自动控制系统的组成及其质量指标_
- 格式:ppt
- 大小:778.00 KB
- 文档页数:37
自动控制系统的基本知识(上篇)在现代工业生产中,自动控制技术起着越来越重要的作用。
所谓自动控制,是指在人不直接参与的情况下,利用控制装置使被控对象(如机器、设备或生产过程)自动地按照预定的规律运行或变化。
自动控制系统,是指能够对被控对象的工作状态进行自动控制的系统,一般是由控制装置和被控对象组成的。
各种自动控制系统都有衡量其性能优劣的具体性能指标。
控制装置在自动控制系统中起着十分重要的作用,自动调节系统中的调节器决定了系统的控制规律,对系统的控制技师有着很大影响。
理论简介自动控制理论是研究自动控制共同规律的技术科学。
自动控制理论按其发展过程,可分为经典控制理论和现代控制理论两大部分。
它的发展初期,是以反馈理论为基础的自动调节原理,到五十年代末期,自动控制理论已经形成比较完整的体系,通常把这个时期以前所应用的自动控制理论,称为经典控制理论。
经典控制理论,以传递函数为基础,主要研究单输入、单输出的反馈控制系统,采用的主要研究方法有时域分析法、根轨迹和频率法。
进入六十年代以来,随着自动控制技术的发展,出现了新的控制理论一一现代控制理论。
现代控制理论,以状态空间法为基础,主要研究多变量、变参数、非线性、高精度及高效能等各种复杂控制系统。
现代控制理论已成功地应用在航天、航空、航海及工业生产等许多方面。
目前,现代控控制理论正在大系统工程、人工智能控制等方面向纵深发展。
经典控制理论和现代控制理论,两者相轴相成,各有其应用场合。
常用术语1)被控对象被控对象是一个设备,由一些机械或电器零件组成,其功能是完成某些特定的动作,这些动作通常是系统最终输出的目标2)系统系统是由一些部件组成的,用以完成一定的任务。
3)环节环节是系统的一个组成部分,它由控制系统中的一个或多个部件组成,其任务是完成系统工作过程中的局部过程。
4)扰动扰动是一种对系统的输出量产生反作用的信号或因素。
若扰动产生于系统内部,则称为内扰;若其来自于系统外部,则称为外抗。
自动控制系统的组成及其质量指标自动控制系统是指通过传感器、执行器、控制器和反馈装置等组成的系统,用来实现对其中一过程或设备进行自动调节和控制的一种装置。
它是现代工业生产中的重要组成部分,广泛应用于各个领域,如工厂生产线、交通系统、环境控制等。
1.传感器:传感器是自动控制系统中的输入设备,用于获取被控制对象的参数或状态信息。
常用的传感器有光电传感器、温度传感器、压力传感器等。
传感器能够将被测量的物理量转换为电子信号,传输至控制器进行处理。
2.执行器:执行器是自动控制系统中的输出设备,用于根据控制信号执行相应的操作。
常见的执行器有电动阀门、电动机、气动阀门等。
执行器能够根据控制器的信号实现对被控制对象的控制或操作。
3.控制器:控制器是自动控制系统中的核心部件,用于接受传感器采集到的数据并进行处理,产生相应的控制信号。
常用的控制器有PLC(可编程逻辑控制器)、DCS(分布式控制系统)、PID控制器等。
控制器的主要任务是根据设定的控制算法对输入信号进行处理,产生输出信号控制执行器的工作状态。
4.反馈装置:反馈装置是自动控制系统中的重要组成部分,用于将被控对象的状态信息反馈给控制器,以实现对系统的闭环控制。
常见的反馈装置有位置传感器、速度传感器等。
反馈装置能够及时将被控对象的实际状态反馈给控制器,使得控制器能够根据实际情况对控制信号进行调整。
1.稳定性:稳定性是指控制系统在任何扰动条件下都能保持稳定的性能。
对于一个稳定的控制系统,无论输入条件如何变化,系统的输出都能回到期望状态,并保持在一个可接受的范围内。
2.精度:精度是指控制系统在给定输入情况下能够实现预期的输出。
对于一个精度较高的控制系统,其输出与预期输出的误差较小,能够满足控制要求。
3.响应时间:响应时间是指控制系统从接收到输入信号开始产生输出信号所需要的时间。
对于一些需要实现快速调节的系统,较短的响应时间是非常重要的指标。
4.鲁棒性:鲁棒性是指控制系统对于参数变化或外部扰动的抗干扰能力。
自动控制系统的基本概念第一节自动控制系统的组成及分类一、自动控制系统的组成在工业生产中,各种生产工艺过程都必须在规定的工况条件下进行。
如精馏塔的塔顶温度或塔底温度要保持在期望值,化学反应器内的反应温度要保持稳定,锅炉汽包水位要维持在规定范围内,调和作业时的配比关系要达到规定的比值范围等。
这些生产过程中的工艺变量,需要根据工艺要求严格控制。
控制分人工控制和自动控制两种。
在绪论中以储罐液位系统为例介绍了人工控制和自动控制的基本概念。
自动控制是在人工控制约基础上发展起来的,它是在生产设备上配备一些自动控制装置,对生产过程中重要的工艺变量进行控制,使生产过程自动地维持预定工况。
自动控制装置和被控对象组成了自动控制系统。
为进一步了解自动控制系统,再来分析一个实例。
图13-1和13-2所示为一蒸汽加热器的温度人工和自动控制系统。
生产中利用蒸汽作为载热体对温度较低的进料进行加热,工艺上希望保持出料温度t在一个恒定的数值。
在这里,蒸汽加热器是被控对象,t是所要控制的变量,即被控变量,工艺上期望的t的数值是给定值。
蒸汽流量、进料流量、进料温度等发生变化时,都会使出料温度发生变化,即系统的干扰。
此处,采用的控制手段是调整加热蒸汽阀门的开度,改变蒸汽流量,来维持出料温度的恒定。
蒸汽流量是操纵变量。
若采用人工控制,当流体流量、进料温度等干扰使出料温度偏离工艺期望值时,操作工的调节过程是这样的:(1)用眼睛观察加热器出口温度指示仪表;(2)通过大脑计算出温度指示值与工艺期望值之间的差值,即偏差,根据偏差大小及方向发出相应操作命令;(3)根据大脑的操作命令,通过手去改变蒸汽阀门开度;(4)反复执行上述过程,直到出口温度回到期望值。
操作工通过眼、脑、手相互配合,灾现了检测偏差,然脱纠正偏差的控制过程,自动控制实际上是用自动控制装置来实现上述过程。
为了实现这一过程,用测量变送器、控制器和执行器去代替操作工的眼、脑、手,将它们按功能连接在一起与被控对象组成了一个自动控制系统。
第1篇一、基础知识部分1. 题目:请简述自动控制系统的基本组成和功能。
解析:自动控制系统通常由被控对象、控制器、执行机构和反馈环节组成。
被控对象是系统要控制的设备或过程;控制器根据给定值与反馈值的偏差,产生控制信号;执行机构将控制信号转换为对被控对象的控制作用;反馈环节将被控对象的输出反馈给控制器,形成闭环控制系统。
2. 题目:什么是开环控制系统?什么是闭环控制系统?请比较两者的优缺点。
解析:开环控制系统是指控制信号不反馈到控制器,仅根据输入信号进行控制。
闭环控制系统是指控制信号反馈到控制器,根据输入信号和反馈信号进行控制。
开环控制系统的优点是结构简单、成本低;缺点是鲁棒性差,容易受到外部干扰的影响。
闭环控制系统的优点是鲁棒性好、稳定性高;缺点是结构复杂、成本高。
3. 题目:什么是比例控制器、积分控制器、微分控制器?它们各自的特点是什么?解析:比例控制器(P控制器)只对输入信号进行比例放大,无积分和微分作用;积分控制器(I控制器)对输入信号的积分进行放大,用于消除稳态误差;微分控制器(D控制器)对输入信号的微分进行放大,用于预测系统的动态响应。
比例控制器适用于无稳态误差的系统;积分控制器适用于有稳态误差的系统;微分控制器适用于需要快速响应的系统。
4. 题目:什么是PID控制器?简述其特点和应用。
解析:PID控制器是比例、积分、微分控制器的简称,它结合了比例、积分、微分控制器的优点。
PID控制器具有以下特点:①可以消除稳态误差;②具有良好的动态响应特性;③易于实现。
PID控制器广泛应用于工业控制、航空航天、机器人等领域。
5. 题目:什么是系统稳定性?如何判断一个系统的稳定性?解析:系统稳定性是指系统在受到扰动后,能否恢复到初始状态。
判断系统稳定性的方法有:①奈奎斯特判据:通过绘制系统的Nyquist图,判断系统是否稳定;②Bode图:通过绘制系统的Bode图,判断系统是否稳定;③根轨迹法:通过绘制系统的根轨迹,判断系统是否稳定。
自动控制系统的性能评估指标自动控制系统是现代工业中的重要组成部分,它通过采集传感器信息并对其进行处理,从而实现对工业过程的控制。
然而,为了确保系统的有效运行,必须对自动控制系统的性能进行评估。
本文将探讨自动控制系统性能评估的指标,并对其进行详细说明。
一、稳定性稳定性是自动控制系统的基本要求之一。
它指的是系统在给定输入和负载变化的情况下,输出是否能够保持在期望值附近的能力。
稳定性评估指标包括:1. 稳态误差:系统输出与期望值之间的差异,常用于评估系统的准确性。
较小的稳态误差意味着系统的响应更为精确。
2. 收敛速度:系统从输入发生变化到输出稳定在期望值附近所需要的时间。
较快的收敛速度表示系统的响应更迅速。
二、动态性能除了稳定性外,自动控制系统的动态性能也是评估的关键指标之一。
它指的是系统对输入变化的响应速度和质量。
常见的动态性能评估指标包括:1. 响应时间:系统从输入变化到输出稳定在期望值附近所需的时间。
响应时间越短,系统响应越迅速。
2. 超调量:系统在响应过程中超过期望值的最大偏差。
较小的超调量表示系统的稳定性和准确性更高。
3. 阻尼比:描述系统振荡过程中阻尼能力的比例。
较高的阻尼比意味着系统的振荡减幅更快,响应更稳定。
三、鲁棒性鲁棒性是指自动控制系统对外界扰动或不确定性的抵抗能力。
评估鲁棒性的指标包括:1. 灵敏度:描述系统输出响应对参数变化的敏感程度。
较低的灵敏度表示系统对参数变化的抵抗能力更强。
2. 频率响应:描述系统对输入信号频率的响应特性。
较宽的频率响应范围意味着系统对不同频率的输入信号能够做出较好的响应。
四、可扩展性自动控制系统通常需要面对不同规模和复杂度的应用场景,因此可扩展性也是评估的重要指标之一。
可扩展性评估主要考虑以下因素:1. 系统规模:系统能够同时控制的设备数量或处理的数据量。
较大的系统规模意味着系统可以适应更大范围的应用场景。
2. 网络拓扑:系统中各个部分之间的连接方式。