荒煤气余热回收的结焦问题分析
- 格式:pdf
- 大小:185.79 KB
- 文档页数:5
焦炉荒煤气余热回收原理焦炉荒煤气余热回收是指通过对焦炉排出的煤气进行处理和利用,将其余热转化为能量或热量的过程。
该技术应用于工业生产中,可以提高能源利用效率,降低能源消耗和环境污染,具有重要的经济和环境效益。
本文将详细介绍焦炉荒煤气余热回收的原理及应用。
焦炉是用来生产焦炭的装置,焦炭是一种重要的冶金原料,在钢铁、铁合金等行业得到广泛应用。
在焦炉的生产过程中,焦炭的制作需要对煤进行加热处理,产生大量的高温煤气。
这些煤气中含有丰富的余热,如果直接排放到大气中,会造成能源浪费和环境污染。
焦炉荒煤气余热回收的原理主要包括煤气处理和余热回收两个部分。
首先,焦炉排出的煤气需要经过净化处理,去除其中的灰尘、硫化氢等杂质,以保证后续利用的稳定和安全。
接着,煤气进入余热回收系统,在其中发生一系列的热交换过程,使煤气中的余热转化为可利用的能量或热量。
焦炉荒煤气余热回收的具体流程如下:首先,煤气被引导进入煤气净化器,通过过滤和洗涤等方法,去除其中的固体颗粒和可溶性硫化物等杂质。
这样做的目的是为了保护后续设备的安全运行,减少杂质对设备的腐蚀和堵塞影响。
然后,净化后的煤气进入余热回收系统中的换热器,与流经其它管道的冷却介质进行热量交换。
通过这种方式,煤气中的高温余热被传递给冷却介质,使其温度升高。
同时,煤气自身温度下降,减少对环境的热污染。
煤气与冷却介质的流动方式可以是并流式或逆流式,根据具体情况选择,以达到最佳的热交换效果。
经过换热器后,冷却介质温度升高,可以进一步利用其所含的热量进行工业生产或供暖等用途。
冷却介质会被送回源头,通过循环使用,达到节约能源的目的。
同时,煤气在换热器中降温后,进一步净化处理,去除其中的水蒸汽和有害物质,确保后续利用的安全性。
最后,煤气经过换热器和净化处理后,所剩余的废气被排放到大气中,此时其温度已经降到较低水平,对环境影响较小。
这样一来,焦炉荒煤气的余热就得到了有效的回收利用,不仅减少了能源浪费,还降低了环境污染。
垃圾发电厂余热锅炉结焦原因及解决对策分析摘要:垃圾焚烧发电技术不仅能够解决垃圾处理难的问题,而且垃圾焚烧所产生的热能可以转换为电能或热能,实现资源的有效利用。
本文主要对造成垃圾发电厂余热锅炉结焦的因素分析,并指出如何有效地处理垃圾发电厂余热锅炉结焦问题,希望在解决垃圾发电厂余热锅炉结焦问题的同时,促使锅炉使用的寿命得以延长。
关键词:垃圾发电厂;余热;锅炉结焦引言在垃圾焚烧过程中,当锅炉温度比较低时,其熔融的灰粒会粘附在炉壁上产生结焦,并且锅炉在长期运行过程中,随着排烟温度的提升,烟道出口的负压会不断增大,其水平烟道的受热面会出现比较严重的结焦现象,如果没有及时进行灰尘的清理,或者清理的次数比较少,锅炉内沉积的灰尘比较多,一定程度会缩短锅炉使用寿命。
一、造成垃圾发电厂余热锅炉结焦的因素分析(一)炉膛温度控制不当锅炉产生结焦现象受锅炉里面温度控制情况影响,其中当垃圾焚烧锅炉内温度过高时,炉内产生的灰渣颗粒会发生融化,进而产生结焦;如果锅炉内温度低于1000度时,垃圾中的氧化物不能完全分解[1]。
另外,由于炉膛温度的控制受多种因素的影响,无法精确地控制温度测点,进而产生结焦问题。
其中温度测点挂焦、挂灰都会影响温度测点,导致温度测点的温度与实际温度产生一定差距,一般情况下,要求温度测点的温度与实际温度控制在50度之内,而实际二者的温度超过50度,且实际温度还受季节性影响,会产生一些温度差异,从而导致实际温度过高而出现锅炉结焦问题。
(二)锅炉设计不合理垃圾发电厂余热锅炉结焦问题还受锅炉结构设计情况的影响,由于当前大多数锅炉设计的是绝热燃烧形式,只是为了保护炉墙的冷却风,无法确保锅炉内的受热面,因此出现锅炉结焦现象。
比如在喉部扩压影响下,焚烧炉产生的烟气会快速降低,其中产生的粉尘会分离、沉淀,在随着炉壁流动过程中会粘接在炉壁上,并且当炉壁内再次沉积粉尘后,会继续粘接、凝固,进而出现结焦问题。
(三)锅炉配风问题众所周知,锅炉配风是锅炉运行中不可或缺的一部分,锅炉结焦情况也受配风控制影响。
第6期 收稿日期:2018-02-02作者简介:姜 崴(1973—),山东乳山人,本科,高级工程师,1997年毕业于太原理工大学精细化工专业,目前从事工艺设计方面的工作。
焦炉荒煤气余热回收技术应用分析姜 崴(山西国控环球工程有限公司,山西太原 030024)摘要:焦炉荒煤气含有大量的焦炉热量。
纵观传统焦化工艺,处于集气管内的焦炉荒煤气需要利用喷氨水的手段将其冷却降温,这种做法既会损耗多量的电能,还会导致荒煤气热量的浪费。
本文将结合焦炉荒煤气的特点,分析和探讨焦炉荒煤气余热回收技术。
关键词:荒煤气;余热回收;应用分析中图分类号:TQ083.4;TQ520.8 文献标识码:A 文章编号:1008-021X(2018)06-0109-01 我国焦炭产量在世界范围内处于前列,然而整体科技水平不高,许多焦化企业面临着亏损。
我国焦炭大部分被用来炼铁。
焦炉荒煤气携带着大量的热量,不合理利用的话会造成巨大的损耗。
鉴于这一现实情况,焦化企业要积极调整工艺结构,优化和完善焦炉荒煤气余热回收技术。
1 焦炉荒煤气以及煤焦油结焦的特征荒煤气内含有多种成分,不仅含有净煤气,还含有硫化氢、煤焦油、水分等成分。
硫化氢作为荒煤气中的成分之一,在干燥状态下不会对金属造成腐蚀和破坏。
然而,当焦化企业利用换热器回收荒煤气时,由于换热器壁面与荒煤气之间的温度差异,会导致水蒸气凝结或煤焦油凝结,使得可融入水的硫化氢在水蒸气或煤焦油之中溶解,进而对换热器的金属壁面造成严重的腐蚀破坏,对设备的安全使用造成威胁,可能导致严重的安全隐患。
煤焦油内含有多种成分,根据沸点的高低可分为沥青、蒽油、洗油等成分。
实践证明,煤焦油的凝结温度为450℃,凝结之后的煤焦油会顺着换热器的避免往下流动,当流动到换热器的底部时,凝结后的煤焦油在炭化室的高温辐射下得到再一次分解,其中煤焦油中的固体成分将在换热器表面附着,导致积碳现象。
当换热器避免的温度远远低于煤焦油的温度时,煤焦油会迅速冷凝成为结焦,这些现象都是制约焦炉荒煤气余热回收技术发展的难题,攻克焦炉上升管换热器运行问题有助于促进荒煤气余热回收技术的发展。
焦炉荒煤气显热深度回收热力计算分析丁红光;张忠孝;曹先常;潘金荣;陈时选【摘要】针对焦炉荒煤气显热回收中受热面布置空间小及受热表面结焦致使热回收难以持续等问题,提出下降管多层膜式壁换热结构,且在热回收低温段采取镍涂层、喷氨等除焦措施,对荒煤气显热进行深度回收.热力计算结果表明:入口流量400Nm3/h、温度750℃的荒煤气在经过上升管换热器回收部分显热后,再通过下降管热回收装置最终出口平均温度可达301.3℃,突破了由于焦油凝析结焦带来的荒煤气出口温度的限制,下降管换热器可产生1.9 NPa饱和蒸汽174 kg/h,系统总热回收效率高达65%,可实现显热深度回收利用.%In order to solve the problems that there are small space for heating surface and the unsustainable heat recovery because of heating surface coking,existing in the process of coke-oven raw gas of sensible heat recovery,the paper proposes a multi-layer membrane wall heat exchanging structure in downcomer,and it takes some decoking measure in low temperature heat recovery section as well,such as spraying ammonia,nickel coating.The result obtained by thermodynamic calculation shows:the raw gas with inlet flow rate 400Nm3/h and the temperature 750℃,flowing through the heat exchanger in riser,are recovered partial sensible heat and then passes through the heat recovery device in downcomer,its average temperature at the downcomer outlet reaches 301.3℃,breaking through the limit of the temperature brought by the coal tar of condensation and coking,during the running process,the heat exchanger in downcomer can produce 174 kg/h of 1.9 MPa saturated vapor,the overall efticiency of heat recovery system reachesup to 65%,which can realize the full recovery and utilization for the sensible heat of coke-oven raw gas.【期刊名称】《节能技术》【年(卷),期】2018(036)002【总页数】5页(P156-160)【关键词】荒煤气;显热回收;下降管;多层膜式壁;热力计算【作者】丁红光;张忠孝;曹先常;潘金荣;陈时选【作者单位】上海理工大学能源与动力工程学院,上海200093;上海理工大学能源与动力工程学院,上海200093;上海宝钢节能环保技术有限公司,上海200093;上海宝钢节能环保技术有限公司,上海200093;上海理工大学能源与动力工程学院,上海200093【正文语种】中文【中图分类】TK1150 引言在炼焦过程中,从焦炉炭化室逸出的荒煤气温度高达650~850℃,其携带显热约占焦炉输入能量总额的36%,就焦炉产物带出热量而言,荒煤气显热居第二位,仅略低于红焦炭显热。
垃圾发电厂余热锅炉结焦原因分析及对策因为锅炉壁温度较低,使用垃圾焚烧发电燃烧中产生的灰粒会在炉壁粘附产生结焦,从而对寿命和使用效率造成影响,结焦主要集中在炉膛前后拱位置和侧墙以及竖直烟道位置,且危险程度随着焦体扩大而加重,乃至垃圾发电厂锅炉被迫停炉清焦,本文就垃圾发电厂余热锅炉结焦原因展开分析并提出整改措施以保证安全稳定的生产。
生活垃圾焚烧发电是解决污染提高垃圾高效利用的有效途径,既能够解决垃圾处理难题,又能够利用焚烧余热获电能是一项一举几得的技术措施得到了广泛应用。
但结焦问题的存在,对垃圾发电厂锅炉长周期运行带来不良影响,锅炉结焦的不均匀导致热偏差造成对锅炉的各种不良影响,无论结焦发生在水冷壁处或是燃烧器喷口处都会对锅炉空气动力造成破坏,甚至引起锅炉灭火,因此对锅炉结焦原因展开分析应提出解决方案至关重要。
1、垃圾发电厂余热锅炉结焦原因余热锅炉结焦困扰垃圾发电厂生产运营的一大问题,结焦会产生较多严重问题,结焦在不同的位置会造成不同的影响,比如竖直烟道会导致烟道变窄,出口负压增大,引起风机电耗增加,排烟温度升高导致停炉;结焦块掉落可能卡在下渣口或者卡住捞渣机影响正常排渣;结焦在内侧墙及前后拱会影响堆料铺料乃至出现偏料影响燃烧。
垃圾发电厂余热锅炉结焦原因主要有:烟道受热面清灰问题、锅炉配风影响、炉膛温度不合理问题、燃烧不合理等。
锅炉内高温熔化后的灰接触到了受热面并粘附之上,长久以来形成了积灰最终形成结焦出现恶性循环严重影响生产。
1.1炉膛温度不合理造成结焦垃圾焚烧过程中为了确保彻底分解有害物质,因此焚烧温度大多在1000℃以上,垃圾焚烧所产生的飞灰在火焰高温影响下熔融软化产生结焦,因此过高的不合理炉膛温度是造成结焦的重要原因之一。
锅炉运行中因为对温度测点控制准确性存在偏差,导致实际温度和测得温度之间存在较大偏差,极端情况下实际运行温度可能超过100℃甚至200℃,但温测点可能只相差50℃,季节变化也会造成炉膛局部温度偏高,导致结焦出现。
垃圾焚烧炉结焦积灰问题及控制措施分析目前国内外处理垃圾最普遍的方式就是垃圾焚烧发电,其具有垃圾无公害、资源化、减容化等优势。
垃圾焚烧炉结焦积灰问题经常发生,对垃圾焚烧工作带来了巨大影响。
就垃圾焚烧炉结焦积灰的问题及控制措施做出探究,并提出浅显的意见,以望为我国垃圾焚烧厂工作顺利开展做出微薄的贡献。
1、垃圾焚烧炉结焦积灰的原因在进行垃圾焚烧工作时,垃圾焚烧炉排炉部位的结焦积灰现象会导致垃圾焚烧炉前拱以及后拱部位形成类似人类喉咙一样的“喉口”部位变窄,流通面积缩小,久而久之会出现堵塞情况。
此外,如果有污垢或者腐蚀情况出现在垃圾焚烧炉过热器管的外壁,会造成过热器管屏之间的距离变小,甚至形成堵塞,锅炉的安全性能以及经济效益都会受到很大的影响。
因此要分析出垃圾焚烧炉结焦积灰的原因还应当从垃圾焚烧炉的烟气的流动方向以及流动速度、配风情况、飞灰浓度、垃圾焚烧炉的壁温以及烟气湿度等方面分析受热面结焦积灰的主要因素,并分析出导致锅炉排烟道产生积灰以及沾污的主要原因,总结出垃圾焚烧炉结焦积灰的规律。
当软化温度高于灰粒温度时,一般在受热面上只能够形成相当疏松的一层灰渣,并且其极易脱落;当软化温度低于灰粒温度时,受热面上将吸附大量具有较强粘聚性的灰渣,这些灰渣的吸附量将随着温度的升高不断的增多,最终形成熔渣。
而对于烟道积灰,由于烟道的烟气温度远远低于其熔融温度,因此只会有少量的积灰在烟道中形成,并不会产生熔融现象,用吹灰器就可以轻易的吹掉。
经过实际测验,各种飞灰的熔融温度相当高接近1500摄氏度,是因为其中加入了脱酸物质而造成对比各种熔融温度,只有渣块的熔融温度最低,喉口处的严重结焦情况与其有很重大的关系,当达到渣块的熔融温度之后,渣块会迅速的软化,最后形成严重的结焦情况,清除难度也非常大。
2、影响结焦积灰的因素2.1垃圾焚烧炉炉膛的温度在进行垃圾焚烧工作时,由于垃圾焚烧炉相关运行经验,又为了将烟气中存在的二恶英成分进行有效的分解,垃圾焚烧炉炉膛的温度在运行是大多都保持在1000摄氏度以上,而焰心处的温度更高,熔融温度早已经达到,因此就会形成飞灰软化现象,留下了很多的锅炉结焦隐患。
科技成果——焦炉荒煤气显热回收利用技术适用范围钢铁、焦化行业焦炉荒煤气余热回收行业现状据统计,在我区钢铁和焦化行业,从焦炉炭化室出来的650℃-800℃荒煤气带出的余热约占焦炉热量损失的36%,相当于39kgce/吨焦。
目前,传统的焦炉荒煤气冷却工艺采用喷洒大量70℃-75℃的循环氨水冷却高温荒煤气,荒煤气温度降低后,进入煤气初冷器,再由循环水和低温冷却水进一步降低温度到21℃左右,而高温荒煤气带出的余热无法利用。
该工艺流程不仅浪费了大量的荒煤气余热,而且消耗大量氨水,浪费大量的水资源和电力。
成果简介1、技术原理通过上升管换热器结构设计,采用纳米导热材料起导热作用,并防止荒煤气腐蚀和焦油附着,采用耐高温耐腐蚀合金材料最大限度地适应了荒煤气运行的恶劣工况。
特殊的几何态构体结构,合理地将换热和稳定运行有机结合,将焦炉荒煤气利用上升管换热器和除盐水进行热交换,产生饱和蒸汽,将荒煤气的部分显热回收利用,实现节能。
2、关键技术(1)换热器防漏水技术采用纳米导热层、耐磨耐腐耐高温合金层、金属导热层(无缝钢管)的三层保护结构材料,与荒煤气接触部分无任何焊缝,保证换热水不会漏入上升管内部,确保工艺安全。
换热器换热结构采用自行研发的几何态换热结构形式,将水封闭在三层以外的密闭空间进行换热。
(2)换热器防堵塞技术在结焦过程中,特别是存在大量荒煤气的阶段,可实现荒煤气出口温度与进水流量的全自动控制调节,将荒煤气出口温度控制在450℃以上。
同时,上升管换热器的内壁采用耐高温进口纳米导热材料,耐热温度为1800℃,经过500℃高温后内表面形成均匀光滑而又坚固的釉面,不易造成焦油凝结,即使结焦也不易附着,便于清除。
3、工艺流程除盐水经过除氧后通过给水泵送入汽包,汽包底部的强制循环水泵将一定压力的除氧水送入上升管换热器,在上升管换热器内的除氧水经换热后,返回汽包,在汽包内进行汽液分离,饱和蒸汽根据用户需求条件,通过管道供给用户。
焦炉用上升管换热器余热回收阐释1 概述焦化厂炼焦生产实际上是典型的能源再加工和热能的回收再利用过程,焦炭和炼焦煤气是其主要的能源产品。
焦炭生产过程中,配合煤在焦炉中被隔绝空气加热干馏,生成焦炭的同时产生大量的荒煤气。
从炼焦生产过程热平衡分布看,从焦炉炭化室推出的950℃~1050℃红焦带出的显热(高温余热)占焦炉支出热的37%,650℃~850℃焦炉上升管荒煤气带出热(中温余热)占焦炉支出热的36%,180℃~230℃焦炉烟道废气带出热(低温余热)占焦炉支出热的16%,炉体表面热损失(低温余热)占焦炉支出热的11%。
其中占焦炉支出热最多的两项中,焦炭带出的显热,目前已有成熟的干熄焦装置回收并发电,而对焦炉上升管荒煤气带出的显热,虽然国内有多人进行了研究,但至今未形成成熟、可靠、高效的回收利用技术。
本文研究开发了一种新型焦炉荒煤气上升管换热器,采用新型耐高温材料与独特的换热结构,既充分回收了荒煤气的热量,又控制了上升管内壁的结焦。
2 中试研究内容本文研究开发的上升管换热器在江苏沙钢集团焦化厂6m焦炉进行中试试验研究。
在推焦前2小时拆除焦炉上原有上升管,更换成上升管换热器,中试采用一根上升管换热器,主要考察上升管换热器的换热效果(即蒸汽产量)、内壁结焦情况、漏水情况及干烧情况。
3 中试设备及工艺流程3.1 中试设备中试设备包括上升管换热器和集成式中试组合装置。
3.1.1 上升管换热器。
上升管换热器为多层组合装置,内壁为导热层,中间为换热器,最外层为隔热保护层。
3.1.2 集成式中试组合装置。
其中包括缓冲水箱、汽包补水泵、汽包、强制循环泵、进水电磁阀、缓冲水箱液位计、汽包液位计、汽包安全阀、蒸汽流量计、荒煤气进出口热电偶、控制电柜以及配套管路。
第一,汽包筒体为圆柱形,两端为椭圆形封头,循环水通过汽包底部的下降管管座流出,汽水混合物通过侧面回水管座进入汽包。
在汽包内部,汽水混合物受到挡板阻隔折流以利于水位的稳定并使汽水更好地进行分离。