β且α∥β,则m∥n或m,n异面或m,n相交,所以A错误.对于B,若m∥n,m⊥α,则n⊥α.又n⊥β,所以α∥β,所以B正确.对于C,若m∥n,n⊂α,则m∥α或m⊂α.又α∥β,m⊄β,所以m∥β,所以C 正确.对于D,若m∥n,n⊥α,则m⊥α.又α⊥β,所以m∥β或m⊂β,所以D错误.故选BC.【答案】BC类型四数据分析型数据分析就是根据统计图表,提取相关数据,并根据数据的特征以及变化进行分析判断,从而得到相关结论.解题关键如下:(1)提取数据,即根据选项研究的问题,从统计图表中读取相应的数据;(2)分析数据,即分析提取数据的特征,如变化率、变化趋势、最值等,根据选项研究的问题进行简单分析;(3)确定选项,即根据数据分析的结果逐项判断选项的正误,从而得到正确结果.(多选)(2021·武汉部分学校高三起点质检)2020年7月,有关部门发布在疫情防控常态化条件下推进电影院恢复开放的通知,规定低风险地区电影院在各项防控措施有效落实到位的前提下,可有序恢复开放营业.一批影院恢复开放后,统计其连续14天的相关数据得到如图所示的统计图.其中,日期编号为1的那天是周一,票房指电影院门票销售金额,观影人次相当于门票销售数量.由统计图可以看出,这连续14天内()A.周末日均票房和观影人次高于非周末B.电影院票房,第二周相对于第一周同期呈上升趋势C.观影人次在第一周的统计中逐日增长量大致相同D.每天的平均单场门票价格都高于20元【解析】由题意,根据统计图可得当编号为6,7,13,14时,电影院门票销售金额分别为3 022万元,3 238万元,3 736万元,4 842万元,观影人次分别为121.5万人次,132万人次,140.2万人次,177.8万人次,票房和观影人次高于非周末,所以A是正确的;根据统计图可得电影院票房第二周相对于第一周同期呈上升趋势,所以B是正确的;根据统计图可得第一周的观影人次逐日增长量(单位:万人次)分别为5.1,5.8,3.5,45,45.6,10.5,所以观影人次在第一周的统计中逐日增长量有明显差别,所以C不正确;由统计图可得第4天的平均单场门票价格为56930.9≈18.414(元)<20元,所以D不正确.故选AB.【答案】AB类型五综合型综合型多选题就是同一道选择题中,定量、定性问题都出现,此类问题既需要利用相关理论进行逻辑推理,又必须根据条件进行定量分析,所以思考量比较大.解决此类问题的基本思路是先分类,再逐项进行检验.其解题步骤如下:(1)合理分类:即根据选项研究的问题类型进行合理分类,将其分为定性型问题(如空间中的线面关系、函数的性质的判断等)与定量型问题(如求角、距离、面积、体积等)两大类.(2)逐类判断:即对归类后的问题进行逐类分析,对于定性型问题,可利用相关的定理、性质等进行逻辑推理,进而判断正误;对于定量型问题,如几何体的体积、平面图形的面积、圆锥曲线的离心率等的求解,可根据已知条件代入求值,进而判断正误.(3)确定选项:即根据判断结果得到正确选项.(多选)(2020·山东烟台高二期末)已知F1,F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,A为左顶点,P为双曲线右支上一点.若|PF1|=2|PF2|,且△PF1F2的最小内角为30°,则()A.双曲线的离心率为3B.双曲线的渐近线方程为y=±2xC.∠P AF2=45°D.直线x+2y-2=0与双曲线有两个公共点【解析】A.因为|PF1|=2|PF2|,|PF1|-|PF2|=2a,所以|PF1|=4a,|PF2|=2a.又因为2c >2a ,4a >2a ,所以∠PF 1F 2=30°,所以cos ∠PF 1F 2=16a2+4c2-4a22·4a·2c =32,所以c =3a ,所以e =3,故结论正确;B .e 2=c2a2=a2+b2a2=3,所以b2a2=2,所以ba =±2,所以渐近线方程为y =±2x ,故结论正确;C .因为2c =23a ,所以|PF 1|2=|PF 2|2+|F 1F 2|2, 所以∠PF 2F 1=90°,又因为|AF 2|=c +a =(3+1)a ,|PF 2|=2a ,所以|AF 2|≠|PF 2|,所以∠P AF 2≠45°,所以结论不成立;D .因为⎩⎨⎧x +2y -2=0,x2a2-y22a2=1,所以2(2-2y )2-y 2=2a 2,所以7y 2-16y +8-2a 2=0,所以Δ=162-4×7×(8-2a 2)=32+56a 2>0,所以直线x +2y -2=0与双曲线有两个公共点,所以结论正确.故选ABD. 【答案】 ABD[A 级 基础练]1.(2020·武汉部分学校质量检测)已知双曲线E :x216-y2m2=1的离心率为54,则双曲线E 的焦距为( )A .4B .5C .8D .10解析:选D.因为a =4,离心率e =c a =54,所以c =5,所以双曲线的焦距2c =10,选D.2.(2020·广东广州增城区调研)已知双曲线x2a2-y2b2=1(a >0,b >0)的两条渐近线互相垂直,焦距为62,则该双曲线的实轴长为( )A .3B .6C .9D .12解析:选 B.因为双曲线的两条渐近线互相垂直,所以-⎝ ⎛⎭⎪⎫b a 2=-1.又因为焦距为62,故2c =62,结合a 2+b 2=c 2,解得a =3,b =3,c =32,故实轴长2a =6.故选B.3.(2020·高考天津卷)设双曲线C 的方程为x2a2-y2b2=1(a >0,b >0),过抛物线y 2=4x 的焦点和点(0,b )的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A.x24-y24=1 B .x 2-y24=1 C.x24-y 2=1D .x 2-y 2=1解析:选 D.由题知y 2=4x 的焦点坐标为(1,0),则过焦点和点(0,b )的直线方程为x +y b =1,而x2a2-y2b2=1的渐近线方程为x a +y b =0和x a -yb =0,由l 与一条渐近线平行,与一条渐近线垂直,得a =1,b =1,故选D.4.(多选)已知双曲线C 上的点到点(2,0)和(-2,0)的距离之差的绝对值为2,则下列结论正确的是( )A .双曲线C 的标准方程为x 2-y23=1 B .双曲线C 的渐近线方程为y =±2x C .双曲线C 的焦点到渐近线的距离为3 D .圆x 2+y 2=4与双曲线C 恰有2个公共点解析:选AC.根据双曲线的定义得c =2,2a =2,所以a =1,b =c2-a2=4-1=3,所以双曲线C的标准方程为x2-y23=1,A正确.由双曲线C的方程为x2-y23=1,得双曲线C的渐近线方程为y=±3x,B错误.双曲线C的一个焦点坐标为(2,0),则其到渐近线的距离d=|±23|1+3=3,C正确.圆x2+y2=4的圆心为原点,半径为2,而双曲线的实轴端点坐标为(±1,0),所以圆与双曲线的公共点有4个,D错误.故选AC.5.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作圆x2+y2=a2的切线,交双曲线右支于点M.若∠F1MF2=45°,则双曲线的渐近线方程为()A.y=±2x B.y=±3xC.y=±x D.y=±2x解析:选A.如图,作OA⊥F1M于点A,F2B⊥F1M于点B.因为F1M与圆x2+y2=a2相切,∠F1MF2=45°,所以|OA|=a,|F2B|=|BM|=2a,|F2M|=22a,|F1B|=2b.又点M在双曲线上,所以|F1M|-|F2M|=2a+2b-22a=2a,整理得b=2a.所以ba=2.所以双曲线的渐近线方程为y=±2x.故选A.6.(2020·高考全国卷Ⅲ)设双曲线C:x2a2-y2b2=1 (a>0,b>0)的一条渐近线为y=2x,则C的离心率为________.解析:由双曲线的一条渐近线为y=2x可知,ba=2,即b=2a.在双曲线中,c2=a2+b2,所以c2=3a2,所以e=ca=3.答案:37.已知点P为双曲线x216-y29=1右支上一点,点F1,F2分别为双曲线的左、右焦点,M为△PF1F2的内心,若S△PMF1=S△PMF2+8,则△MF1F2的面积为________.解析:由题意知a=4,b=3,则c=5,设△PF1F2内切圆的半径为R,因为S△PMF1=S△PMF2+8,所以12(|PF1|-|PF2|)R=8,即aR=8,所以R=2,所以S△MF1F2=12×2c×R=10.答案:108.如图,F1和F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为________.解析:设F1F2=2c,连接AF1,因为△F2AB是等边三角形,且F1F2是⊙O的直径,所以∠AF2F1=30°,∠F1AF2=90°,所以|AF1|=c,|AF2|=3c,2a=3c-c,e=ca=23-1=3+1.答案:3+19.已知椭圆D:x250+y225=1与圆M:x2+(y-5)2=9,双曲线G与椭圆D有相同焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.解:椭圆D的两个焦点坐标为(-5,0),(5,0),因而双曲线的中心在原点,焦点在x轴上,且c=5.设双曲线G的方程为x2a2-y2b2=1(a>0,b>0),所以渐近线方程为bx±ay=0且a2+b2=25,又圆心M (0,5)到两条渐近线的距离为3. 所以|5a|b2+a2=3,得a =3,b =4,所以双曲线G 的方程为x29-y216=1. 10.已知双曲线Γ:x 2-y2b2=1(b >0).(1)若Γ的一条渐近线方程为y =2x ,求Γ的方程;(2)设F 1,F 2是Γ的两个焦点,P 为Γ上一点,且PF 1⊥PF 2,△PF 1F 2的面积为9,求b 的值.解:(1)因为双曲线Γ:x 2-y2b2=1(b >0)的一条渐近线方程为y =2x ,所以ba =2,所以b =2.因此Γ的方程为x 2-y24=1.(2)由双曲线定义可得||PF 1|-|PF 2||=2a =2. 又PF 1⊥PF 2,△PF 1F 2的面积为9,所以|PF 1||PF 2|=18,且|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,所以4c 2=|PF 1|2+|PF 2|2=(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=40,故c 2=10,所以b 2=10-1=9,因此b =3.[B 级 综合练]11.(多选)已知抛物线y 2=4x 的准线过双曲线C :x2a2-y2b2=1(a >0,b >0)的左焦点F ,且与双曲线交于A ,B 两点,O 为坐标原点,且△AOB 的面积为32,则( )A .C 的方程为x214-y234=1B .C 的两条渐近线的夹角为60° C .点F 到C 的渐近线的距离为3D .C 的离心率为2解析:选ABD.由题意易知,抛物线y 2=4x 的准线方程为x =-1,所以双曲线C :x2a2-y2b2=1(a >0,b >0)的左焦点F 的坐标为(-1,0),c =1,从而b 2=1-a 2.把x =-1,b 2=1-a 2代入x2a2-y2b2=1,整理得y =±1-a2a ,所以|AB |=2(1-a2)a ,S △AOB =12×|AB |×c =12×2(1-a2)a ×1=32,得a =12,所以双曲线C 的方程为x214-y234=1,故A正确;C 的渐近线方程为y =±3x ,所以两条渐近线的夹角为60°,故B 正确;F (-1,0)到y =±3x 的距离d =32,故C 错误;C 的离心率e =ca =2,故D 正确.12.已知M (x 0,y 0)是双曲线C :x22-y 2=1上的一点,F 1,F 2是双曲线C 的两个焦点.若MF1→·MF2→<0,则y 0的取值范围是________.解析:由题意知a =2,b =1,c =3, 设F 1(-3,0),F 2(3,0),则MF1→=(-3-x 0,-y 0),MF2→=(3-x 0,-y 0).因为MF1→·MF2→<0, 所以(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.因为点M (x 0,y 0)在双曲线C 上, 所以x202-y 20=1,即x 20=2+2y 20,所以2+2y 20-3+y 20<0,所以-33<y 0<33. 答案:⎝ ⎛⎭⎪⎫-33,33 13.已知双曲线C :x2a2-y2b2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)过双曲线右焦点F 2作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求|AB |.解:(1)因为双曲线C :x2a2-y2b2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点,所以⎩⎨⎧c a =3,a =3,解得c =3,b =6, 所以双曲线的方程为x23-y26=1.(2)双曲线x23-y26=1的右焦点为F 2(3,0),所以经过双曲线右焦点F 2且倾斜角为30°的直线的方程为y =33(x -3). 联立⎩⎪⎨⎪⎧x23-y26=1,y =33(x -3),得5x 2+6x -27=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-65,x 1x 2=-275. 所以|AB |=1+13×⎝ ⎛⎭⎪⎫-652-4×⎝ ⎛⎭⎪⎫-275=1635. 14.设A ,B 分别为双曲线x2a2-y2b2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM→+ON →=tOD →(O 为坐标原点),求t 的值及点D 的坐标.解:(1)由题意知a =23,因为一条渐近线为y =ba x ,即bx -ay =0,所以由焦点到渐近线的距离为3,得|bc|b2+a2=3.又因为c 2=a 2+b 2,所以b 2=3, 所以双曲线的方程为x212-y23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0)(x 0>0),则x 1+x 2=tx 0,y 1+y 2=ty 0. 将直线方程y =33x -2代入双曲线方程x212-y23=1得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12.所以⎩⎪⎨⎪⎧x0y0=433,x2012-y 203=1.解得⎩⎪⎨⎪⎧x0=43,y0=3.所以t =4,点D 的坐标为(43,3).[C 级 创新练]15.一种画双曲线的工具如图所示,长杆OB 通过O 处的铰链与固定好的短杆OA 连接,取一条定长的细绳,一端固定在点A ,另一端固定在点B ,套上铅笔(如图所示).作图时,使铅笔紧贴长杆OB ,拉紧绳子,移动笔尖M (长杆OB 绕O 转动),画出的曲线即双曲线的一部分.若|OA |=10,|OB |=12,细绳长为8,则所得双曲线的离心率为( )A.65B.54C.32D.52解析:选 D.设|MB |=t ,则由题意,可得|MO |=12-t ,|MA |=8-t ,有|MO |-|MA |=4<|AO |=10,由双曲线的定义可得动点M 的轨迹为双曲线的一支,且双曲线的焦距2c =10,实轴长2a =4,即c =5,a =2,所以e =c a =52.故选D.16.已知一簇双曲线E n :x 2-y 2=n19(n ∈N *,且n ≤19),设直线x =2与E n 在第一象限内的交点为A n ,点A n 在E n 的两条渐近线上的射影分别为B n ,C n .记△A n B n C n 的面积为a n ,则a 1+a 2+a 3+…+a 19=________.解析:因为双曲线的方程为x 2-y 2=n19(n ∈N *且n ≤19),所以其渐近线方程为y =±x ,设点A n (2,y n ),则4-y 2n =n19(n ∈N *,且n ≤19).记A n (2,y n )到两条渐近线的距离分别为d 1,d 2,则S △A n B n C n =12d 1d 2=12×|2+yn|2×|2-yn|2=|4-y2n |4=n194=n 4×19,故a n =n 4×19,因此{a n }为等差数列,故a 1+a 2+a 3+…+a 19=14×19×19+14×19×19×182=52.答案:52。