全国大学生数学建模2012年A题 附件1-葡萄酒品尝评分表
- 格式:xls
- 大小:210.50 KB
- 文档页数:18
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规如此.我们完全明白,在竞赛开始后参赛队员不能以任何方式〔包括、电子、网上咨询等〕与队外的任何人〔包括指导教师〕研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规如此的, 如果引用别人的成果或其他公开的资料〔包括网上查到的资料〕,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们X重承诺,严格遵守竞赛规如此,以保证竞赛的公正、公平性。
如有违反竞赛规如此的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进展公开展示〔包括进展网上公示,在书籍、期刊和其他媒体进展正式或非正式发表等〕。
我们参赛选择的题号是〔从A/B/C/D中选择一项填写〕: A我们的参赛报名号为〔如果赛区设置报名号的话〕:所属学校〔请填写完整的全名〕:参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月 7 日赛区评阅编号〔由赛区组委会评阅前进展编号〕:编号专用页赛区评阅编号〔由赛区组委会评阅前进展编号〕:全国统一编号〔由赛区组委会送交全国前编号〕:全国评阅编号〔由全国组委会评阅前进展编号〕:葡萄酒的评价摘要目前,葡萄酒备受大家的青睐,其质量也日益受到人们的关注。
葡萄酒的质量与酿酒葡萄的好坏有直接关系,葡萄酒和酿酒葡萄的理化指标会在一定程度上反响葡萄酒和酿酒葡萄的质量。
对于问题1,我们采用方差分析的方法建模解决。
根本思路是:对两组评酒员的评价结果进展单因素方差分析,然后再用F检验对得出的结果进展进一步验证,得出两组评酒员的评价结果无显著性差异,通过比拟两组评酒员评价结果的方差值,得出第二组的结果更可信。
对于问题2,我们采用主成分分析方法,建立综合评价模型,对酿酒葡萄进展分级。
根本思路是运用因子分析的方法,以特征值大于1为标准,得出酿酒葡萄理化指标的8种主成分,在此根底上把综合因子作为一项排名指标,结合问题1得出的葡萄酒的质量,对酿酒葡萄进展排名,用两种排名的名次之和作为对酿酒葡萄分级的主要依据。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):指导组日期:2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文主要根据评酒员对葡萄酒的一系列指标的打分,从而对葡萄酒的质量作出判别。
考虑到酿酒葡萄的好坏、所酿葡萄酒的质量和酿酒工艺、陈酿技术等约束条件,为此我们建立模型来确定影响葡萄酒评价的各种因素。
在这模型中利用excel,spss,matlab等一系列的数学工具对模型进行求解,综合统计分析的应用对所给的结果进行比较,从而得出最终的结果。
首先,对于问题1,分析两组评酒员的评价结果,每个评酒员对外观、口感、香气、平衡/整体四个方面指标得分进行求和,得到其总分,确定葡萄酒的质量。
由于葡萄酒的质量满足正态分布,为了能分辨出两组的差异,所以利用spss进行配对T检验,从而得出两组评酒员有显著的差异。
其次,用excel对两组进行方差分析,根据所得到的P值大小,得出第一组的评价结果更为可信。
对于问题2,在问题1的基础下,根据所给的理化指标和葡萄酒的质量利用spss统计分析软件进行分析,相关性分析对数据进行预备分析,剔除与葡萄酒质量无显著性相关的指标,再利用系统聚类的方法对酿酒葡萄进行分级。
葡萄酒质量评定模型摘要葡萄酒质量的评定长久以来都是采用聘请品酒员,通过品酒员对葡萄酒各项指标打分求和来确定葡萄酒的质量。
葡萄酒的价格因品酒员评分高低的不同有显著的差别。
然而在这样的评定方式中人的主观因素对酒质量的评定占主导地位,葡萄酒质量的评定结果存在较大的不确定性。
随着人们对葡萄酒消费的增加及高质量化的追求,建立合理、规范、客观的葡萄酒质量评定模型显得尤为重要。
根据题中给出的相关数据,通过解决以下问题建立葡萄酒质量评定模型。
对于问题一:首先,将题目附录1中的数据经Excel处理,得到每组评酒员对每种酒样品的总分。
然后,对每一种酒样品运用两配对样本的非参数检验(符号秩和检验)对数据进行显著性差异分析,运用MATLAB软件比较各酒样品的两组数据发现两组结果差异显著。
其次,通过Excel求出每一种酒的品酒员所打总分的方差,得到两组品酒员分别对两类葡萄酒的方差走势图(见图1.1、1.2),根据总体方差最小,方差波动较小,确定第二组品酒员的评分更可信。
最后,采用SPSS软件作进一步检验,结果相同即模型合理。
对于问题二,选取一级理化指标作为酿酒葡萄分级参考,对理化指标运用主成分分析法降维,通过MATLAB计算得到红葡萄的主成分有8个,白葡萄的主成分有11个。
综合评分得到的葡萄酒质量影响,红葡萄的影响因素有9个,白葡萄的影响因素有12个。
然后,利用折衷型模糊决策模型,考虑到由主成分分析方法得到的酿酒葡萄的的主成分值在反应酿酒葡萄质量好坏问题上会有一定的偏差,利用三角模糊的表达方式对主成分指标值进行表示,分别将红、白两类酿酒葡萄按隶属度大小排序,在运用聚类分析的方法,利用SPSS软件将葡萄划分为五个等级(见表格2.1)。
对于问题三,数据的庞杂是解决该问题的难点。
我们运用问题二中的主成分分析方法将理化指标转化为几个主成分,并运用MATLAB编程求出具体的主成分数值,然后建立线性回归模型,求解出酿酒葡萄与葡萄酒理化指标主成分之间的相关关系,从而反映出酿酒葡萄与葡萄酒理化指标之间的联系。
葡萄酒理化指标与质量的评鉴分析摘要用好的葡萄也许酿不出好酒,但没人能用劣质葡萄酿出好酒。
巧妇难为无米之炊,再优秀的酿酒师,如果没有优质的葡萄,也很难酿出好酒。
不同葡萄品种酿制出的葡萄酒是不同的,但是,除了品种间的差异,葡萄自身的质量是酿制高品质葡萄酒的关键。
本文通过建立meansK-聚类模型、典型相关分析等模型,逐步探求用葡萄和葡萄酒的理化指标来评鉴葡萄酒质量的方法。
问题一要求我们分析附件1中两组评酒员的评价结果是否存在显著性差异,为此我们依据小概率原理建立模型Ⅰ-显著性检验模型。
首先我们利用F检验求解两组评酒员之间是否存在显著性差异,再利用配对t检验对检验样本做再次检验,以提高研究效率,确保评价结果的准确性。
利用Excel软件处理数据后,进行t、F的联合检验,当联合检验均被接受,得到两组评酒员的评价结果有显著性差异的结论。
同时通过对两组品酒员对55种葡萄酒样品评分的稳定性、统一性分析,确定第二组品酒员的评价结果更可信。
针对问题二本文根据附件2提供的数据,利用模糊数学原理[3],建立模型ⅢK-聚类模型,对酿酒葡萄进行分类,再以葡萄酒品尝评分作为质量评价依据,means对酿酒葡萄进行分级。
首先,考虑到酿酒葡萄的理化指标过多,不便分类,我们利用多元统计分析原理对红、白酿酒葡萄进行主成分分析,得出红、白酿酒葡萄分别有8个和11个主成分,从而大大减少了分类指标。
再利用meansK-算法求出最佳聚类数k,建立meansK-聚类模型对各种葡萄样品在各个主成分上的得分进行聚类,将红、白葡萄样品分别划分为3类和4类。
最后,根据每个类别中葡萄样品对应的葡萄酒的品尝评分,对各类酿酒葡萄进行分级。
针对问题三建立模型Ⅳ-典型相关分析模型,定量分析酿酒葡萄与葡萄酒的理化指标之间的联系。
我们首先选取酿酒葡萄与葡萄酒皆含有的花色苷、单宁等成分作为理化指标,然后构建典型相关分析模型,研究酿酒葡萄与葡萄酒两组样品的理化指标之间的相关性。
2012年数学建模大赛A题解题思路首先纠正一下对于数学建模的看法,数学建模重要的是一种数学思想,即使是没有牢固的数学根底,一样可以在建模的赛场上大放异彩。
下面先把试题读一下,个人认为的重点词汇已经标出出来。
(不要盲目听从任何人所谓的专家建议)A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)解题思路:1、众所周知,对于同一事物的评价,如果大家的意见越一致,那么评价的可信度就越高。
所以对于问题1的解题思路也就清晰明了了。
我们可以通过离散度(所谓离散程度,即观测变量各个取值之间的差异程度。
它是用以衡量风险大小的指标。
)这一概念来对每一组评酒员作出的评估作出风险分析。
显而易见的是若风险评估的值越高,这组评酒员的评价就存在问题了。
若风险评估值大小相当,这说明这两组评酒员是没有明显差异的。
2、题目中要求对葡萄作出评级。
看起来似乎没有思路,那么我们可以动一下我们的小脑筋。
既然对于评级我们没有参考标准,那么我们可以参考评酒员的评价。
即使用逆向思维,从评酒员的评分发出,那么大体上葡萄的分级基本上就能确定下来,根据确定先来的葡萄分级进行逆推,就可以得出结论。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):指导组日期:2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):2葡萄酒的评价摘要本文主要根据评酒员对葡萄酒的一系列指标的打分,从而对葡萄酒的质量作出判别。
考虑到酿酒葡萄的好坏、所酿葡萄酒的质量和酿酒工艺、陈酿技术等约束条件,为此我们建立模型来确定影响葡萄酒评价的各种因素。
在这模型中利用excel,spss,matlab等一系列的数学工具对模型进行求解,综合统计分析的应用对所给的结果进行比较,从而得出最终的结果。
首先,对于问题1,分析两组评酒员的评价结果,每个评酒员对外观、口感、香气、平衡/整体四个方面指标得分进行求和,得到其总分,确定葡萄酒的质量。
由于葡萄酒的质量满足正态分布,为了能分辨出两组的差异,所以利用spss进行配对T检验,从而得出两组评酒员有显著的差异。
其次,用excel对两组进行方差分析,根据所得到的P值大小,得出第一组的评价结果更为可信。
对于问题2,在问题1的基础下,根据所给的理化指标和葡萄酒的质量利用spss统计分析软件进行分析,相关性分析对数据进行预备分析,剔除与葡萄酒质量无显著性相关的指标,再利用系统聚类的方法对酿酒葡萄进行分级。
306第二十一篇 葡萄酒质量的影响因素分析2012年A 题 葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格);附件2:葡萄和葡萄酒的理化指标(含2个表格); 附件3:葡萄和葡萄酒的芳香物质(含4个表格); 原题详见2012年全国大学生数学建模竞赛A 题。
葡萄酒质量的影响因素分析*摘要:本文针对葡萄酒和葡萄质量的评价问题,通过t 检验、模糊聚类分析、相关性分析等多种方法,综合分析了评酒员葡萄酒品尝评分结果、葡萄和葡萄酒的理化指标以及葡萄和葡萄酒的芳香物质数据,建立了葡萄和葡萄酒的理化指标对葡萄以及葡萄酒质量的影响关系多元线性回归数学模型,运用EXCEL 、Matlab 软件得出了酿酒葡萄和葡萄酒之间的理化关系。
最后,将模型结果和实际酿酒过程相结合,做出了根据酿酒葡萄和葡萄酒理化指标对葡萄酒质量进行评价的模型,对如何固化葡萄酒质量评判标准提出了相关可行性方案。
针对问题一,根据评酒员对葡萄酒品尝评分结果数据,分别对红葡萄和白葡萄,首先运用t 检验分析建立了显著性差异的成对数据t 检验模型,分析出两组评酒员的评酒结果具有显著性差异;再运用方差分析建立了方差分析模型,分析出第二组评酒员的评价结果更为可信。
题目: A 队员:指导老师:学校:承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2. .3. .指导教师或指导教师组负责人(打印并签名):教练组日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文对酿酒葡萄理化指标、葡萄酒的评价数据和理化指标数据进行了相关统计处理分析,在此基础上求出数据的相关关系,建立相关分析模型和利用数据拟合,得出各数据间的关系。
以此来评价各个数据和葡萄酒质量间的联系。
对问题一,我们先从评酒员对各组葡萄酒样品的打分角度出发,通过对各组数据进行样本方差,样本标准差,总体标准差(后称标准差),建立离差分析模型,求出各组数据的离散程度,得到散点图,初步确定第二组较第一组可信,然后在对其进行线性分析,利用EXCEL得出各组白葡萄酒和红葡萄酒的标准差比较折线图后,可明显看出第二组评酒员的打分标准差更小,两组评酒员的评价结果有显著差异,因此第二组的结果更加可信。
摘要对于问题一,我们首先对数据进行预处理,分别求出了第一、二组的评酒员对红白葡萄酒品尝评分的平均值,然后把问题转换成两独立样本的参数检验问题。
考虑到两个独立样本分布形态不确定,我们采用非参数检验中的Wilcoxon秩和检验判断样本是否有显著性差异,结果显示两组双侧渐近显著值分别为0.044,0.022,均小于0.05,即两组评酒员的评价结果有显著性差异。
对于可信度,我们是通过标准差来评判,标准差能反映一个数据集的离散程度。
计算得到的标准差值如表5.1.2.3所示,第一组的标准差值均大于第二组,所以可信度比第一组要高。
对于问题二,我们通过spss软件运用聚类分析,将酿酒葡萄大致分为了四类,结果以表5.2.7,表5.2.8显示。
除此之外,我们根据主成分分析法,得到酿酒葡萄的主成分和权重,再计算出综合主成分值,进而对样品进行等级分类。
相比较而言,主成分分析法的等级分类更精确。
对于问题三,酿酒葡萄包含多个理化指标,我们首先根据问题二中主成分分析的成分矩阵表,对其简化得到了相关的主要指标。
然后对酿酒葡萄的理化指标和葡萄酒的理化指标进行双变量相关性分析,得出二者的相关性关系如表5.3.1,表5.3.2所示。
对于问题四,我们将附件一中的平均评分高低视为葡萄酒质量好坏,直接将酿酒葡萄和葡萄酒的理化指标的数据导入spss中,分别进行双变量分析,得出了理化指标与葡萄酒评分的相关性联系,如附录3 所示。
结果发现,在影响白葡萄酒的质量上,白葡萄与白葡萄酒的理化指标皆对其影响不大,没有一个相关系数超过了0.5。
红葡萄酒的影响情况与白葡萄酒一样,但是红葡萄的PH值、果酸、褐变度与多酚化氧活力,这些指标对红葡萄的评分的影响较高,相关系数皆高于了0.5.所以,相对于酿酒葡萄而言,红葡萄的理化指标影响比白葡萄要大,因而不能用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。
关键词:非参数检验聚类分析主成分分析双变量相关性分析 SPSS1问题重述葡萄酒的生产有着非常久远的历史,可上溯至几千年前,它是一种世界通畅性酒种,有着广泛交流的基础,现已发展成最主要的酒种之一。
对葡萄酒的评价分析摘要本文主要应用数理统计中的t检验法,回归分析法等方法对葡萄酒的评价的相关问题进行了分析,建立相应的模型。
针对问题一,首先,对样本进行K-S检验得出数据取自的总体服从正态分布,进而运用成对数据t检验法进行检验,得出两组评酒员对每种葡萄酒的总评分有显著差异;在此基础上,采用两种方法分别判断哪组评酒员的可信度更高。
方法一是计算出每组评酒员对每种葡萄酒的总评分的置信区间,评分处于置信区间内的人次百分比较高的一组可信度较高;方法二是比较两组评酒员对每种葡萄酒的总评分的方差的大小,总体方差分布较小的一组,可信度较高。
两种方法均得出了同一结论,即第二组评酒员的结果更可信。
针对问题二,基于问题一得到的结论,建立了酿酒葡萄品质的综合评价模型。
首先,对数据指标进行归一化处理,并计算出酿酒葡萄与各指标因素间的相关系数。
然后,分别用层次分析法和因子分析法确定了各指标因素的权重。
最后,利用确定的权重,建立了酿酒葡萄品质的综合评价模型,对葡萄进行分级。
如,优质的红葡萄样品是8、23、3、1。
针对问题三,从两个层次建立相关性系数模型。
首先,运用Excel软件分析葡萄酒各理化指标与酿酒葡萄成分的相关性;然后,进一步分析酿酒葡萄的综合评价指标与葡萄酒的理化指标之间的联系。
得出结论:酿酒葡萄的花色苷成分与葡萄酒的花色苷呈显著正相关。
针对问题四,分别建立回归分析模型和综合评价模型,其中综合评价模型建立方法同问题二,回归分析模型则先将葡萄和葡萄酒的各理化指标进行因子分析法降维后得数量较少的因子变量,对简化后的新指标进行回归分析,此处尝试用SPSS软件的回归分析中5种回归拟合方法,继而选取拟合度最佳的模型,得回归系数,建立多元线性回归方程分析各理化指标对葡萄酒质量的影响;将新指标得分带入方程,可求得线性拟合后的葡萄酒质量评分。
进一步引入芳香物质作为评判指标,同样建立线性回归模型求得葡萄酒质量评分,将有无引入芳香物质作为指标的质量评价结果分别与可信度较高的评酒员对葡萄酒的评价结果进行回归模型检验比较和差值平方和比较,得到结论用葡萄和葡萄酒的理化指标来评价葡萄酒的质量是完全可行的,但加入芳香物质作为评价指标更能准确合理地评价葡萄酒的质量。
A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)B题太阳能小屋的设计在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。
不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。
因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。
附件1-7提供了相关信息。
请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh计算)及投资的回收年限。
在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表。
葡萄酒理化指标与质量的评鉴分析摘要用好的葡萄也许酿不出好酒,但没人能用劣质葡萄酿出好酒。
巧妇难为无米之炊,再优秀的酿酒师,如果没有优质的葡萄,也很难酿出好酒。
不同葡萄品种酿制出的葡萄酒是不同的,但是,除了品种间的差异,葡萄自身的质量是酿制高品质葡萄酒的关键。
本文通过建立meansK-聚类模型、典型相关分析等模型,逐步探求用葡萄和葡萄酒的理化指标来评鉴葡萄酒质量的方法。
问题一要求我们分析附件1中两组评酒员的评价结果是否存在显著性差异,为此我们依据小概率原理建立模型Ⅰ-显著性检验模型。
首先我们利用F检验求解两组评酒员之间是否存在显著性差异,再利用配对t检验对检验样本做再次检验,以提高研究效率,确保评价结果的准确性。
利用Excel软件处理数据后,进行t、F的联合检验,当联合检验均被接受,得到两组评酒员的评价结果有显著性差异的结论。
同时通过对两组品酒员对55种葡萄酒样品评分的稳定性、统一性分析,确定第二组品酒员的评价结果更可信。
针对问题二本文根据附件2提供的数据,利用模糊数学原理[3],建立模型ⅢK-聚类模型,对酿酒葡萄进行分类,再以葡萄酒品尝评分作为质量评价依据,means对酿酒葡萄进行分级。
首先,考虑到酿酒葡萄的理化指标过多,不便分类,我们利用多元统计分析原理对红、白酿酒葡萄进行主成分分析,得出红、白酿酒葡萄分别有8个和11个主成分,从而大大减少了分类指标。
再利用meansK-算法求出最佳聚类数k,建立meansK-聚类模型对各种葡萄样品在各个主成分上的得分进行聚类,将红、白葡萄样品分别划分为3类和4类。
最后,根据每个类别中葡萄样品对应的葡萄酒的品尝评分,对各类酿酒葡萄进行分级。
针对问题三建立模型Ⅳ-典型相关分析模型,定量分析酿酒葡萄与葡萄酒的理化指标之间的联系。
我们首先选取酿酒葡萄与葡萄酒皆含有的花色苷、单宁等成分作为理化指标,然后构建典型相关分析模型,研究酿酒葡萄与葡萄酒两组样品的理化指标之间的相关性。
【数学建模】2012年全国⼤学⽣数学建模-葡萄酒的评价问题全⾯解析(附R语⾔实现部分代码)
问题背景
确定葡萄酒质量时⼀般是通过聘请⼀批有资质的评酒员进⾏品评。
每个评酒员在对葡萄酒进⾏品尝后对其分类指标打分,然后求和得到其总分,从⽽确定葡萄酒的质量。
完整代码详见
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在⼀定程度上反映葡萄酒和葡萄的质量。
附件1 给出了某⼀年份⼀些葡萄酒的评价结果。
请尝试建⽴数学模型讨论下列问题:
附件1-葡萄酒品尝评分表
分析附件1 中两组评酒员的评价结果有⽆显著性差异,哪⼀组结果更可信?
根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进⾏分级。
模型建⽴
由于27 种红葡萄酒样品和28 种⽩葡萄酒样品是随机选取的,故两组评酒员对27 种红葡萄酒样品和28 种⽩葡萄酒样品的评分可以认为是随机并且服从正态分布的。
根 据⽅差分析的数学假设前提,可以知道⽅差统计变量是符合F 分布的统计变量,故以 下利⽤F 检验的模型,计算两组数据的差异性。
# ⽅差分析输出
# https:///article/4b07be3c4e314548b380f3a5。