实验报告五、六(相关与回归)
- 格式:doc
- 大小:790.50 KB
- 文档页数:22
相关分析和回归分析的实践报告总结下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!相关分析和回归分析的实践报告总结在数据分析领域,相关分析和回归分析是两种常见的统计方法,用于探究变量之间的关系和预测未来趋势。
回归分析实验报告回归分析实验报告引言回归分析是一种常用的统计方法,用于研究两个或多个变量之间的关系。
通过回归分析,我们可以了解变量之间的因果关系、预测未来的趋势以及评估变量对目标变量的影响程度。
本实验旨在通过回归分析方法,探究变量X对变量Y 的影响,并建立一个可靠的回归模型。
实验设计在本实验中,我们选择了一个特定的研究领域,并采集了相关的数据。
我们的目标是通过回归分析,找出变量X与变量Y之间的关系,并建立一个可靠的回归模型。
为了达到这个目标,我们进行了以下步骤:1. 数据收集:我们从相关领域的数据库中收集了一组数据,包括变量X和变量Y的观测值。
这些数据是通过实验或调查获得的,具有一定的可信度。
2. 数据清洗:在进行回归分析之前,我们需要对数据进行清洗,包括处理缺失值、异常值和离群点。
这样可以保证我们得到的回归模型更加准确可靠。
3. 变量选择:在回归分析中,我们需要选择适当的自变量。
通过相关性分析和领域知识,我们选择了变量X作为自变量,并将其与变量Y进行回归分析。
4. 回归模型建立:基于选定的自变量和因变量,我们使用统计软件进行回归分析。
通过拟合回归模型,我们可以获得回归方程和相关的统计指标,如R方值和显著性水平。
结果分析在本实验中,我们得到了如下的回归模型:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1分别表示截距和斜率,ε表示误差项。
通过回归分析,我们得到了以下结果:1. 回归方程:根据回归分析的结果,我们可以得到回归方程,该方程描述了变量X对变量Y的影响关系。
通过回归方程,我们可以预测变量Y的取值,并评估变量X对变量Y的影响程度。
2. R方值:R方值是衡量回归模型拟合优度的指标,其取值范围为0到1。
R方值越接近1,说明回归模型对数据的拟合程度越好。
通过R方值,我们可以评估回归模型的可靠性。
3. 显著性水平:显著性水平是评估回归模型的统计显著性的指标。
通常,我们希望回归模型的显著性水平低于0.05,表示回归模型对数据的拟合是显著的。
回归分析实验报告1. 引言回归分析是一种用于探索变量之间关系的统计方法。
它通过建立一个数学模型来预测一个变量(因变量)与一个或多个其他变量(自变量)之间的关系。
本实验报告旨在介绍回归分析的基本原理,并通过一个实际案例来展示其应用。
2. 回归分析的基本原理回归分析的基本原理是基于最小二乘法。
最小二乘法通过寻找一条最佳拟合直线(或曲线),使得所有数据点到该直线的距离之和最小。
这条拟合直线被称为回归线,可以用来预测因变量的值。
3. 实验设计本实验选择了一个实际数据集进行回归分析。
数据集包含了一个公司的广告投入和销售额的数据,共有200个观测值。
目标是通过广告投入来预测销售额。
4. 数据预处理在进行回归分析之前,首先需要对数据进行预处理。
这包括了缺失值处理、异常值处理和数据标准化等步骤。
4.1 缺失值处理查看数据集,发现没有缺失值,因此无需进行缺失值处理。
4.2 异常值处理通过绘制箱线图,发现了一个销售额的异常值。
根据业务经验,判断该异常值是由于数据采集错误造成的。
因此,将该观测值从数据集中删除。
4.3 数据标准化为了消除不同变量之间的量纲差异,将广告投入和销售额两个变量进行标准化处理。
标准化后的数据具有零均值和单位方差,方便进行回归分析。
5. 回归模型选择在本实验中,我们选择了线性回归模型来建立广告投入与销售额之间的关系。
线性回归模型假设因变量和自变量之间存在一个线性关系。
6. 回归模型拟合通过最小二乘法,拟合了线性回归模型。
回归方程为:销售额 = 0.7 * 广告投入 + 0.3回归方程表明,每增加1单位的广告投入,销售额平均增加0.7单位。
7. 回归模型评估为了评估回归模型的拟合效果,我们使用了均方差(Mean Squared Error,MSE)和决定系数(Coefficient of Determination,R^2)。
7.1 均方差均方差度量了观测值与回归线之间的平均差距。
在本实验中,均方差为10.5,说明模型的拟合效果相对较好。
回归分析实验报告总结引言回归分析是一种用于研究变量之间关系的统计方法,广泛应用于社会科学、经济学、医学等领域。
本实验旨在通过回归分析来探究自变量与因变量之间的关系,并建立可靠的模型。
本报告总结了实验的方法、结果和讨论,并提出了改进的建议。
方法实验采用了从某公司收集到的500个样本数据,其中包括了自变量X和因变量Y。
首先,对数据进行了清洗和预处理,包括删除缺失值、处理异常值等。
然后,通过散点图、相关性分析等方法对数据进行初步探索。
接下来,选择了合适的回归模型进行建模,通过最小二乘法估计模型的参数。
最后,对模型进行了评估,并进行了显著性检验。
结果经过分析,我们建立了一个多元线性回归模型来描述自变量X对因变量Y的影响。
模型的方程为:Y = 0.5X1 + 0.3X2 + 0.2X3 + ε其中,X1、X2、X3分别表示自变量的三个分量,ε表示误差项。
模型的回归系数表明,X1对Y的影响最大,其次是X2,X3的影响最小。
通过回归系数的显著性检验,我们发现模型的拟合度良好,P值均小于0.05,表明自变量与因变量之间的关系是显著的。
讨论通过本次实验,我们得到了一个可靠的回归模型,描述了自变量与因变量之间的关系。
然而,我们也发现实验中存在一些不足之处。
首先,数据的样本量较小,可能会影响模型的准确度和推广能力。
其次,模型中可能存在未观测到的影响因素,并未考虑到它们对因变量的影响。
此外,由于数据的收集方式和样本来源的局限性,模型的适用性有待进一步验证。
为了提高实验的可靠性和推广能力,我们提出以下改进建议:首先,扩大样本量,以提高模型的稳定性和准确度。
其次,进一步深入分析数据,探索可能存在的其他影响因素,并加入模型中进行综合分析。
最后,通过多个来源的数据收集,提高模型的适用性和泛化能力。
结论通过本次实验,我们成功建立了一个多元线性回归模型来描述自变量与因变量之间的关系,并对模型进行了评估和显著性检验。
结果表明,自变量对因变量的影响是显著的。
回归分析实验报告实验报告:回归分析摘要:回归分析是一种用于探究变量之间关系的数学模型。
本实验以地气温和电力消耗量数据为例,运用回归分析方法,建立了气温和电力消耗量之间的线性回归模型,并对模型进行了评估和预测。
实验结果表明,气温对电力消耗量具有显著的影响,模型能够很好地解释二者之间的关系。
1.引言回归分析是一种用于探究变量之间关系的统计方法,它通常用于预测或解释一个变量因另一个或多个变量而变化的程度。
回归分析陶冶于20世纪初,经过不断的发展和完善,成为了数量宏大且复杂的数据分析的重要工具。
本实验旨在通过回归分析方法,探究气温与电力消耗量之间的关系,并基于建立的线性回归模型进行预测。
2.实验设计与数据收集本实验选择地的气温和电力消耗量作为研究对象,数据选取了一段时间内每天的气温和对应的电力消耗量。
数据的收集方法包括了实地观测和数据记录,并在数据整理过程中进行了数据的筛选与清洗。
3.数据分析与模型建立为了探究气温与电力消耗量之间的关系,需要建立一个合适的数学模型。
根据回归分析的基本原理,我们初步假设气温与电力消耗量之间的关系是线性的。
因此,我们选用了简单线性回归模型进行分析,并通过最小二乘法对模型进行了估计。
运用统计软件对数据进行处理,并进行了以下分析:1)描述性统计分析:计算了气温和电力消耗量的平均值、标准差和相关系数等。
2)直线拟合与评估:运用最小二乘法拟合出了气温对电力消耗量的线性回归模型,并进行了模型的评估,包括了相关系数、残差分析等。
3)预测分析:基于建立的模型,进行了其中一未来日期的电力消耗量的预测,并给出了预测结果的置信区间。
4.结果与讨论根据实验数据的分析结果,我们得到了以下结论:1)在地的气温与电力消耗量之间存在着显著的线性关系,相关系数为0.75,表明二者之间的关系较为紧密。
2)构建的线性回归模型:电力消耗量=2.5+0.3*气温,模型参数的显著性检验结果为t=3.2,p<0.05,表明回归系数是显著的。
实验报告用EXCEL进行相关与回归分析
一、实验介绍
本实验通过用Excel进行相关和回归分析,以探讨两个变量之间的关系。
二、实验步骤
(1)首先,在Excel中收集数据,并将这些数据编入表格,表格中
的每一列分别表示变量,每一行表示一组观测数据;
(2)进行相关分析,首先,需要在Excel中计算出两个变量之间的
相关系数,然后判断相关系数的绝对值,确定变量之间的相关关系;
(3)接着,进行回归分析,在回归分析中,可以使用线性回归、非
线性回归等方法,用Excel中的函数计算出回归方程,以及回归系数r2,表示变量之间的回归关系;
(4)最后,根据实验结果,利用Excel拟合数据,画出变量之间的
拟合曲线,作出实验结果的图解;
三、实验结果
本次实验使用的数据集是一组实验观测数据,观测数据为抽样数据,
表示其中一种物品同时装入不同重量时的质量损失情况,两个变量分别为
物品的重量和质量损失。
在相关分析中,使用Excel函数计算出来的两个变量之间的相关系数为:0.837、根据结果可以判断,两个变量之间有较强的相关性。
而在回归分析中,使用Excel函数计算出来的线性回归方程为:
y=0.36x-1.27,回归系数r2为:0.701、由此可以看出,两个变量之间有较强的回归关系。
相关与回归分析实验报告记录————————————————————————————————作者:————————————————————————————————日期:学号:2014106146课程论文题目统计学实验学院数学与统计学院专业金融数学班级14金融数学学生姓名罗星蔓指导教师胡桂华职称教授2016 年 6 月21 日相关与回归分析实验报告一、实验目的:用EXCEL进行相关分析和回归分析.二、实验内容:1.用EXCEL进行相关分析.2.用EXCEL进行回归分析.三、实验步骤采用下面的例子进行相关分析和回归分析.学生数学分数(x)统计学分数(y)1 2 3 4 5 6 7 8 9 10 8090609078879045878085927090839094509382相关分析:数学分数(x)统计学分数(y)数学分数(x) 1统计学分数(y) 0.986011 1回归分析:SUMMARY OUTPUT回归统计Multiple R 0.986011R Square 0.972217Adjusted RSquare0.968744标准误差 2.403141观测值x方差分析df SS MS F SignificanceF回归分析11616.6991616.699279.94381.65E-07残差8 46.200695.775086总计9 1662.9Coefficients 标准误差t StatP-valueLower95%Upper95%下限95.0%上限95.0%Intercept 12.32018 4.2862792.874330.0206912.43600522.204362.43600522.20436数学分数(x)0.8968210.05360116.731521.65E-070.7732181.0204240.7732181.020424RESIDUAL OUTPUT观测值预测统计学分数(y)残差标准残差1 84.06587 0.934133 0.4122932 93.03408 -1.03408 -0.45643 66.12945 3.870554 1.7083244 93.03408 -3.03408 -1.339135 82.27223 0.727775 0.3212146 90.34361 -0.34361 -0.151667 93.03408 0.965922 0.4263238 52.67713 -2.67713 -1.181599 90.34361 2.656385 1.17243310 84.06587 -2.06587 -0.9118 PROBABILITY OUTPUT百分比排位统计学分数(y)5 50 15 70 25 82 35 83 45 85 55 90 65 90 75 9285 93 95 94学生成绩020406080100024681012学生编号分数数学分数(x)统计学分数(y)数学分数(x) Residual Plot-4-20246020406080100数学分数(x)残差数学分数(x) Line Fit Plot 050100050100数学分数(x)统计学分数(y )统计学分数(y)预测 统计学分数(y)Normal Probability Plot050100020406080100Sample Percentile统计学分数(y )结果分析相关系数Multiple R=0.986011> 0.8 可以进行回归分析。
相关与回归分析实验报告一、实验目的:学会根据一组数据,来分析其相关性,根据其相关性的分析,再进行回归分析。
学会运用EXCEL中的数据分析软件,并对数据进行回归分析。
得出一元线性回归方程,并对其检验评价。
二、实验环境实验地点:实训楼计算机实验中心五楼实验室3试验时间:第十二周周二实验软件:Microsoft Excel 2003三、实验原理:变量之间的相关关系需要用相关分析法来进行识别和判断。
相关分析,就是借助于图形或若干分析指标对变量之间的依存关系的密切程度进行测定的过程。
相关关系通常通过散点图、相关系数进行识别。
一元线性回归(linear regression)是描述两个变量之间相互联系的最简单的回归模型(regression model).通过一元线性回归模型的建立过程,我们可以了解回归分析方法的基本统计思想以及它在经济问题研究中的应用原理。
四、实验内容1 相关分析:(选择的变量是什么?然后开始进行相关分析)以绝对数(元)为自变量x,指数 (1978=100)为因变量y。
图1.1 (1)散点图图1.2图1.3(2)相关系数的计算在标题栏里找到:工具→数据分析→相关系数→导入数据→输出结果由图表可知相关系数r=0.9893,由散点图的分布以及相关系数的结果可推测,x 与y相关系数很高,且成一元线性回归,故继续对以上两个变量进行回归分析所以相关系数R=0.9893,为高度正线性相关。
2 回归分析:现对变量进行回归分析,工具→数据分析→回归,即可得到下图图1.4图1.5点击确定,即可得到以下结果。
图1.6(继续对上面两个变量进行回归分析)(1)三个表格输出:可以输出几个重要的量:R square,Syx,F,2个系数coefficientsR square=0.9893S yx =δ^=2^^102---∑∑∑n xy y y ββ=461.3088F=1853.55(2)回归方程:回归方程为y ^^=β0+β1X,β1=∑∑∑∑∑--2)(2xi xi n yi xi xiyi n =0.045β0 =y -β1x =114.7285091所以回归方程y=114.7285091+0.045x(3)方程的评价:在数据中,F=1853.55,sig F<0.0001说明回归方程整体显著性差,b 的t 统计量t= 21.66,回归方程比较合理。
回归分析实验报告回归分析实验报告引言:回归分析是一种常用的统计方法,用于探究变量之间的关系。
本实验旨在通过回归分析来研究某一自变量对因变量的影响,并进一步预测未来的趋势。
通过实验数据的收集和分析,我们可以得出一些有关变量之间关系的结论,并为决策提供依据。
数据收集:在本次实验中,我们收集了一组数据,包括自变量X和因变量Y的取值。
为了保证数据的可靠性和准确性,我们采用了随机抽样的方法,并对数据进行了严格的统计处理。
数据分析:首先,我们进行了数据的可视化分析,绘制了散点图以观察变量之间的分布情况。
通过观察散点图,我们可以初步判断变量之间是否存在线性关系。
接下来,我们使用回归分析方法对数据进行了拟合,并得到了回归方程。
回归方程:通过回归分析,我们得到了如下的回归方程:Y = a + bX其中,a表示截距,b表示斜率。
回归方程可以用来预测因变量Y在给定自变量X的取值时的期望值。
回归系数的解释:在回归方程中,截距a表示当自变量X为0时,因变量Y的取值。
斜率b表示自变量X每变动一个单位时,因变量Y的平均变动量。
通过对回归系数的解释,我们可以更好地理解变量之间的关系。
回归方程的显著性检验:为了验证回归方程的有效性,我们进行了显著性检验。
通过计算回归方程的F值和P值,我们可以判断回归方程是否具有统计学意义。
如果P值小于显著性水平(通常为0.05),则我们可以拒绝零假设,即回归方程是显著的。
回归方程的拟合优度:为了评估回归方程的拟合程度,我们计算了拟合优度(R²)。
拟合优度表示因变量的变异程度可以被自变量解释的比例。
拟合优度的取值范围为0~1,值越接近1表示回归方程对数据的拟合程度越好。
回归方程的预测:通过回归方程,我们可以进行因变量Y的预测。
当给定自变量X的取值时,我们可以利用回归方程计算出因变量Y的期望值。
预测结果可以为决策提供参考,并帮助我们了解自变量对因变量的影响程度。
结论:通过本次实验,我们成功地应用了回归分析方法,研究了自变量X对因变量Y的影响,并得到了回归方程。
重庆工商大学数学与统计学院课程
实验报告
实验课程:统计学实验
指导教师:**
专业班级: 09人资二班 ______
学生姓名: ____***__
学生学号:_ **********
实验五相关分析
实验六回归分析
1.下表是亚太地区25所知名商学院本国学生学费与起薪的数据。
要求:①绘制学费与起薪的散点图,
②在Excel中运用常规方法计算学费与起薪的相关系数。
③在Excel中运用函数法计算学费与起薪的相关系数,并解释其含义。
④在Excel中运用数据分析工具计算学费与起薪的相关系数。
2.某大型连锁店调查了12家分店的营业支出和营业收入,结果如下表所示:
要求:①判断营业支出与营业收入呈何种相关关系?请以散点图说明。
②若营业支出与营业收入呈线性相关关系,请在Excel中运用“添加线性趋势
线”、函数法、数据分析工具等三种方法拟合线性方程,并判断该方程是否能说明现象的实际情况。
3.农场通过实验取得早稻收获量与春季降雨量、春季温度的数据如下:
要求:①运用Excel中求收获量、降雨量、温度之间的相关系数矩阵。
②建立以早稻收获量为因变量的二元线性回归方程,并解释回归系数的含义。
实验过程、结果及结果分析
1.(1)①实验过程:
a.将数据进行整理并录入excel中,如图a:
(a)
b.点击插入—图表—xy散点图,如图b:
(b)
c.选定区域,对数据进行录入,如图c:
(c)
d.带图表进行修改,点击系列,填写所要显示的内容,如图d:
(d)
e.插入图表,如图e:
(e)
②实验结果:
得到图表,如图所示:
③实验结果分析:
从散点图可以看出,学费与起薪之间呈直线相关关系,而且是正相关系。
(2)①实验过程:
a .根据相关的公式在excel 中先计算出相对应的各项数据,如图a :
(a)
b .再把数据带入到公式中:
c .根据图表中的数据,输入公式,如图c :
()[]()
[]
2
2
2
2
∑∑∑∑∑∑∑---=
y y
n x x n y
x xy n γ
②实验结果:
求得相关系数r=0.785908592
③实验结果分析:
由相关系数的大小可以判定学费与起薪存在着显著线性正相关关系。
(3)①实验过程:
a.把数据录入到excel表格中,如图a:
(a)
b.单击任一单元格,点击插入-函数选项,在插入函数对话框中选择统计函数CORREL,填写对话框,如图c:
(b)
②实验结果:
求得相关系数r=0.785908592
③实验结果分析:
该相关系数的含义是指学费与起薪存在着显著线性正相关关系。
(4)①实验过程:
a.把数据录入excel表格中,如图a:
(a)
b.点击工具菜单中选择数据分析,选择数据分析工具中的相关系数选项,填写相关系数对话框,如图b:
(b)
②实验结果:求得相关系数r=0.785908592,如图:
③实验结果分析:
该相关系数的含义是指学费与起薪存在着显著线性正相关关系。
2.(1)①实验过程:
a.将数据进行整理并录入excel中,如图a:
(a)
b.点击插入—图表—xy散点图,选定所选的区域,如图b:
(b)
c.按照图表指示对图标进行改进,如图c:
(c)
②实验结果:
得到如下结果图表:
③实验结果分析:
从散点图可以看出,营业支出和营业收入之间存在着直线相关关系,而且还是正相关关系。
(2)(1).实验过程:
■添加线性趋势线法
①实验过程:
a.在散点图的基础上,单击散点图中任一数据点使数据点放大突出,用鼠标对准
任一数据点,点击右键,显示选项,选择“添加趋势线”命令,显示对话框,
如图a:
(a)
b.单击选项,对图表进行修饰和改进,如图b:
(b)
②实验结果:
得到结果图表如下图:
■函数法
①实验过程:
a.将数据进行整理并录入excel中,如图a:
(a)
b.点击插入菜单中选择函数,在“插入函数”对话框中选择统计函数linest,如图b:
(b) c.填写函数linest的对话框,如图c:
(c)
②实验结果:
得到趋势线方程为:y=1.6343x-2
■数据分析工具
①实验过程:
a.将数据进行整理并录入excel中,如图a:
(a)
b.点击工具菜单中选择数据分析选项,选择回归,进入回归对话框,填写数据区域,如图b:
(b)
c .得到图表,如图c :
Normal Probability Plot
010200
20
406080100
120
Sample Percentile
收入(万元)
支出(万元) Line Fit Plot
010200
51015
支出(万元)
收入(万元)
收入(万元)预测 收入(万元)
支出(万元) Residual Plot
-4
-20240510
15
支出(万元)
残差
(c )
② 实验结果:
趋势线方程为:y=1.6343x-2.1741
(2).实验结果分析
从t 检验看,截距项和回归系数的p 值都远远小于0.05,表明二者都是显著的,从F 检验看,significance F 为2.61E-06,说明模型整体也是显著的,因此,该方程能说明现实情况。
3.(1)①实验过程:
a .将数据进行整理并录入excel 中,如图a :
(a)
b.单击工具选择数据分析选项,选择相关系数,单击相关系数对话框,如图b:
(b)
②实验结果:
得到图表,如下图:
③实验结果分析:
结果表收获量与降雨量、收获量与温度之间相关系数分别为0.9835、0.9897,且为完全正相关关系。
(2)①实验过程:
a.将数据进行整理并录入excel中,如图a:
(a)
b.单击工具选择数据分析选项,选择回归,填写回归对话框,如图b:
(b)
c.得到图表,如图c:
(c)
②实验结果:
二元线性回归方程为:y=-0.5909+22.3864x1+327.6717x2
③实验结果分析:
回归系数22.3864表示在温度固定时,降雨量每增加1毫米,收获量平均增加22.3864公斤;回归系数327.6717表示在降雨量固定时,温度每上升1℃,收获量平均增加327.6717公斤。