中点坐标、两点距离、直线斜率公式
- 格式:pdf
- 大小:40.92 KB
- 文档页数:1
直线的方程知识点及题型归纳总结知识点精讲一、基本概念 斜率与倾斜角我们把直线y kx b =+中k 的系数k (k R ∈)叫做这条直线的斜率,垂直于x 轴的直线,其斜率不存在。
x 轴正方向与直线向上的方向所成的角叫这条直线的倾斜角。
倾斜角[)0,απ∈,规定与x 轴平行或重合的直线的倾斜角为0,倾斜角不是2π的直线的倾斜角的正切值叫该直线的斜率,常用k 表示,即tan k α=。
当0k =时,直线平行于轴或与轴重合;当0k >时,直线的倾斜角为锐角,倾斜角随k 的增大而增大; 当0k <时,直线的倾斜角为钝角,倾斜角k 随的增大而减小; 二、基本公式1. 111222(,),(,)P x y P x y 两点间的距离公式12||PP =2. 111222(,),(,)P x y P x y 的直线斜率公式121212tan (,)2y y k x x x x παα-==≠≠-3.直线方程的几种形式(1)点斜式:直线的斜率k 存在且过00(,)x y ,00()y y k x x -=- 注:①当0k =时,0y y =;②当k 不存在时,0x x = (2)斜截式:直线的斜率k 存在且过(0,)b ,y kx b =+(3)两点式:112121y y x x y y x x --=--,不能表示垂直于坐标轴的直线。
注:211121()()()()x x y y x x y y --=--可表示经过两点1122(,),(,)P x y Q x y 的所有直线 (4)截距式:1x ya b+=不能表示垂直于坐标轴及过原点的直线。
(5)一般式:220(0)Ax By C A B ++=+≠,能表示平面上任何一条直线(其中,向量(,)n A B =是这条直线的一个法向量)题型归纳及思路提示题型1 倾斜角与斜率的计算 思路提示正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式1212y y k x x -=-,根据该公式求出经过两点的直线斜率,当1212,x x y y =≠时,直线的斜率不存在,倾斜角为90求斜率可用tan (90)k αα=≠,其中α为倾斜角,由此可见倾斜角与斜率相互关联,不可分割。
点差法中点弦斜率公式双曲线
点差法中点弦斜率公式是双曲线研究中的一个重要公式。
双曲线是一种非常特殊的图形,其方程形式为x^2/a^2 - y^2/b^2 = 1,其中a和b均为正实数。
为了研究双曲线,可以使用点差法,该方法可以计算出两个点之间的距离和斜率。
其基本思想是通过两个点之间的差值,计算出斜率。
在点差法中,可以使用点(x,y)和点(x+h,y+k)来计算中点弦的斜率,其中h和k分别表示两个点在x和y方向上的差值。
中点的坐标为(x+(x+h))/2,(y+(y+k))/2,即((2x+h)/2,(2y+k)/2),可以通过代入该坐标来计算出中点弦的斜率。
具体公式为:
k = (2ab^2)/(h√(a^2+b^2))
其中,k表示中点弦的斜率,a和b为双曲线的参数,h为两点在x方向上的差值。
通过这个公式,可以计算出双曲线上任意两点之间的中点弦斜率,从而研究双曲线的性质和特点。
- 1 -。
授课主题直线的倾斜角、斜率与直线的方程教学目标1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 4.掌握两点间的距离公式.教学内容1. 平面直角坐标系中的基本公式(1)两点间的距离公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),则d (A ,B )=x 2-x 12+y 2-y 12.(2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22.2. 直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角.(2)倾斜角的范围:[0°,180°). 3. 直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 (x 1≠x 2).若直线的倾斜角为θ (θ≠π2),则k =tan_θ.4. 直线方程的形式及适用条件名称 几何条件 方程 局限性 点斜式过点(x 0,y 0),斜率为ky -y 0=k (x -x 0)不含垂直于x 轴的直线斜截式斜率为k ,纵截距为by =kx +b不含垂直于x 轴的直线两点式过两点(x 1,y 1),(x 2,y 2),(x 1≠x 2,y 1≠y 2) y -y 1y 2-y 1=x -x 1x 2-x 1 (x 2≠x 1,y 2≠y 1) 不包括垂直于坐标轴的直线 截距式在x 轴、y 轴上的截距分别为a ,b (a ,b ≠0)x a +y b =1 不包括垂直于坐标轴和过原点的直线 一般式Ax +By +C =0平面直角坐标系内的直线都适用题型一 直线的倾斜角与斜率例1、直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.方法点拨:数形结合,由斜率公式求得k P A ,k PB . 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1, k BP =3-00-1=-3,∴k ∈(-∞,-3]∪[1,+∞). 方法技巧求直线倾斜角与斜率问题的求解策略1.求直线倾斜角或斜率的取值范围时,常借助正切函数y =tan x 在[0,π)上的单调性求解,这里特别要注意,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0). 2.先画出满足条件的图形,找到直线所过的点,然后求定点与端点决定的直线的斜率.见典例.【冲关针对训练】已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.答案 -23≤m ≤12解析 如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k P A =-2,k l =-1m ,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.题型二 直线方程的求法又∵2a +1b ≥22ab ⇒12ab ≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4. 此时,直线l 的方程是x 4+y2=1,即x +2y -4=0.(2)设所求直线l 的方程为y -1=k (x -2). 则可得A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0),∴截距之和为2k -1k +1-2k =3-2k -1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+2 2. 此时-2k =-1k ⇒k =-22.故截距之和最小值为3+22,此时l 的方程为y -1=-22(x -2),即x +2y -2-2=0. 方法技巧与直线方程有关问题的常见类型及解题策略1.求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用基本不等式求解最值或用函数的单调性解决.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解. 【冲关针对训练】已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解 (1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4, 当且仅当“a =b =2”时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0, 直线l 的方程为y -1=k (x -1), 则A ⎝⎛⎭⎫1-1k ,0,B (0,1-k ), 所以|MA |2+|MB |2=⎝⎛⎭⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k2=4. 当且仅当k 2=1k2,即k =-1时取等号,此时直线l 的方程为y -1=-(x -1),即x +y -2=0.1.(2017·大庆模拟)两直线x m -y n =a 与x n -ym=a (其中a 是不为零的常数)的图象可能是( )答案 B解析 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号.故选B.2.(2017·豫南九校联考)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( ) A .-12B .-12或-2C.12或2 D .-2答案 D解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.3.(2018·江西南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( )A .150°B .135°C .120°D .105°答案 A解析 由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,2为半径的圆的一部分,如图所示. 由题意知直线l 的斜率存在,设过点P (2,0)的直线l 的方程为y =k (x -2),则圆心到此直线的距离d =|2k |1+k 2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|2k |1+k 22=22-2k 21+k 2,所以S △AOB=12×|2k |1+k 2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1,当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,结合图可知k =-33⎝⎛⎭⎫k =33舍去,故所求直线l 的倾斜角为150°.故选A.4.(2014·四川高考)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.答案 5解析 易知A (0,0),B (1,3),且P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时取“=”).一、选择题1.(2018·朝阳模拟)直线x +3y +1=0的倾斜角为( )A.π6 B.π3 C.2π3 D.5π6答案 D解析 直线斜率为-33,即tan α=-33,0≤α<π,∴α=5π6,故选D. 2.(2017·正定质检)直线x cos140°+y sin40°+1=0的倾斜角是( )A .40°B .50°C .130°D .140°答案 B解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.故选B.3.(2018·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by +c =0的倾斜角为( )A.π4B.π3 C.2π3 D.3π4答案 DA .1B .2C .4D .8答案 C解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·ab=4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.故选C. 9.(2017·烟台期末)直线mx +n2y -1=0在y 轴上的截距是-1,且它的倾斜角是直线3x -y -33=0的倾斜角的2倍,则( )A .m =-3,n =-2B .m =3,n =2C .m =3,n =-2D .m =-3,n =2答案 A解析 根据题意,设直线mx +n2y -1=0为直线l ,另一直线的方程为3x -y -33=0, 变形可得y =3(x -3),其斜率k =3,则其倾斜角为60°,而直线l 的倾斜角是直线3x -y -33=0的倾斜角的2倍,则直线l 的倾斜角为120°,且斜率k =tan120°=-3,又由l 在y 轴上的截距是-1, 则其方程为y =-3x -1;又由其一般式方程为mx +n2y -1=0,分析可得m =-3,n =-2.故选A.10.若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3答案 C解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0. 欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值.而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点和点(m ,n )的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小,最小值为2. 故m 2+n 2的最小值为4.故选C. 二、填空题11.已知P (-3,2),Q (3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 ⎝⎛⎭⎫-73,-13解析 直线l :ax +y +3=0是过点A (0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ=13,k AQ =73,k l =-a .若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a <-13. 12.(2018·石家庄期末)一直线过点A (-3,4),且在两轴上的截距之和为12,则此直线方程是________.答案 x +3y -9=0或y =4x +16解析 设横截距为a ,则纵截距为12-a ,直线方程为x a +y 12-a =1,把A (-3,4)代入,得-3a +412-a =1,解得a =-4,a =9.a =9时,直线方程为x 9+y3=1,整理可得x +3y -9=0.a =-4时,直线方程为x -4+y16=1,整理可得4x -y +16=0.综上所述,此直线方程是x +3y -9=0或4x -y +16=0.13.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为________.答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上知,直线m 的方程为x -2y +2=0或x =2. 14.在下列叙述中:1112 ∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时,直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧ -1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围为[0,+∞). (3)由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.方法与技巧1. 要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3. 求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. 失误与防范1. 求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2. 根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3. 利用一般式方程Ax +By +C =0求它的方向向量为(-B ,A )不可记错,但同时注意方向向量是不唯一的.1. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D 解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.13。
3.2 直线的方程 3.2.1 直线的点斜式方程 3.2.2 直线的两点式方程一、直线的点斜式方程 1.直线的点斜式方程的定义已知直线l 经过点000(,)P x y ,且斜率为k ,则直线l 的方程为这个方程是由直线上一定点及其斜率确定的,因此称为直线的 ,简称当直线l 的倾斜角为0°时(如图1),tan 00=,即k =0,这时直线l 与x 轴平行或重合,l 的方程就是00y y -=,或0y y =.当直线l 的倾斜角为90°时(如图2),直线没有斜率,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示.因为这时l 上每一点的横坐标都等于0x ,所以它的方程是00x x -=,或0x x =.深度剖析(1)当直线的斜率存在时,才能用直线的点斜式方程.(2)当k 取任意实数时,方程00()y y k x x -=-表示过定点00(,)x y 的无数条直线.2.直线的点斜式方程的推导如图,设点(,)P x y 是直线l 上不同于点000(,)P x y 的任意一点,根据经过两点的直线的斜率公式得y y k x x -=- (1),即00()y y k x x -=-(2).注意方程(1)与方程(2)的差异:点0P 的坐标不满足方程(1),但满足方程(2),因此,点0P 不在方程(1)表示的图形上,而在方程(2)表示的图形上,方程(1)不能称为直线l 的方程.上述过程可以证明直线上每个点的坐标都是方程(2)的解.对上面的过程逆推,可以证明以方程(2)的解为坐标的点都在直线l 上,所以这个方程就是过点0P ,斜率为k 的直线l 的方程. 二、直线的斜截式方程 1.直线的斜截式方程的定义我们把直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的如果直线l 的斜率为k ,且在y 轴上的截距为b ,则方程为(0)y b k x -=-,即 叫做直线的 ,简称当b =0时,y kx =表示过原点的直线;当k =0且b ≠0时,y b =表示与x 轴平行的直线;当k =0且b =0时,0y =表示与x 轴重合的直线.深度剖析(1)纵截距不是距离,它是直线与y 轴交点的纵坐标,所以可取一切实数,即可为正数、零或负数. 纵截距也可能不存在,比如当直线与y 轴平行时.(2)由于有些直线没有斜率,即有些直线在y 轴上没有截距,所以并非所有直线都可以用斜截式表示.2.直线的斜截式方程的推导已知直线l 在y 轴上的截距为b ,斜率为k ,求直线l 的方程.这个问题相当于给出了直线上一点(0,)b及直线的斜率k ,求直线的方程,是点斜式方程的一种特殊情况,代入点斜式方程可得(0)y b k x -=-,即y kx b =+. 三、直线的两点式方程 1.直线的两点式方程的定义已知直线l 过两点111222(,),(,)P x y P x y ,当1212,x x y y ≠≠时,直线l 的方程为 .这个方程是由直线l 上的两点确定的,因此称为直线的两点式方程,简称两点式. 2.直线的两点式方程的推导已知直线l 过两点111222(,),(,)P x y P x y (其中1212,x x y y ≠≠),此时直线的位置是确定的,也就是直线的方程是可求的当12x x ≠时,所求直线的斜率2121y y k x x -=-任取12,P P 中的一点,例如取111(,)P x y ,由点斜式方程,得211121()y y y y x x x x --=--当12y y ≠时,可写为112121y y x x y y x x --=--.四、直线的截距式方程1.直线的截距式方程的定义已知直线l 过点(,0)A a ,(0,)B b (0,0a b ≠≠),则由直线的两点式方程可以得到直线l 的方程为 ___________.我们把直线l 与x 轴的交点的横坐标a 叫做直线在x 轴上的_____________,此时直线在y 轴上的截距是 ___________.这个方程由直线l 在两个坐标轴上的截距a 和b 确定,因此叫做直线的截距式方程,简称截距式. 2.直线的截距式方程的推导已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,如图,其中0,0a b ≠≠.将两点(,0)A a ,(0,)B b 的坐标代入两点式,得000y x a b a --=--,即1x ya b+=. 五、中点坐标公式若点12,P P 的坐标分别为1122(,),(,)x y x y ,且线段12P P 的中点M 的坐标为(,)x y ,则____________________x y =⎧⎨=⎩.此公式为线段12P P 的中点坐标公式. 六、直线系方程 1.过定点的直线系方程当直线过定点000(,)P x y 时,我们可设直线方程为00()y y k x x -=-.由此方程可知,k 取不同的值时,它就表示不同的直线,且每一条直线都经过定点000(,)P x y ,当k 取遍所允许的每一个值后,这个方程就表示经过定点0P 的许多直线,所以把这个方程叫做过定点0P 的直线系方程由于过点000(,)P x y 与x 轴垂直的直线不能被00()y y k x x -=-表示,因此直线系00()y y k x x -=- (k ∈R )中没有直线0x x =. 2.平行直线系方程在斜截式方程(0)y kx b k =+≠中,若k 一定,而b 可变动,方程表示斜率为k 的一束平行线,这些直线构成的集合我们称之为平行直线系.K 知识参考答案:一、00()y y k x x -=- 点斜式方程 点斜式 二、截距 y kx b =+ 斜截式方程 斜截式三、112121y y x x y y x x --=--四、1x ya b+= 截距 b 五、122x x + 122y y +K —重点直线的点斜式、斜截式、两点式、截距式方程,根据直线方程判定两直线的平行与垂直K —难点直线系问题、直线方程的综合应用K —易错忽略直线重合的情形或直线方程成立的条件致错、忽略直线方程的局限性致错1.直线的点斜式方程用点斜式求直线的方程,确定直线的斜率和其上一个点的坐标后即可求解. 【例1】已知点(3,3)A 和直线l :3542y x =-.求: (1)过点A 且与直线l 平行的直线方程; (2)过点A 且与直线l 垂直的直线方程.【例2】已知在第一象限的△ABC 中,A (1,1),B (5,1),且∠CAB =60°,∠CBA =45°,求边AB ,AC 和BC 所在直线的点斜式方程.【解析】由A (1,1),B (5,1)可知边AB 所在直线的斜率为0,故边AB 所在直线的方程为y -1=0.由AB ∥x 轴,且△ABC 在第一象限,知边AC 所在直线的斜率k AC =tan 60°=,边BC 所在直线的斜率k BC =tan(180°-45°)=-1,所以,边AC 所在直线的方程为y -1=(x -1),边BC 所在直线的方程为y -1=-(x -5).2.直线的斜截式方程根据斜率和截距的几何意义判断k ,b 的正负时,(1)0k >直线呈上升趋势;0k <直线呈下降趋势;0k =直线呈水平状态.(2)0b >直线与y 轴的交点在x 轴上方;0b <直线与y 轴的交点在x 轴下方;0b =直线过原点. 【例3】已知直线l 与直线y =-2x+3的斜率相同,且在y 轴上的截距为5,求直线l 的斜截式方程,并画出图形.【解析】因为直线l 与直线y =-2x+3的斜率相同,所以直线l 的斜率为-2. 又直线l 在y 轴上的截距为5,所以直线l 的斜截式方程为y =-2x+5. 在直线l 上取一点(1,3),作出图形如图所示.【名师点评】直线的斜截式方程是点斜式方程的特殊情形. 【例4】已知直线l 的斜率为16,且和两坐标轴围成的三角形的面积为3,求直线l 的方程.3.直线的两点式方程已知直线上两点的坐标求解直线方程,可直接将两点的坐标代入直线的两点式方程,化简即得.代入点的坐标时注意横纵坐标的对应关系.若点的坐标中含有参数,需注意当直线平行于坐标轴或与坐标轴重合时,不能用两点式求解.【例5】已知三角形的三个顶点Α(-4,0),B (0,-3),C (-2,1),求: (1)BC 边所在的直线的方程; (2)BC 边上中线所在的直线的方程.4.直线的截距式方程(1)由已知条件确定横、纵截距.(2)若两截距为零,则直线过原点,直接写出方程即可;若两截距不为零,则代入公式1x ya b+=中,可得所求的直线方程.(3)如果题目中出现直线在两坐标轴上的截距相等、截距互为相反数或在一坐标轴上的截距是另一坐标轴上的截距的多少倍等条件时,采用截距式求直线方程时一定要注意考虑“零截距”的情况. 【例6】已知直线过点,且在两坐标轴上的截距之和为12,求直线的方程.【解析】设直线的方程为1x ya b+=,则,①又直线过点,∴341a b-+=,② 由①②得93a b =⎧⎨=⎩或416a b =-⎧⎨=⎩. ∴直线的方程为193x y +=或1416x y+=-,即或.5.中点坐标公式的应用(1)利用中点坐标公式可求以任意已知两点为端点的线段的中点坐标.(2)从中点坐标公式可以看出线段12P P 中点的横坐标只与12,P P 的横坐标有关,中点的纵坐标只与12,P P 的纵坐标有关.【例7】已知7(3,),(1,2),(3,1)2M A B ,则过点M 和线段AB 的中点的直线方程为 A .425x y += B .425x y -= C .25x y += D .25x y -=【答案】B【解析】由题意可知线段AB 的中点坐标为1321(,)22++,即3(2,)2.故所求直线方程为732372322y x --=--,整理,得4250x y --=,故选B. 6.直线过定点问题本题考查了直线过定点的问题,实际上就是考查直线方程的点斜式,同时要利用数形结合的思想解题. 若直线存在斜率,则可以把直线方程化为点斜式00()y y k x x -=-的形式,无论直线的斜率k 取何值时,直线都过定点00(,)x y .【例8】已知直线:21l y kx k =++. (1)求证:直线l 过一个定点;(2)当33x -<<时,直线上的点都在x 轴上方,求实数k 的取值范围.【解析】(1)由21y kx k =++,得1(2)y k x -=+.由直线方程的点斜式可知,直线过定点(2,1)-. (2)设函数()21f x kx k =++,显然其图象是一条直线(如图),若使33x -<<时,直线上的点都在x 轴上方,需满足(3)0(3)0f f -≥⎧⎨≥⎩,即32103210k k k k -++≥⎧⎨++≥⎩,解得115k -≤≤. 所以实数k 的取值范围是115k -≤≤.7.直线的平移规律直线y kx b =+上下(或沿y 轴)平移(0)m m >个单位长度,得y kx b m =+±(上加下减);直线y kx b =+左右(或沿x 轴)平移(0)m m >个单位长度,得()y k x m b =±+(左加右减).【例9】已知直线1:23l y x =-,将直线1l 向上平移2个单位长度,再向左平移4个单位长度得到直线2l ,则直线2l 的方程为 . 【答案】27y x =+【解析】根据直线的平移规律,可得直线2l 的方程为2(4)32y x =+-+,即27y x =+. 8.点斜式和斜截式的实际应用由直线的斜截式方程与一次函数的表达式的关系,利用一次函数的图象和性质求出直线方程,可以解决实际问题.9.忽略了直线重合的情形致错【例11】已知直线12:60,:(2)320l x my l m x y m ++=-++=,当12l l ∥时,求m 的值【错解】∵2l 的斜率223m k -=-,12l l ∥,∴1l 的斜率1k 也一定存在, 由1l 的方程得11k m =-,由12k k =,得213m m--=-解得3m =或1m =-∴m 的值为3或1-【错因分析】忽略了直线重合的情况,从而导致错误.【误区警示】当两直线的斜率存在时,两直线平行的等价条件是斜率相等且纵截距不相等,做题时容易忽略纵截距不相等,从而导致错解10.忽略直线方程的局限性致错【例12】求经过点(2,3)P ,并且在两坐标轴上截距相等的直线l 的方程. 【错解】设直线方程为1x y a a +=,将2,3x y ==代入,得231a a+=,解得5a =. 故所求的直线方程为50x y +-=.【错因分析】截距相等包含两层含义,一是截距不为0时的相等,二是截距为0时的相等,而后者常常被忽略,导致漏解.【正解】(1)当截距为0时,直线l 过点(0,0),(2,3), ∵直线l 的斜率为303202k -==-, ∴直线l 的方程为32y x =,即320x y -=. (2)当截距不为0时,可设直线l 的方程为1x ya a+=,∵直线l 过点(2,3)P ,∴231a a+=,∴5a =, ∴直线l 的方程为50x y +-=.综上,直线l 的方程为320x y -=或50x y +-=.【误区警示】不同形式的方程均有其适用条件,在解题时应注意截距式方程的应用前提是截距均不为0且不垂直于坐标轴.1.经过点(-2,2),倾斜角是60°的直线方程是 A .y +2=33(x -2) B .y -2=3(x +2)C .y -2=33(x +2) D .y +2=3(x -2)2.直线的方程00()y y k x x --= A .可以表示任何直线 B .不能表示过原点的直线 C .不能表示与y 轴垂直的直线 D .不能表示与x 轴垂直的直线 3.直线1x ya b+=过一、二、三象限,则 A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <04.直线1y ax a=-的图象可能是5.与直线21y x =+垂直,且在y 轴上的截距为4的直线的斜截式方程是 A .142y x =+ B .y =2x +4 C .y =−2x +4D .142y x =-+ 6.在y 轴上的截距是-3,且经过A (2,-1),B (6,1)中点的直线方程为 A .143x y+= B .143x y-= C .134x y+= D .136x y-= 7.已知直线l 1过点P (2,1)且与直线l 2:y =x +1垂直,则l 1的点斜式方程为 . 8.直线32()y ax a a =-+∈R 必过定点 . 9.斜率与直线32y x =的斜率相等,且过点(4,3)-的直线的斜截式方程是 . 10.已知△ABC 中,A (1,-4),B (6,6),C (-2,0),则△ABC 中平行于BC 边的中位线所在直线的两点式方程是 .11.写出下列直线的点斜式方程:(1)经过点A (2,5),且与直线y =2x+7平行; (2)经过点C (-1,-1),且与x 轴平行.12.已知直线l 的斜率与直线326x y -=的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的斜截式方程. 13.已知的顶点是,,.直线平行于,且分别交边、于、,的面积是面积的14.(1)求点、的坐标; (2)求直线的方程.14.两直线1x y m n -=与1x yn m-=的图象可能是图中的A B C D15.若直线l 1:y =k (x-4)与直线l 2关于点(2,1)对称,则直线l 2过定点A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)16.若三点()()()2,2,,,0)0,0(A B a C b ab ≠共线,则11a b+= . 17.已知直线l 过定点A (−2,3),且与两坐标轴围成的三角形面积为4,求直线l 的方程.1 2 3 4 5 6 14 15 BDCBDBBB1.【答案】B【解析】k =tan60°=3,则点斜式方程为y -2=3(x +2).5.【答案】D【解析】因为所求直线与y =2x +1垂直,所以设直线方程为12y x b =-+.又因为直线在y 轴上的截距为4,所以直线的方程为142y x =-+. 6.【答案】B【解析】易知A (2,-1),B (6,1)的中点坐标为(4,0),即直线在x 轴上的截距为4,则所求直线的方程为143x y-=. 7.【答案】y -1=-(x -2)【解析】根据题意可知直线l 1的斜率为−1,所以l 1的点斜式方程为y -1=-(x -2). 8.【答案】(3,2)【解析】将直线方程变形为y −2=a (x −3),由直线方程的点斜式可知,直线过定点(3,2).9.【答案】392y x =+ 【解析】因为所求直线的斜率与直线32y x =的斜率相等,所以所求直线的斜率32k =.又直线过点(4,3)-,所以直线方程为33(4)2y x -=+,所以直线的斜截式方程为392y x =+.11.【解析】(1)由题意知,直线的斜率为2,所以其点斜式方程为y-5=2(x-2).(2)由题意知,直线的斜率k =tan 0°=0,所以直线的点斜式方程为y-(-1)=0,即y =-1. 12.【解析】由题意知,直线l 的斜率为32,故可设直线l 的方程为32y x b =+,所以直线l 在x 轴上的截距为23b -,在y 轴上的截距为b ,所以213b b --=,35b =-,所以直线l 的方程为3325y x =-. 13.【解析】(1)因为,且的面积是面积的14,所以、分别是、的中点,由中点坐标公式可得点的坐标为502,⎛⎫ ⎪⎝⎭,点的坐标为722,⎛⎫ ⎪⎝⎭.(2)由两点式方程,可知直线的方程为502752022y x --=--,即.14.【答案】B【解析】由1x y m n -=,得y =n m x -n ;由1x y n m -=,得y =mnx -m ,即两条直线的斜率同号且互为倒数,故选B. 15.【答案】B【解析】因为直线l 1:y =k (x-4)过定点(4,0),所以原问题转化为求(4,0)关于(2,1)的对称点.设直线l 2过定点(x ,y ),则422012x y +⎧=⎪⎪⎨+⎪=⎪⎩,解得x =0,y =2.故直线l 2过定点(0,2).16.【答案】12【解析】易知直线BC 的方程为1x y a b +=,由点A 在直线BC 上,得221a b +=,故1112a b +=.。
平面直角坐标系八大公式
在平面直角坐标系中,常用的八大公式如下:
1. 距离公式:两点P1(x1, y1)和P2(x2, y2)之间的距离为:d = √((x2 - x1)² + (y2
- y1)²)。
2. 中点公式:两点P1(x1, y1)和P2(x2, y2)的中点坐标为:M((x1 + x2)/2, (y1 +
y2)/2)。
3. 斜率公式:两点P1(x1, y1)和P2(x2, y2)之间的斜率为:m = (y2 - y1)/(x2 - x1),其中x2不等于x1。
4. 判别式公式:对于一次函数的方程y = ax + b,其判别式为:Δ = b² - 4ac,其中a、
b、c为方程的系数。
5. 点到直线的距离公式:对于一条直线的方程Ax + By + C = 0,点P(x0, y0)到该直线
的距离为:d = |Ax0 + By0 + C|/√(A² + B²)。
6. 直线的倾斜角公式:对于一条直线的斜率为m,则该直线与x轴的夹角θ满足:
tan(θ) = m。
7. 两条直线的夹角公式:设两条直线的斜率分别为m1和m2,则两条直线的夹角θ满足:tan(θ) = |(m2 - m1)/(1 + m1m2)|。
8. 直线的方程公式:已知一条直线通过点P(x1, y1)且斜率为m,则该直线的方程为:y
- y1 = m(x - x1)。
以上是平面直角坐标系中常用的八大公式,它们在求解点、直线、距离等问题时非常有用。
点与直线 直线方程. 教学容:点到直线的距离; 点关于点、关于直线的对称点; 直线关于点、关于直线的对称直线; 直线方程复习;. 知识点:1. 点到直线距离公式及证明关于证明:根据点斜式,直线 PQ 的方程为(不妨设y y 0B BA(xx 0),即 Bx Ay Bx 0 Ay 0 ,解方程组Ax By C 0Bx Ay Bx 0 Ay 0 ,这就是点 Q 的横坐标,又可得A(Ax 0 By 0 C)22ABd (x x 0) 2 (y y 0)2(Ax 0 By 0 C)2A2 B2| Ax 0 By 0 C|22A2B2 。
这就推导得到点 P (x 0,y 0)到直线 l :Ax+By+C=0 的距离公式。
如果 A=0 或B=0 ,上式的距离公式仍然成立。
下面再介绍一种直接用两点间距离公式的推导A ≠ 0)得xB 2x 0 ABy 0A 2B 2AC,x x 022 B x 0 ABy 0AC A x 0 B 2x 0y y 0所以,A(x x 0)B(Ax 0 By 0 A2 B2C)|Ax 0 By 0 C|方法。
设点 Q 的坐标为( x 1, y 1),则Ax 1 By 1 C 0, y 1 y 0 B 1 0B(A ≠0), x 1 x 0 A把方程组作变形,A( x 1 x 0) B(y 1 y 0) (Ax 0 By 0 C),①B(x 1 x 0) A( y 1 y 0) 0 ②把①,②两边分别平方后相加,得( A 2 B 2)(x 1 x 0)2 (B 2 A 2)( y 1 y 0)2 2( Ax 0 By 0 C) ,所以,2( Ax 0 By 0 C) 22 A2 B2所以,d (x 1 x 0 )2 (y 1 y 0)2 |Ax 0 By 0 C|A2 B2此公式还可以用向量的有关知识推导,介绍如下:设P 1(x 1,y 1)、P 2(x 2,y 2)是直线 l 上的任意两点,则Ax 1 By 1 C 0 ③Ax 2 By 2 C 0 ④ 把③、④两式左右两边分别相减,得 A(x 1 x 2) B( y 1 y 2) 0, 由向量的数量积的知识,知n · P 2 P 1 0,这里 n=(A , B )。
直角坐标系中两点之间中点坐标公式在我们学习数学的过程中,直角坐标系可是个非常重要的“小伙伴”,而其中两点之间中点坐标公式更是我们解决众多数学问题的得力“小助手”。
咱们先来说说直角坐标系是啥。
想象一下,在一张大大的白纸上,画两条互相垂直的线,一条横着,像个安静躺着的“一”,这叫 x 轴;另一条竖着,像个站得笔直的“丨”,这叫 y 轴。
然后这两条线相交的那个点,就像是十字路口的中心,我们叫它原点,坐标就是 (0, 0)。
在这个神奇的直角坐标系里,随便点两个点,比如说 A(x₁, y₁) 和B(x₂, y₂) ,那这两点之间的中点坐标咋算呢?这就轮到我们的中点坐标公式登场啦!中点坐标公式是:((x₁ + x₂)/2, (y₁ + y₂)/2) 。
听起来好像有点抽象?那我给您举个例子。
有一次我去菜市场买菜,我在摊位 A 买了 5 斤苹果,坐标是 (3, 5) ,然后又走到摊位 B 买了 3斤香蕉,坐标是 (7, 9) 。
这时候我就想啊,要是我能找到这两个摊位的中点位置,下次我就可以直接站在那附近,不用来回跑啦。
按照中点坐标公式算一下,中点坐标就是 ((3 + 7)/2, (5 + 9)/2) ,也就是 (5, 7) 。
您看,这是不是一下子就清晰明了啦!再比如说,在我们的日常生活中,规划旅行路线的时候也能用到这个公式。
假设我们要从城市 A(坐标是 (10, 20) )出发去城市 B(坐标是 (40, 60) ),那我们可以先算出这两个城市之间路线的中点位置,提前找好休息站或者补给点。
这样能让我们的旅行更加轻松愉快,少走冤枉路。
回到学习中,很多同学一开始可能觉得这个公式不好记,或者不明白为啥要有这个公式。
其实啊,这就像是我们走路需要一双合脚的鞋子,解决数学问题也需要合适的工具,而中点坐标公式就是这样一个好用的工具。
在做数学题的时候,一旦涉及到求线段的中点,或者判断某个点是不是两个已知点的中点,这个公式就能派上大用场。
初中函数问题涉及到的常用公式或结论及其训练一、 常用公式或结论(1)横线段的长 = x 大-x 小 =x 右-x 左 =横标之差的绝对值(用于情况不明)。
纵线段的长 = y 大-y 小=y 上-y 下 = 纵标之差的绝对值(用于情况不明)。
(2)点轴距离:点P (x 0 ,y 0)到X 轴的距离为0y ,到Y 轴的距离为o x 。
(3)两点间的距离公式:若A (x 1,y 1),B(x 2,y 2), 则 AB=221212()()x x y y -+- (4)点到直线的距离:点P (x 0 ,y 0)到直线Ax+By+C=0 (其中常数A,B,C 最好化为整系数,也方便计算)的距离为:0022Ax By Cd A B++=+(5)中点坐标公式:若A(x 1,y 1),B (x 2,y 2),则线段AB 的中点坐标为(1212,22x x y y ++)(6)直线的斜率公式:若A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),则直线AB 的斜率为:1212=AB y y k x x --,(x 1≠x 2) (7)两直线平行的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2①若l 1//l 2,则k 1=k 2;②若k 1=k 2,且b 1 ≠b 2,则 l 1//l 2。
(8)两直线垂直的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2 ①若l 1┴l 2,则k 1•k 2 =-1;②若k 1•k 2 =-1,则l 1┴l 2(9)直线与抛物线(或双曲线)截得的弦长公式:【初高中数学重要衔接内容之一,设而不求的思想】直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )截得的弦长公式是:AB=2121x x k -∙+=2122124)(1x x x x k -+∙+证明如下:设直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )交于A (x 1, y 1), B (x 2, y 2)两点,由两点间的距离公式可得:AB=221221)()(y y x x -+-,因为A (x 1, y 1),B (x 2, y 2)两点是直线y=kx+n 与抛物线抛物线y=ax 2+bx+c (或双曲线y=m/x )的交点,所以 A (x 1, y 1),B (x 2, y 2)两点也在直线y=kx+n 上,∴y 1=kx 1+n, y 2=kx 2+n, ∴y 1-y 2=(kx 1+n )—(kx 2+n )=kx 1-kx 2=k (x 1-x 2), ∴AB=2212221)()(x x k x x -+-=2212))(1(x x k -+=2121x x k -∙+=2122124)(1x x x x k -+∙+而x 1, x 2显然是直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )组成方程组后,消去y (用代入法)所得到的那个一元二次方程的两根,从而运用韦达定理x 1+x 2 , x 1∙x 2可轻松求出,进而直线与抛物线(或双曲线)截得的弦长就很容易计算或表示出来。
行()1112222220A B CA B CA B CÛ=¹¹。
3) 对于特殊情况(直线平行于x 轴或垂直于x 轴时需要单独讨论)轴时需要单独讨论) 3.相交:如果两条直线斜率不同那么必然相交与一点。
相交:如果两条直线斜率不同那么必然相交与一点。
1)斜截式:111:l y k x b =+与直线222:l y k x b =+相交12k k Û¹2)一般式:直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=相交1221A B A B Û¹ 3)对于特殊情况(如果一条直线有斜率,而另一条直线没有斜率,那么这两条直线相交)。
例1:已知直线()212:260,:110l ax y l x a y a ++=+-+-=,求适合下列条件的a的取值范围。
的取值范围。
1)1l 与2l 相交;相交; 2)12//l l ; 3)1l 与2l 重合。
重合。
两条直线位置关系以及点到直线距离公式两条直线位置关系以及点到直线距离公式一、两条直线相交、平行、重合条件一、两条直线相交、平行、重合条件1. 重合:如何两条直线重合,那么化简之后的重合:如何两条直线重合,那么化简之后的方程方程是相同的,具体为:是相同的,具体为:1) 斜截式:直线111:l y k x b =+与直线222:l y k x b =+重合1212,k k b b Û==。
2) 一般式:直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=重合()1112222220A B C A B C A B C Û==¹。
3) 对于特殊情况(直线平行于x 轴或垂直于x 轴时需要单独讨论)。
2.平行:如果两条.平行:如果两条直线斜率直线斜率相同或垂直于x 轴,并且不重合,那么这两条直线就是平行的。
直线的倾斜角、斜率与直线的方程考点和题型归纳一、基础知识1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角叫做直线 l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α⎝⎛⎭⎫α≠π2,则斜率k =tan α. (2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上, 且x 1≠x 2,则l 的斜率 k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含垂直于x 轴的直线 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1(x 1≠x 2)和直线y =y 1(y 1≠y 2)截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0,A 2+B 2≠0平面内所有直线都适用二、常用结论特殊直线的方程(1)直线过点P 1(x 1,y 1),垂直于x 轴的方程为x =x 1; (2)直线过点P 1(x 1,y 1),垂直于y 轴的方程为y =y 1; (3)y 轴的方程为x =0; (4)x 轴的方程为y =0. 考点一 直线的倾斜角与斜率[典例] (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.[解析] (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.(2) 设P A 与PB 的倾斜角分别为α,β,直线P A 的斜率是k AP =1,直线PB 的斜率是k BP=-3,当直线l 由P A 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,- 3 ].故直线l 斜率的取值范围是(-∞,- 3 ]∪[1,+∞). [答案] (1)B (2)(-∞,- 3 ]∪[1,+∞)[变透练清]1.(变条件)若将本例(1)中的条件变为:平面上有相异两点A (cos θ,sin 2 θ),B (0,1),则直线AB 的倾斜角α的取值范围是________.解析:由题意知cos θ≠0,则斜率k =tan α=sin 2θ-1cos θ-0=-cos θ∈[-1,0)∪(0,1],所以直线AB 的倾斜角的取值范围是⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 2.(变条件)若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,则直线l 斜率的取值范围为________.解析:设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0. ∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎡⎦⎤13,3. 答案:⎣⎡⎦⎤13,33.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:4考点二 直线的方程[典例] (1)若直线经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍,则该直线的方程为________________.(2)若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为________________.(3)在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为________________.[解析] (1)①当横截距、纵截距均为零时,设所求的直线方程为y =kx ,将(-5,2)代入y =kx 中,得k =-25,此时,直线方程为y =-25x ,即2x +5y =0.②当横截距、纵截距都不为零时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0.(2)由3x +y +1=0得此直线的斜率为-3,所以倾斜角为120°,从而所求直线的倾斜角为60°,故所求直线的斜率为 3.又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3),即3x -y +6=0. (3)设C (x 0,y 0),则M ⎝⎛⎭⎪⎫5+x 02,y 0-22,N ⎝ ⎛⎭⎪⎫7+x 02,y 0+32.因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5.因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3), 所以M ⎝⎛⎭⎫0,-52,N (1,0), 所以直线MN 的方程为x 1+y-52=1,即5x -2y -5=0.[答案] (1)x +2y +1=0或2x +5y =0 (2)3x -y +6=0 (3)5x -2y -5=0[题组训练]1.过点(1,2),倾斜角的正弦值是22的直线方程是________________. 解析:由题知,倾斜角为π4或3π4,所以斜率为1或-1,直线方程为y -2=x -1或y -2=-(x -1),即x -y +1=0或x +y -3=0.答案:x -y +1=0或x +y -3=02.过点P (6,-2),且在x 轴上的截距比在y 轴上的截距大1的直线方程为________________.解析:设直线方程的截距式为x a +1+y a =1,则6a +1+-2a =1,解得a =2或a =1,则直线的方程是x 2+1+y 2=1或x 1+1+y1=1,即2x +3y -6=0或x +2y -2=0.答案:2x +3y -6=0或x +2y -2=0考点三 直线方程的综合应用[典例] 已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA ―→|·|MB ―→|取得最小值时直线l 的方程.[解] 设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +yb =1,所以2a +1b=1.|MA ―→|·| MB ―→|=-MA ―→·MB ―→=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2b a +2ab≥4, 当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.[解题技法]与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的性质或基本不等式求解.[题组训练]1.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.2.已知直线l :x -my +3m =0上存在点M 满足与A (-1,0),B (1,0)两点连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( )A .[-6, 6 ] B.⎝⎛⎭⎫-∞,-66∪⎝⎛⎭⎫66,+∞ C.⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞ D.⎣⎡⎦⎤-22,22 解析:选C 设M (x ,y ),由k MA ·k MB =3,得y x +1·y x -1=3,即y 2=3x 2-3.联立⎩⎪⎨⎪⎧x -my +3m =0,y 2=3x 2-3,得⎝⎛⎭⎫1m 2-3x 2+23m x +6=0(m ≠0), 则Δ=⎝⎛⎭⎫23m 2-24⎝⎛⎭⎫1m 2-3≥0,即m 2≥16,解得m ≤-66或m ≥66. ∴实数m 的取值范围是⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞.[课时跟踪检测]1.(2019·合肥模拟)直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B.3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=0解析:选D 由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.3.已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0解析:选C 由题知M (2,4),N (3,2),则中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.4.方程y =ax -1a表示的直线可能是( )解析:选C 当a >0时,直线的斜率k =a >0,在y 轴上的截距b =-1a <0,各选项都不符合此条件;当a <0时,直线的斜率k =a <0,在y 轴上的截距b =-1a >0,只有选项C符合此条件.故选C.5.在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0B .3x +y +6=0C .3x -y +6=0D .3x +y -6=0解析:选C 因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN =-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.6.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 对于直线mx +ny +3=0,令x =0得y =-3n ,即-3n =-3,n =1.因为3x -y =33的斜率为60°,直线mx +ny +3=0的倾斜角是直线3x -y =33的2倍,所以直线mx +ny +3=0的倾斜角为120°,即-mn=-3,m = 3.7.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 由⎩⎪⎨⎪⎧ kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.8.若直线l :kx -y +2+4k =0(k ∈R)交x 轴负半轴于A ,交y 轴正半轴于B ,则当△AOB 的面积取最小值时直线l 的方程为( )A .x -2y +4=0B .x -2y +8=0C .2x -y +4=0D .2x -y +8=0解析:选B由l 的方程,得A ⎝ ⎛⎭⎪⎫-2+4k k ,0,B (0,2+4k ).依题意得⎩⎨⎧-2+4k k <0,2+4k >0,解得k >0.因为S =12|OA |·|OB |=12⎪⎪⎪⎪⎪⎪2+4k k ·|2+4k |=12·(2+4k )2k =12⎝⎛⎭⎫16k +4k +16≥12(2×8+16)=16,当且仅当16k =4k ,即k =12时等号成立.此时l 的方程为x -2y +8=0.9.以A (1,1),B (3,2),C (5,4)为顶点的△ABC ,其边AB 上的高所在的直线方程是________________.解析:由A ,B 两点得k AB =12,则边AB 上的高所在直线的斜率为-2,故所求直线方程是y -4=-2(x -5),即2x +y -14=0.答案:2x +y -14=010.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案:4x -3y -4=011.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y -2=k (x -1),直线l 在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式得k >12或k <-1.答案:(-∞,-1)∪⎝⎛⎭⎫12,+∞12.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]13.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.。
两点间距离公式与线段中点的坐标教案一、教学目标:1. 理解两点间的距离公式和线段中点的坐标公式。
2. 能够运用两点间的距离公式和线段中点的坐标公式解决实际问题。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容:1. 两点间的距离公式:两点A(x1, y1)和B(x2, y2)之间的距离d可以表示为:d = √[(x2 x1)²+ (y2 y1)²]2. 线段中点的坐标公式:线段AB的两个端点A(x1, y1)和B(x2, y2)的中点M的坐标可以表示为:M((x1 + x2) / 2, (y1 + y2) / 2)三、教学步骤:1. 导入:通过一个实际问题引入两点间的距离和线段中点的概念,例如:“在平面直角坐标系中,已知点A(2, 3)和点B(6, 7),求点A和点B之间的距离以及线段AB的中点坐标。
”2. 讲解:讲解两点间的距离公式和线段中点的坐标公式的推导过程,让学生理解其含义和应用。
3. 示例:给出一个示例,让学生根据公式计算两点间的距离和线段的中点坐标。
4. 练习:让学生独立完成一些相关的练习题,巩固所学知识。
四、作业布置:1. 请运用两点间的距离公式和线段中点的坐标公式,解决一些实际问题。
2. 预习下一节课的内容。
五、教学反思:通过本节课的教学,学生是否能够理解两点间的距离公式和线段中点的坐标公式,以及能否运用到实际问题中,是教学效果的重要评价标准。
教师应通过作业批改和课堂提问等方式,了解学生的掌握情况,及时进行教学调整。
六、教学活动:1. 小组合作:学生分组讨论,尝试运用两点间的距离公式和线段中点的坐标公式解决复杂问题,如:给定三个点A、B、C,证明三角形ABC是等腰三角形。
2. 游戏环节:设计一个坐标系寻宝游戏,让学生在游戏中运用所学知识,寻找隐藏的宝藏。
3. 课堂展示:邀请学生上台展示他们运用两点间的距离公式和线段中点的坐标公式解决实际问题的过程和结果。
3.2 直线的方程3.2.1 直线的点斜式方程 3.2.2 直线的两点式方程一、直线的点斜式方程 1.直线的点斜式方程的定义已知直线l 经过点000(,)P x y ,且斜率为k ,则直线l 的方程为 . 这个方程是由直线上一定点及其斜率确定的,因此称为直线的 ,简称 .当直线l 的倾斜角为0°时(如图1),tan 00=,即k =0,这时直线l 与x 轴平行或重合,l 的方程就是00y y -=,或0y y =.学-科网当直线l 的倾斜角为90°时(如图2),直线没有斜率,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示.因为这时l 上每一点的横坐标都等于0x ,所以它的方程是00x x -=,或0x x =.深度剖析(1)当直线的斜率存在时,才能用直线的点斜式方程.(2)当k 取任意实数时,方程00()y y k x x -=-表示过定点00(,)x y 的无数条直线.2.直线的点斜式方程的推导如图,设点(,)P x y 是直线l 上不同于点000(,)P x y 的任意一点,根据经过两点的直线的斜率公式得y y k x x -=- (1),即00()y y k x x -=- (2).注意方程(1)与方程(2)的差异:点0P 的坐标不满足方程(1),但满足方程(2),因此,点0P 不在方程(1)表示的图形上,而在方程(2)表示的图形上,方程(1)不能称为直线l 的方程.上述过程可以证明直线上每个点的坐标都是方程(2)的解.对上面的过程逆推,可以证明以方程(2)的解为坐标的点都在直线l 上,所以这个方程就是过点0P ,斜率为k 的直线l 的方程. 二、直线的斜截式方程 1.直线的斜截式方程的定义我们把直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的 .如果直线l 的斜率为k ,且在y 轴上的截距为b ,则方程为(0)y b k x -=-,即 叫做直线的 ,简称 .当b =0时,y kx =表示过原点的直线;当k =0且b ≠0时,y b =表示与x 轴平行的直线;当k =0且b =0时,0y =表示与x 轴重合的直线.深度剖析(1)纵截距不是距离,它是直线与y 轴交点的纵坐标,所以可取一切实数,即可为正数、零或负数. 纵截距也可能不存在,比如当直线与y 轴平行时.(2)由于有些直线没有斜率,即有些直线在y 轴上没有截距,所以并非所有直线都可以用斜截式表示.2.直线的斜截式方程的推导已知直线l 在y 轴上的截距为b ,斜率为k ,求直线l 的方程.这个问题相当于给出了直线上一点(0,)b 及直线的斜率k ,求直线的方程,是点斜式方程的一种特殊情况,代入点斜式方程可得(0)y b k x -=-,即y kx b =+.学&科网 三、直线的两点式方程 1.直线的两点式方程的定义已知直线l 过两点111222(,),(,)P x y P x y ,当1212,x x y y ≠≠时,直线l 的方程为 .这个方程是由直线l 上的两点确定的,因此称为直线的两点式方程,简称两点式. 2.直线的两点式方程的推导已知直线l 过两点111222(,),(,)P x y P x y (其中1212,x x y y ≠≠),此时直线的位置是确定的,也就是直线的方程是可求的.当12x x ≠时,所求直线的斜率2121y y k x x -=-.任取12,P P 中的一点,例如取111(,)P x y ,由点斜式方程,得211121()y y y y x x x x --=--,当12y y ≠时,可写为112121y y x x y y x x --=--.四、直线的截距式方程1.直线的截距式方程的定义已知直线l 过点(,0)A a ,(0,)B b (0,0a b ≠≠),则由直线的两点式方程可以得到直线l 的方程为 ___________.我们把直线l 与x 轴的交点的横坐标a 叫做直线在x 轴上的_____________,此时直线在y 轴上的截距是 ___________.这个方程由直线l 在两个坐标轴上的截距a 和b 确定,因此叫做直线的截距式方程,简称截距式. 2.直线的截距式方程的推导已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,如图,其中0,0a b ≠≠.将两点(,0)A a ,(0,)B b 的坐标代入两点式,得000y x a b a --=--,即1x ya b+=. 五、中点坐标公式若点12,P P 的坐标分别为1122(,),(,)x y x y ,且线段12P P 的中点M 的坐标为(,)x y ,则____________________x y =⎧⎨=⎩.此公式为线段12P P 的中点坐标公式. 六、直线系方程 1.过定点的直线系方程当直线过定点000(,)P x y 时,我们可设直线方程为00()y y k x x -=-.由此方程可知,k 取不同的值时,它就表示不同的直线,且每一条直线都经过定点000(,)P x y ,当k 取遍所允许的每一个值后,这个方程就表示经过定点0P 的许多直线,所以把这个方程叫做过定点0P 的直线系方程.由于过点000(,)P x y 与x 轴垂直的直线不能被00()y y k x x -=-表示,因此直线系00()y y k x x -=- (k ∈R )中没有直线0x x =. 2.平行直线系方程在斜截式方程(0)y kx b k =+≠中,若k 一定,而b 可变动,方程表示斜率为k 的一束平行线,这些直线构成的集合我们称之为平行直线系.K 知识参考答案:一、00()y y k x x -=- 点斜式方程 点斜式 二、截距 y kx b =+ 斜截式方程 斜截式三、112121y y x x y y x x --=--四、1x ya b+= 截距 b 五、122x x + 122y y +K —重点直线的点斜式、斜截式、两点式、截距式方程,根据直线方程判定两直线的平行与垂直K —难点直线系问题、直线方程的综合应用K —易错忽略直线重合的情形或直线方程成立的条件致错、忽略直线方程的局限性致错1.直线的点斜式方程用点斜式求直线的方程,确定直线的斜率和其上一个点的坐标后即可求解. 【例1】已知点(3,3)A 和直线l :3542y x =-.求: (1)过点A 且与直线l 平行的直线方程; (2)过点A 且与直线l 垂直的直线方程.【例2】已知在第一象限的△ABC 中,A (1,1),B (5,1),且∠CAB =60°,∠CBA =45°,求边AB ,AC 和BC 所在直线的点斜式方程.【解析】由A (1,1),B (5,1)可知边AB 所在直线的斜率为0,故边AB 所在直线的方程为y -1=0. 由AB ∥x 轴,且△ABC 在第一象限,知边AC 所在直线的斜率k AC =tan 60°=,边BC 所在直线的斜率k BC =tan(180°-45°)=-1,所以,边AC 所在直线的方程为y -1=(x -1),边BC 所在直线的方程为y -1=-(x -5).2.直线的斜截式方程根据斜率和截距的几何意义判断k ,b 的正负时,(1)0k >直线呈上升趋势;0k <直线呈下降趋势;0k =直线呈水平状态.(2)0b >直线与y 轴的交点在x 轴上方;0b <直线与y 轴的交点在x 轴下方;0b =直线过原点. 【例3】已知直线l 与直线y =-2x+3的斜率相同,且在y 轴上的截距为5,求直线l 的斜截式方程,并画出图形.【解析】因为直线l 与直线y =-2x+3的斜率相同,所以直线l 的斜率为-2. 又直线l 在y 轴上的截距为5,所以直线l 的斜截式方程为y =-2x+5. 在直线l 上取一点(1,3),作出图形如图所示.【名师点评】直线的斜截式方程是点斜式方程的特殊情形. 【例4】已知直线l 的斜率为16,且和两坐标轴围成的三角形的面积为3,求直线l 的方程.3.直线的两点式方程已知直线上两点的坐标求解直线方程,可直接将两点的坐标代入直线的两点式方程,化简即得.代入点的坐标时注意横纵坐标的对应关系.若点的坐标中含有参数,需注意当直线平行于坐标轴或与坐标轴重合时,不能用两点式求解.【例5】已知三角形的三个顶点Α(-4,0),B (0,-3),C (-2,1),求: (1)BC 边所在的直线的方程;(2)BC 边上中线所在的直线的方程.4.直线的截距式方程(1)由已知条件确定横、纵截距.(2)若两截距为零,则直线过原点,直接写出方程即可;若两截距不为零,则代入公式1x ya b+=中,可得所求的直线方程.(3)如果题目中出现直线在两坐标轴上的截距相等、截距互为相反数或在一坐标轴上的截距是另一坐标轴上的截距的多少倍等条件时,采用截距式求直线方程时一定要注意考虑“零截距”的情况. 【例6】已知直线过点,且在两坐标轴上的截距之和为12,求直线的方程.【解析】设直线的方程为1x ya b+=,则,①又直线过点,∴341a b-+=,② 由①②得93a b =⎧⎨=⎩或416a b =-⎧⎨=⎩. ∴直线的方程为193x y +=或1416x y +=-,即或.5.中点坐标公式的应用(1)利用中点坐标公式可求以任意已知两点为端点的线段的中点坐标.(2)从中点坐标公式可以看出线段12P P 中点的横坐标只与12,P P 的横坐标有关,中点的纵坐标只与12,P P 的纵坐标有关. 【例7】已知7(3,),(1,2),(3,1)2M A B ,则过点M 和线段AB 的中点的直线方程为 A .425x y += B .425x y -= C .25x y += D .25x y -=【答案】B【解析】由题意可知线段AB 的中点坐标为1321(,)22++,即3(2,)2.故所求直线方程为732372322y x --=--,整理,得4250x y --=,故选B. 6.直线过定点问题本题考查了直线过定点的问题,实际上就是考查直线方程的点斜式,同时要利用数形结合的思想解题. 若直线存在斜率,则可以把直线方程化为点斜式00()y y k x x -=-的形式,无论直线的斜率k 取何值时,直线都过定点00(,)x y .【例8】已知直线:21l y kx k =++. (1)求证:直线l 过一个定点;(2)当33x -<<时,直线上的点都在x 轴上方,求实数k 的取值范围.【解析】(1)由21y kx k =++,得1(2)y k x -=+.由直线方程的点斜式可知,直线过定点(2,1)-. (2)设函数()21f x kx k =++,显然其图象是一条直线(如图),若使33x -<<时,直线上的点都在x 轴上方,需满足(3)0(3)0f f -≥⎧⎨≥⎩,即32103210k k k k -++≥⎧⎨++≥⎩,解得115k -≤≤. 所以实数k 的取值范围是115k -≤≤. 7.直线的平移规律直线y kx b =+上下(或沿y 轴)平移(0)m m >个单位长度,得y kx b m =+±(上加下减);直线y kx b =+左右(或沿x 轴)平移(0)m m >个单位长度,得()y k x m b =±+(左加右减).【例9】已知直线1:23l y x =-,将直线1l 向上平移2个单位长度,再向左平移4个单位长度得到直线2l ,则直线2l 的方程为 . 【答案】27y x =+【解析】根据直线的平移规律,可得直线2l 的方程为2(4)32y x =+-+,即27y x =+. 8.点斜式和斜截式的实际应用由直线的斜截式方程与一次函数的表达式的关系,利用一次函数的图象和性质求出直线方程,可以解决实际问题.9.忽略了直线重合的情形致错【例11】已知直线12:60,:(2)320l x my l m x y m ++=-++=,当12l l ∥时,求m 的值. 【错解】∵2l 的斜率223m k -=-,12l l ∥,∴1l 的斜率1k 也一定存在, 由1l 的方程得11k m =-,由12k k =,得213m m--=-, 解得3m =或1m =-. ∴m 的值为3或1-.【错因分析】忽略了直线重合的情况,从而导致错误.【误区警示】当两直线的斜率存在时,两直线平行的等价条件是斜率相等且纵截距不相等,做题时容易忽略纵截距不相等,从而导致错解. 10.忽略直线方程的局限性致错【例12】求经过点(2,3)P ,并且在两坐标轴上截距相等的直线l 的方程. 【错解】设直线方程为1x y a a +=,将2,3x y ==代入,得231a a+=,解得5a =. 故所求的直线方程为50x y +-=.【错因分析】截距相等包含两层含义,一是截距不为0时的相等,二是截距为0时的相等,而后者常常被忽略,导致漏解.【正解】(1)当截距为0时,直线l 过点(0,0),(2,3), ∵直线l 的斜率为303202k -==-, ∴直线l 的方程为32y x =,即320x y -=. (2)当截距不为0时,可设直线l 的方程为1x ya a+=, ∵直线l 过点(2,3)P ,∴231a a+=,∴5a =, ∴直线l 的方程为50x y +-=.综上,直线l 的方程为320x y -=或50x y +-=.【误区警示】不同形式的方程均有其适用条件,在解题时应注意截距式方程的应用前提是截距均不为0且不垂直于坐标轴.1.经过点(-2,2),倾斜角是60°的直线方程是 A .y +2=33(x -2) B .y -2=3(x +2)C .y -2=33(x +2) D .y +2=3(x -2)2.直线的方程00()y y k x x --= A .可以表示任何直线 B .不能表示过原点的直线 C .不能表示与y 轴垂直的直线 D .不能表示与x 轴垂直的直线 3.直线1x ya b+=过一、二、三象限,则 A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <04.直线1y ax a=-的图象可能是5.与直线21y x =+垂直,且在y 轴上的截距为4的直线的斜截式方程是A .142y x =+ B .y =2x +4 C .y =−2x +4D .142y x =-+ 6.在y 轴上的截距是-3,且经过A (2,-1),B (6,1)中点的直线方程为 A .143x y+= B .143x y-= C .134x y+= D .136x y -= 7.已知直线l 1过点P (2,1)且与直线l 2:y =x +1垂直,则l 1的点斜式方程为 . 8.直线32()y ax a a =-+∈R 必过定点 . 9.斜率与直线32y x =的斜率相等,且过点(4,3)-的直线的斜截式方程是 . 10.已知△ABC 中,A (1,-4),B (6,6),C (-2,0),则△ABC 中平行于BC 边的中位线所在直线的两点式方程是 .11.写出下列直线的点斜式方程:(1)经过点A (2,5),且与直线y =2x+7平行; (2)经过点C (-1,-1),且与x 轴平行.12.已知直线l 的斜率与直线326x y -=的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的斜截式方程.13.已知的顶点是,,.直线平行于,且分别交边、于、,的面积是面积的14.(1)求点、的坐标; (2)求直线的方程.14.两直线1x y m n -=与1x yn m-=的图象可能是图中的A B C D15.若直线l 1:y =k (x-4)与直线l 2关于点(2,1)对称,则直线l 2过定点A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)16.若三点()()()2,2,,,0)0,0(A B a C b ab ≠共线,则11a b+= . 17.已知直线l 过定点A (−2,3),且与两坐标轴围成的三角形面积为4,求直线l 的方程.1 2 3 4 5 6 14 15 BDCBDBBB1.【答案】B【解析】k =tan60°=3,则点斜式方程为y -2=3(x +2).5.【答案】D【解析】因为所求直线与y =2x +1垂直,所以设直线方程为12y x b =-+.又因为直线在y 轴上的截距为4,所以直线的方程为142y x =-+. 6.【答案】B【解析】易知A (2,-1),B (6,1)的中点坐标为(4,0),即直线在x 轴上的截距为4,则所求直线的方程为143x y-=. 7.【答案】y -1=-(x -2)【解析】根据题意可知直线l 1的斜率为−1,所以l 1的点斜式方程为y -1=-(x -2). 8.【答案】(3,2)【解析】将直线方程变形为y −2=a (x −3),由直线方程的点斜式可知,直线过定点(3,2). 9.【答案】392y x =+ 【解析】因为所求直线的斜率与直线32y x =的斜率相等,所以所求直线的斜率32k =.又直线过点(4,3)-,所以直线方程为33(4)2y x -=+,所以直线的斜截式方程为392y x =+. 11.【解析】(1)由题意知,直线的斜率为2,所以其点斜式方程为y-5=2(x-2).(2)由题意知,直线的斜率k =tan 0°=0,所以直线的点斜式方程为y-(-1)=0,即y =-1. 12.【解析】由题意知,直线l 的斜率为32,故可设直线l 的方程为32y x b =+,所以直线l 在x 轴上的截距为23b -,在y 轴上的截距为b ,所以213b b --=,35b =-,所以直线l 的方程为3325y x =-. 13.【解析】(1)因为,且的面积是面积的14,所以、分别是、的中点,由中点坐标公式可得点的坐标为502,⎛⎫ ⎪⎝⎭,点的坐标为722,⎛⎫ ⎪⎝⎭.学*科网(2)由两点式方程,可知直线的方程为502752022y x --=--,即.14.【答案】B【解析】由1x y m n -=,得y =n m x -n ;由1x y n m -=,得y =mnx -m ,即两条直线的斜率同号且互为倒数,故选B. 15.【答案】B【解析】因为直线l 1:y =k (x-4)过定点(4,0),所以原问题转化为求(4,0)关于(2,1)的对称点.设直线l 2过定点(x ,y ),则422012x y +⎧=⎪⎪⎨+⎪=⎪⎩,解得x =0,y =2.故直线l 2过定点(0,2).16.【答案】12【解析】易知直线BC 的方程为1x y a b +=,由点A 在直线BC 上,得221a b +=,故1112a b +=.。
第1节 坐标法、直线及其方程知识梳理1.平面直角坐标系中的基本公式 (1)两点间的距离公式如图,已知A (x 1,y 1),B (x 2,y 2),则|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2.(2)中点坐标公式若M (x ,y )是线段AB 的中点,则AM→=MB →,从而可以得到x =x 1+x 22,y =y 1+y 22. 2.直线的倾斜角与斜率 (1)直线的倾斜角一般地,给定平面直角坐标系中的一条直线,如果这条直线与x 轴相交,将x 轴绕着它们的交点按逆时针方向旋转到与直线重合时所转的最小正角记为θ,则称θ为这条直线的倾斜角;倾斜角的取值范围是[0,π). (2)斜率公式①一般地,如果直线l 的倾斜角为θ,则当θ≠90°时,称k =tan__θ为直线l 的斜率;当θ=90°时,称直线l 的斜率不存在.②若A (x 1,y 1),B (x 2,y 2)是直线l 上两个不同的点,则当x 1≠x 2时,直线l 的斜率为k =y 2-y 1x 2-x 1;当x 1=x 2时,直线l 的斜率不存在.3.直线的方向向量、法向量 (1)直线的方向向量的定义一般地,如果表示非零向量a 的有向线段所在的直线与直线l 平行或重合,则称向量a 为直线l 的一个方向向量,记作a ∥l . (2)直线方向向量的有关结论①如果A (x 1,y 1),B (x 2,y 2)是直线l 上两个不同的点,则AB →=(x 2-x 1,y 2-y 1)是直线l 的一个方向向量.②如果直线l 的斜率为k ,则(1,k )是直线l 的一个方向向量. ③若直线的方向向量为a =(x ,y )(x ≠0),则直线的斜率k =y x . (3)直线的法向量的定义一般地,如果表示非零向量v 的有向线段所在直线与直线l 垂直,则称向量v 为直线l 的一个法向量,记作v ⊥l .一条直线的方向向量与法向量互相垂直. 4.直线方程的五种形式5.通过建立平面直角坐标系,将几何问题转化为代数问题,然后通过代数运算等解决问题.这种解决问题的方法称为坐标法.1.直线的倾斜角α和斜率k之间的对应关系:2.截距和距离的不同之处“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)直线的倾斜角越大,其斜率就越大.()(2)直线的斜率为tan α,则其倾斜角为α.()(3)斜率相等的两直线的倾斜角不一定相等.()(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.()答案(1)×(2)×(3)×(4)√解析(1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1=-1,k2=1,k1<k2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°.(3)两直线的斜率相等,则其倾斜角一定相等.2.若过两点A(-m,6),B(1,3m)的直线的斜率为12,则直线的方程为________.答案12x-y-18=0解析由题意得3m-61+m=12,解得m=-2,∴A(2,6),∴直线AB的方程为y-6=12(x-2),整理得12x -y -18=0.3.若方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),则应满足的条件是________. 答案 A ≠0且B ≠0解析 由题意知,直线斜率存在且斜率不为零,所以A ≠0且B ≠0.4.(2020·衡水模拟)直线x +3y +1=0的倾斜角是( )A.π6B.π3C.2π3D.5π6 答案 D解析 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,又α∈[0,π),所以α=5π6.5.(多选题)(2021·烟台调研)下列说法正确的是( ) A .有的直线斜率不存在B .若直线l 的倾斜角为α,且α≠90°,则它的斜率k =tan αC .若直线l 的斜率为1,则它的倾斜角为3π4 D .截距可以为负值 答案 ABD6.(2020·武汉调研)过点(-3,4),在x 轴上的截距为负数,且在两坐标轴上的截距之和为12的直线方程为______. 答案 4x -y +16=0解析 由题设知,横、纵截距均不为0,设直线的方程为xa +y12-a=1,又直线过点(-3,4),从而-3a +412-a=1,解得a =-4或a =9(舍).故所求直线的方程为4x-y+16=0.考点一直线的倾斜角与斜率【例1】(经典母题)直线l过点P(1,0),且与以A(2,1),B(0,3)为端点的线段有公共点,则直线l斜率的取值范围为________.答案(-∞,-3]∪[1,+∞)解析法一设P A与PB的倾斜角分别为α,β,直线P A的斜率是k AP=1,直线PB的斜率是k BP=-3,当直线l由P A变化到与y轴平行的位置PC时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l由PC变化到PB的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故斜率的取值范围是(-∞,-3]∪[1,+∞).法二设直线l的斜率为k,则直线l的方程为y=k(x-1),即kx-y-k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1-k)(-3-k)≤0,即(k-1)(k+3)≥0,解得k≥1或k≤- 3.即直线l的斜率k的取值范围是(-∞,-3]∪[1,+∞).【迁移】若将例1中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.解 设直线l 的斜率为k ,则直线l 的方程为 y =k (x +1),即kx -y +k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3. 即直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤13,3.感悟升华 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上的单调性求解,这里特别要注意,正切函数在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上并不是单调的. 2.过一定点作直线与已知线段相交,求直线斜率取值范围时,应注意倾斜角为π2时,直线斜率不存在.【训练1】 (1)(2021·新高考8省联考)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为__________.(2)过函数f (x )=13x 3-x 2图像上一个动点作函数图像的切线,则切线倾斜角的取值范围为( )A.⎣⎢⎡⎦⎥⎤0,3π4B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎭⎪⎫3π4,π D.⎝ ⎛⎦⎥⎤π2,3π4 答案 (1)13,-3 (2)B解析 (1)正方形两条相邻边与对角线的夹角为 π4, 设正方形的边所在直线的斜率为k ,则由夹角公式得tan π4=⎪⎪⎪⎪⎪⎪⎪⎪k -21+2k ⇒k =13或k =-3. (2)∵f ′(x )=x 2-2x =(x -1)2-1≥-1,∴斜率k =tan α≥-1,解得倾斜角α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π,故选B.考点二 直线方程的求法【例2】 (1)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3).求BC 边上的中线AD 所在直线的方程.(2)经过点P (2,3),并且在两坐标轴上截距相等;(3)经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2).解 (1)由题意得线段BC 的中点D (0,2),可得BC 边上的中线AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(2)法一 ①当截距为0时,直线l 过点(0,0),(2,3), 则直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0. ②当截距不为0时,可设直线l 的方程为x a +ya =1. 因为直线l 过点P (2,3),所以2a +3a =1,所以a =5. 所以直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0. 法二 由题意可知所求直线斜率存在, 则可设y -3=k (x -2),且k ≠0.令x =0,得y =-2k +3.令y =0,得x =-3k +2.于是-2k +3=-3k +2,解得k =32或k =-1. 则直线l 的方程为y -3=32(x -2)或y -3=-(x -2), 即直线l 的方程为3x -2y =0或x +y -5=0. (3)联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.则直线的方程为y -1=-23(x -1), 即2x +3y -5=0.感悟升华 (1)求直线方程一般有以下两种方法:①直接法:由题意确定出直线方程的适当形式,然后直接写出其方程. ②待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数,即得所求直线方程.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】 (1)已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0 D .3x +y -6=0(2)过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________________.答案 (1)D (2)x +y -3=0或x +2y -4=0解析 (1)设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan(α+45°)=2+11-2×1=-3,又点M (2,0),所以y =-3(x -2),即3x +y -6=0. (2)由题意可设直线方程为x a +yb =1.则⎩⎨⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 故所求直线方程为x +y -3=0或x +2y -4=0.考点三 直线方程的综合应用【例3】已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程. (1)证明 直线l 的方程可化为k (x +2)+(1-y )=0, 令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时,直线在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4 ≥12×(2×2+4)=4,“=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.感悟升华 1.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,能够看出“动中有定”.若直线的方程为y =k (x -1)+2,则直线过定点(1,2).2.求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.3.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.【训练3】 (1)已知k ∈R ,写出以下动直线所过的定点坐标: ①若直线方程为y =kx +3,则直线过定点________; ②若直线方程为y =kx +3k ,则直线过定点________; ③若直线方程为x =ky +3,则直线过定点________.(2)曲线xy-x+2y-5=0在点A(1,2)处的切线与两坐标轴所围成的三角形的面积为()A.9 B.496 C.92 D.113答案(1)①(0,3)②(-3,0)③(3,0)(2)B解析(1)①当x=0时,y=3,所以直线过定点(0,3).②直线方程可化为y=k(x+3),故直线过定点(-3,0).③当y=0时,x=3,所以直线过定点(3,0).(2)由xy-x+2y-5=0,得y=f(x)=x+5 x+2,∴f′(x)=-3(x+2)2,∴f′(1)=-13,∴曲线在点A(1,2)处的切线方程为y-2=-13(x-1).令x=0,得y=73;令y=0得x=7.∴切线与两坐标轴所围成的三角形的面积为S=12×73×7=496.A级基础巩固一、选择题1.(多选题)(2021·惠州调研)如图,直线l1,l2,l3的斜率分别为k1,k2,k3,倾斜角分别为α1,α2,α3,则下列选项正确的是( )A .k 1<k 3<k 2B .k 3<k 2<k 1C .α1<α3<α2D .α3<α2<α1 答案 AD解析 如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,倾斜角分别为α1,α2,α3,则k 2>k 3>0,k 1<0,故π2>α2>α3>0,且α1为钝角,故选AD. 2.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A .1±2或0 B.2-52或0 C.2±52 D.2+52或0 答案 A解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a=1± 2.3.如果A ·B >0,B ·C <0,那么直线Ax -By -C =0不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 D解析 因为直线在x 轴、y 轴上的截距分别为C A <0,-CB >0,所以直线Ax -By -C =0不经过的象限是第四象限.故选D.4.(多选题)(2020·临沂质检)设直线l 经过点A (2,1),且在两坐标轴上的截距相等,则直线l 的方程为( ) A .x -2y =0 B .x +y -3=0 C .x -y -1=0 D .x +2y =0 答案 AB解析 当截距都为零,则经过坐标原点,设直线方程为y =kx ,则2k =1,k =12,所以直线方程为y =12x ,即x -2y =0;当截距都不为零,则设直线方程为x +y =a (a ≠0),则2+1=a (a ≠0),所以直线方程为x +y =3,即x +y -3=0,综上直线方程为x -2y =0或x +y -3=0. 5.(2021·福建六校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )答案 B解析 当a >0,b >0时,-a <0,-b <0,结合选项知B 符合,其他均不符合. 6.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或1 答案 D解析 令x =0,y =2+a , 令y =0,x =2+a a ,则2+a =2+aa . 即(a +2)(a -1)=0,∴a =-2或a =1.7.直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3 答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.8.(2020·安阳模拟)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 恒相交,则k 的取值范围是( ) A .k ≥12 B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12 答案 D解析 直线l :y =k (x -2)+1经过定点P (2,1), ∵k P A =3-11-2=-2,k PB =-1-1-2-2=12,又直线l :y =k (x -2)+1与线段AB 恒相交, ∴-2≤k ≤12. 二、填空题9.把直线x -y +3-1=0绕点(1,3)逆时针旋转15°后,所得直线l 的方程是________. 答案 y =3x解析 已知直线的斜率为1,则其倾斜角为45°,绕点逆时针旋转15°后,得到的直线l 的倾斜角α=45°+15°=60°,直线l 的斜率为tan α=tan 60°=3,∴直线l 的方程为y -3=3(x -1),即y =3x .10.(2020·沈阳模拟)过点⎝ ⎛⎭⎪⎫1,14且在两坐标轴上的截距互为倒数的直线方程为________. 答案 x +4y -2=0解析 因为两坐标轴上的截距互为倒数,所以截距不为零,可设直线方程为xa +ay =1, 因为x a +ay =1过点⎝ ⎛⎭⎪⎫1,14,所以1a +14a =1,解得a =2,所以,所求直线方程为12x +2y =1,化为x +4y -2=0.11.(2021·重庆质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________. 答案 -13解析 依题意,设点P (a ,1),Q (7,b ), 则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得⎩⎪⎨⎪⎧a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.12.在平面直角坐标系xOy 中,经过点P (1,1)的直线l 与x 轴交于点A ,与y 轴交于点B .若=-2,则直线l 的方程是________. 答案 x +2y -3=0解析 设A (a ,0),B (0,b ),由=-2,可得a -1=-2×(0-1),0-1=-2(b -1),则a =3,b =32,由截距式可得直线l 的方程为x 3+y32=1,即x +2y -3=0.B 级 能力提升13.(2021·东北三省三校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12 B .[-1,0] C .[0,1] D.⎣⎢⎡⎦⎥⎤12,1解析 由题意知,y ′=2x +2,设P (x 0,y 0),则在点P 处的切线的斜率k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1, 故-1≤x 0≤-12.14.已知A ,B 是x 轴上的不同两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( ) A .2x +y -7=0 B .x +y -5=0 C .2y -x -4=0 D .2x -y -1=0 答案 B解析 因为点P 的横坐标为2,且点P 在直线x -y +1=0上,所以点P 的纵坐标为3,所以P (2,3).又因为|P A |=|PB |,所以直线P A ,PB 的斜率互为相反数,所以直线PB 的斜率为-1,则直线PB 的方程是y -3=-(x -2),即x +y -5=0.故选B.15.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,则a =________. 答案 12解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,又0<a <2,所以当a =12时,面积最小.16.在△ABC 中,∠ACB =90°,BC =3,AC =4,P 是线段AB 上的点,则P 到AC ,BC 的距离的乘积的最大值为________. 答案 3以C为坐标原点,CB所在直线为x轴建立直角坐标系(如图所示),则A(0,4),B(3,0),直线AB的方程为x3+y4=1.设P(x,y)(0≤x≤3),所以P到AC,BC的距离的乘积为xy,因为x3+y4≥2x3·y4,当且仅当x3=y4=12时取等号,所以xy≤3,所以xy的最大值为3.。
两点间距离公式与线段中点的坐标教案教案:两点间距离公式与线段中点的坐标一、引入两点间的距离是数学中一个重要的概念。
它用来描述两个点之间的空间距离或距离的度量大小。
在数学中,我们可以通过使用两点间的坐标来计算它们之间的距离。
本节课将介绍两点间的距离公式以及如何计算线段的中点坐标。
二、知识点1.两点间的距离公式两点之间的距离可以通过计算其坐标差值的平方和的平方根来获得。
设A(x1,y1)和B(x2,y2)两点,则它们之间的距离为d=√((x2-x1)²+(y2-y1)²)。
2.线段的中点在坐标平面中,线段的中点是指连接线段的两个端点的线段上点的坐标。
要计算线段的中点坐标,只需对线段的两个端点的x坐标和y坐标分别取平均值即可。
设线段的两个端点为A(x1,y1)和B(x2,y2),则线段的中点C的坐标为C((x1+x2)/2,(y1+y2)/2)。
三、教学过程1.导入引导学生回顾直线的斜率计算,并提问:在坐标平面中,如何计算两点之间的距离呢?引导学生思考,然后介绍两点间的距离公式。
2.讲解a)介绍两点间的距离公式,以一道题目为例进行讲解。
例题:已知点A(1,2)和点B(4,6),求它们之间的距离。
b)利用两点间的距离公式进行计算,解题步骤如下:步骤1:根据题目条件,得到A(x1,y1)和B(x2,y2)的坐标值。
步骤2:代入两点间的距离公式d=√((x2-x1)²+(y2-y1)²)进行计算。
步骤3:计算得到d的值,并给出结论。
c)引导学生反思解题过程和实际意义。
3.训练指导学生进行相关练习,巩固两点间的距离公式的使用。
4.讨论a)引导学生讨论如何计算线段的中点坐标。
b)引导学生由线段的端点坐标出发,讨论如何计算线段的中点坐标,并举例说明。
c)帮助学生理解线段中点概念的几何直观意义,并加深对平均值的掌握。
5.讲解a)整理学生的讨论结果,给出计算线段中点坐标的公式。